# Alberta's Reserves 2001 and Supply/Demand Outlook 2002-2011

- Crude Bitumen
- Crude Oil
- Natural Gas and Liquids
- Coal
- Sulphur

## ACKNOWLEDGEMENTS

The following EUB staff contributed to this report. **Principal Authors: Reserves**—Andy Burrowes, Rick Marsh, Nehru Ramdin, Keith Sadler; **Supply/Demand**—Marie-Anne Kirsch, Abbas Naini, LeMoine Philp, **Editors:** Terry Hurst, Farhood Rahnama, Cal Hill; **Data:** Debbie Giles, Gordon Kimber, Joanne Stenson; **Production:** Liz Johnson, Ona Stonkus, Anne Moran, Jackie Bourgaize, Usha Dosaj, Rob deGrace, Melanie Battle; **Communications Advisor:** David Morris; **Coordinator:** Abbas Naini.

For inquiries regarding reserves, contact Andy Burrowes at (403) 297-8566; for inquiries regarding supply/demand, contact Abbas Naini at (403) 297-3540.

# ALBERTA ENERGY AND UTILITIES BOARD

Statistical Series 2002-98: Alberta's Reserves 2001 and Supply/Demand Outlook 2002-2011

ISSN 1499-1179

The CD containing the detailed data tables is available for \$500 from EUB Information Services (telephone: 403-297-8190). CD-ROM ISSN 1499-1187

Published by Alberta Energy and Utilities Board 640 – 5 Avenue SW Calgary, Alberta T2P 3G4

> Telephone: (403) 297-8311 Fax: (403) 297-7040

Web site: <www.eub.gov.ab.ca>

# Contents

| Ov | verview                                                                                                                                     | 1            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | Figures                                                                                                                                     | 2            |
|    | Alberta's oil reserves                                                                                                                      |              |
|    | Alberta's total oil supply                                                                                                                  |              |
|    | Marketable gas production and demand                                                                                                        |              |
| 1  | Energy Prices and Economic Performance                                                                                                      |              |
|    | 1.1 Energy Prices                                                                                                                           |              |
|    | 1.2 Canadian Economic Performance                                                                                                           |              |
|    | 1.3 Alberta Economic Outlook                                                                                                                | 1 <b>-</b> 4 |
|    | Table                                                                                                                                       | 1.4          |
|    | 1.1 Major Canadian economic indicators, 2002-2011                                                                                           | 1-4          |
|    | Figures                                                                                                                                     | 15           |
|    | 1.1 Price of WTI at Chicago                                                                                                                 |              |
|    | <ul><li>1.2 Average price of oil at Alberta wellhead</li><li>1.3 Average price of natural gas at plant gate</li></ul>                       |              |
|    | 1.3 Average price of natural gas at plant gate<br>1.4 Canadian unemployment, inflation, interest, and Canada-U.S. exchange rates            |              |
|    | 1.4 Canadian unemployment, inflation, interest, and Canada-0.5. exchange rates<br>1.5 Alberta GDP growth, unemployment, and inflation rates |              |
|    | 1.6 Alberta population trends                                                                                                               |              |
|    | 1.0 Alberta population trends                                                                                                               | 1-0          |
| 2  | Crude Bitumen                                                                                                                               | 2-1          |
| -  | 2.1 Reserves of Crude Bitumen                                                                                                               |              |
|    | 2.1.1 Provincial Summary                                                                                                                    |              |
|    | 2.1.2 Initial in-Place Volumes of Crude Bitumen                                                                                             |              |
|    | 2.1.3 Surface-Mineable Crude Bitumen Reserves                                                                                               |              |
|    | 2.1.4 In Situ Crude Bitumen Reserves                                                                                                        | 2-5          |
|    | 2.1.5 Ultimate Potential of Crude Bitumen                                                                                                   | 2-6          |
|    | 2.2 Supply of and Demand for Crude Bitumen                                                                                                  | 2-7          |
|    | 2.2.1 Crude Bitumen Production                                                                                                              |              |
|    | 2.2.1.1 Mined Crude Bitumen                                                                                                                 | 2-8          |
|    | 2.2.1.2 In Situ Crude Bitumen                                                                                                               |              |
|    | 2.2.2 Synthetic Crude Oil Production                                                                                                        |              |
|    | 2.2.3 Demand for Synthetic Crude Oil and Nonupgraded Bitumen                                                                                | 2-10         |
|    | Tables                                                                                                                                      |              |
|    | 2.1 In-place volumes and established reserves of crude bitumen                                                                              |              |
|    | 2.2 Change in established crude bitumen reserves                                                                                            | 2-2          |
|    | 2.3 Remaining established mineable crude bitumen reserves in areas under                                                                    |              |
|    | active development as of December 31, 2001                                                                                                  | 2-2          |
|    | 2.4 Established in situ crude bitumen reserves in areas under active development                                                            | 2.2          |
|    | <ul><li>as of December 31, 2001</li><li>2.5 Initial in-place volumes of crude bitumen</li></ul>                                             |              |
|    | Figures                                                                                                                                     |              |
|    | 2.1 Comparison of Alberta and Saudi Arabia oil reserves                                                                                     | 2-13         |
|    | <ul><li>2.1 Comparison of Alberta and Saudi Atabia of reserves.</li><li>2.2 Crude bitumen resource and reserve categories.</li></ul>        |              |
|    | <ul><li>2.2 Order offunden resource and reserve eurogones</li><li>2.3 Alberta crude bitumen production</li></ul>                            |              |
|    | 2.4 Alberta synthetic crude oil production                                                                                                  |              |
|    | 2.5 Alberta demand and exports of crude bitumen and SCO                                                                                     |              |
|    | 1                                                                                                                                           | -            |

(continued)

| 3 | Crude Oil                                                                                                                      | 3-1    |
|---|--------------------------------------------------------------------------------------------------------------------------------|--------|
|   | 3.1 Reserves of Crude Oil                                                                                                      | 3-1    |
|   | 3.1.1 Provincial Summary                                                                                                       | 3-1    |
|   | 3.1.2 Reserves Growth                                                                                                          | 3-1    |
|   | 3.1.3 Pools with Largest Reserve Changes                                                                                       | 3-2    |
|   | 3.1.4 Distribution of Oil Reserves by Size and Geology                                                                         | 3-2    |
|   | 3.1.5 Ultimate Potential                                                                                                       |        |
|   | 3.2 Supply of and Demand for Crude Oil                                                                                         | 3-8    |
|   | 3.2.1 Crude Oil Supply                                                                                                         |        |
|   | 3.2.2 Crude Oil Demand                                                                                                         |        |
|   | 3.2.3 Crude Oil and Equivalent Supply                                                                                          |        |
|   | Tables                                                                                                                         |        |
|   | 3.1 Reserve change highlights                                                                                                  | 3-1    |
|   | 3.2 Breakdown of changes in crude oil initial established reserves                                                             |        |
|   | 3.3 Major oil reserve changes, 2001                                                                                            |        |
|   | 3.4 Distribution of oil reserves by pool size                                                                                  |        |
|   | 3.5 Conventional crude oil reserves by recovery mechanism as of December 31, 2001                                              |        |
|   | 3.6 Conventional crude oil reserves by geological period as of December 31, 2001                                               |        |
|   | 3.7 Distribution of conventional oil reserves by formation as of December 31, 2001                                             |        |
|   | Figures                                                                                                                        |        |
|   | 3.1 Remaining established reserves of crude oil                                                                                | 3-11   |
|   | 3.2 Total conventional crude oil reserves additions and reassessments                                                          |        |
|   | 3.3 Light-medium crude oil reserves additions and reassessments                                                                |        |
|   | 3.4 Heavy crude oil reserves additions and reassessments                                                                       |        |
|   | 3.5 Total conventional crude oil enhanced reserves changes                                                                     |        |
|   | 3.6 Oil pools discovered by size and discovery year                                                                            |        |
|   | 3.7 Conventional crude oil reserves based on various recovery mechanisms                                                       |        |
|   | 3.8 Geological distribution of reserves of conventional crude oil                                                              |        |
|   | 3.9 Growth of initial established reserves of conventional crude oil                                                           |        |
|   | 3.10 Alberta's remaining established reserves versus cumulative production                                                     |        |
|   | 3.11 Total crude oil production and producing oil wells                                                                        |        |
|   | 3.12 Crude oil well productivity in 2001                                                                                       |        |
|   | 3.13 Total conventional crude oil production by drilled year                                                                   |        |
|   | 3.14 Alberta crude oil drilling activity                                                                                       |        |
|   | 3.15 Alberta daily production of crude oil.                                                                                    |        |
|   | 3.16 Capacity and location of Alberta refineries                                                                               |        |
|   | 3.17 Alberta demand and exports of crude oil                                                                                   |        |
|   | 3.18 Alberta supply of crude oil and equivalent                                                                                |        |
|   | 5.16 Alberta supply of clude off and equivalent                                                                                |        |
| 4 | Natural Gas and Liquids                                                                                                        | 1_1    |
| т | 4.1 Reserves of Marketable Gas                                                                                                 |        |
|   | 4.1.1 Provincial Summary                                                                                                       |        |
|   | 4.1.2 Growth of Marketable Gas Reserves                                                                                        |        |
|   | 4.1.2 Offowin of Marketable Gas Reserves                                                                                       |        |
|   |                                                                                                                                |        |
|   | <ul><li>4.1.4 Geological Distribution of Reserves</li><li>4.1.5 Reserves of Natural Gas Containing Hydrogen Sulphide</li></ul> |        |
|   |                                                                                                                                |        |
|   | 8                                                                                                                              |        |
|   | e                                                                                                                              |        |
|   |                                                                                                                                |        |
|   | 4.1.9 Coalbed Methane Reserves                                                                                                 |        |
|   | 4.1.10 Ultimate Potential                                                                                                      |        |
|   | (Cont                                                                                                                          | inued) |

| 4.2   | Natural Gas Liquids                                                               | 4-10    |
|-------|-----------------------------------------------------------------------------------|---------|
|       | 4.2.1 Ethane                                                                      | 4-11    |
|       | 4.2.2 Other Natural Gas Liquids                                                   |         |
|       | 4.2.3 Ultimate Potential                                                          |         |
| 4.3   | Supply of and Demand for Natural Gas                                              |         |
|       | 4.3.1 Natural Gas Supply                                                          | 4-13    |
|       | 4.3.2 Natural Gas Storage                                                         | 4-15    |
|       | 4.3.3 Alberta Natural Gas Demand                                                  | 4-16    |
| 4.4   | Supply of and Demand for Natural Gas Liquids (NGL)                                | 4-18    |
|       | 4.4.1 Supply of Ethane and Other Natural Gas Liquids                              | 4-18    |
|       | 4.4.2 Demand for Ethane and Other Natural Gas Liquids                             | 4-19    |
| Table | es                                                                                |         |
| 4.    | 1 Reserves of marketable gas                                                      | 4-1     |
| 4.    | 2 Major natural gas reserve changes, 2001                                         | 4-3     |
| 4.    | 3 Distribution of natural gas reserves by pool size, 2001                         | 4-5     |
| 4.    | 4 Geological distribution of established natural gas reserves, 2001               | 4-6     |
| 4.    | 5 Distribution of sweet and sour gas reserves, 2001                               | 4-7     |
|       | 6 Distribution of sour gas reserves by H <sub>2</sub> S content, 2001             |         |
|       | 7 Remaining ultimate potential of marketable gas, 2001                            |         |
|       | 8 Established reserves and production of extractable NGLs as of December 31, 2001 |         |
|       | 9 Reserves of NGLs as of December 31, 2001                                        |         |
|       | 10 Remaining ethane reserves in major fields as of December 31, 2001              |         |
| 4.    | 11 Major NGL reserves (excluding ethane) changes, 2001                            | 4-12    |
|       | 12 Production decline rates for new connections                                   |         |
|       | 13 Commercial natural gas storage pools as of December 31, 2001                   |         |
|       | 14 Ethane extraction volumes at gas plants in Alberta, 2001                       |         |
|       | 15 Liquid production at gas plants in Alberta, 2001 and 2011                      |         |
| Figu  |                                                                                   |         |
|       | 1 Annual reserves additions and production of marketable gas                      |         |
|       | 2 Remaining established marketable gas reserves                                   |         |
| 4.    |                                                                                   |         |
| 4.    |                                                                                   |         |
| 4.    |                                                                                   |         |
| 4.    |                                                                                   |         |
| 4.    | 6                                                                                 |         |
|       | 8 Growth of initial established reserves of marketable gas                        |         |
|       | 9 Gas ultimate potential                                                          |         |
|       | 10 Regional distribution of marketable gas reserves                               |         |
|       | 11 Remaining established NGL reserves expected to be extracted                    |         |
|       | and annual production.                                                            | 4-27    |
| 4     | 12 Gas wells drilled and connected                                                |         |
|       | 13 Alberta gas well connections, 2001                                             |         |
|       | 14 Initial operating day rates of connections, 2001                               |         |
|       | 15 Marketable gas production by modified PSAC area                                |         |
|       | 16 Marketable gas production and the number of producing wells                    |         |
|       | 17 Natural gas well productivity in 2001                                          |         |
|       | 18 Raw gas production by connection year                                          |         |
|       | 19 Average initial gas well productivity in Alberta                               |         |
|       | 20 Alberta natural gas drilling activity and price                                |         |
|       | 21 Disposition of marketable gas production                                       |         |
|       | 21 Disposition of marketable gas production                                       |         |
|       | 22 Alberta hatural gas storage injection/withdrawar volumes                       |         |
| 4.    |                                                                                   |         |
|       | (con                                                                              | tinued) |

|   | 4.24 Schematic of Alberta NGL flows                                                                          | 4-34 |
|---|--------------------------------------------------------------------------------------------------------------|------|
|   | 4.25 Liquid ethane supply and demand from natural gas                                                        | 4-35 |
|   | 4.26 Propane supply and demand from natural gas                                                              | 4-35 |
|   | 4.27 Butanes supply and demand from natural gas                                                              |      |
|   | 4.28 Pentanes plus supply and demand from natural gas                                                        | 4-36 |
| 5 | Coal                                                                                                         | 5-1  |
|   | 5.1 Reserves of Coal                                                                                         | 5-1  |
|   | 5.1.1 Provincial Summary                                                                                     | 5-1  |
|   | 5.1.2 Initial in-Place Resources                                                                             |      |
|   | 5.1.3 Established Reserves                                                                                   |      |
|   | 5.1.4 Ultimate Potential                                                                                     |      |
|   | 5.2 Supply of and Demand for Coal                                                                            |      |
|   | 5.2.1 Coal Supply                                                                                            |      |
|   | 5.2.2 Coal Demand                                                                                            | 5-6  |
|   | Tables                                                                                                       |      |
|   | 5.1 Established initial in-place resources and remaining reserves of coal in Alberta as of December 31, 2001 | 5-1  |
|   | 5.2 Established resources and reserves of coal under active development as of                                |      |
|   | December 31, 2001                                                                                            |      |
|   | 5.3 Ultimate in-place resources and ultimate potentials                                                      |      |
|   | 5.4 Alberta coal mines and marketable coal production in 2001                                                |      |
|   | Figure 5.1 Alberta marketable coal production                                                                | 5-7  |
| 6 | Sulphur                                                                                                      | 6-1  |
|   | 6.1 Reserves of Sulphur                                                                                      |      |
|   | 6.1.1 Provincial Summary                                                                                     |      |
|   | 6.1.2 Sulphur from Natural Gas                                                                               |      |
|   | 6.1.3 Sulphur from Crude Bitumen                                                                             |      |
|   | 6.1.4 Sulphur from Crude Bitumen Reserves under Active Development                                           |      |
|   | 6.2 Supply of and Demand for Sulphur                                                                         |      |
|   | 6.2.1 Sulphur Supply                                                                                         |      |
|   | 6.2.2 Sulphur Demand                                                                                         |      |
|   | 6.2.3 Imbalances between Sulphur Supply and Demand<br>Tables                                                 | 6-5  |
|   | 6.1 Reserves of sulphur as of December 31, 2001                                                              | 6-1  |
|   | 6.2 Remaining established reserves of sulphur from natural gas as of December 31, 2001                       |      |
|   | Figures                                                                                                      |      |
|   | 6.1 Sources of Alberta sulphur production                                                                    | 6-7  |
|   | 6.2 Alberta sulphur production and demand                                                                    |      |
|   | Appendix 1 Terminology, Abbreviations, and Conversion Factors                                                | A1   |
|   | 1.1 Terminology                                                                                              | A1   |
|   | 1.2 Abbreviations                                                                                            | A8   |
|   | 1.3 Symbols                                                                                                  | A9   |
|   | 1.4 Conversion Factors                                                                                       |      |
|   | Appendix 2 Pools and Natural Gas Liquids                                                                     |      |
|   | 2-1 Reserves of retrograde pools, 2001                                                                       |      |
|   | 2-2 Reserves of multifield pools, 2001                                                                       | A12  |
|   | 2-3 Remaining established reserves of natural gas liquids as of                                              |      |
|   | December 31, 2001.                                                                                           |      |
|   | Appendix 3 CD and Basic Data Tables                                                                          | A23  |

# Overview

Providing information to support good decision-making is a key EUB service. Making energy resource data available to everyone involved—the EUB, landowners, communities, industry, government, and interested groups—results in better decisions that affect the development of Alberta's resources.

Every year the Alberta Energy and Utilities Board (EUB) issues a report providing stakeholders with one of the most reliable sources of information on the state of reserves, supply, and demand for Alberta's diverse energy resources—crude bitumen, crude oil, natural gas, natural gas liquids, sulphur, and coal. This year's report entitled *Alberta Reserves 2001 and Supply/Demand Outlook 2002-2011* includes estimates of initial reserves, remaining established reserves (reserves we know we have), and ultimate potential (reserves that are ultimately expected to be recovered). It also includes a 10-year supply and demand forecast for Alberta's energy resources.

Resource supply, costs of development, energy demands, conservation, and social and environmental considerations influence the economic factors that shape the development of Alberta's energy resources. Changes in energy prices, drilling activity, and planned investments of billions of dollars for oil sands projects all contributed to the energy development picture in 2001 and shape the forecast for the years to come.

In 2001, raw bitumen production surpassed conventional crude oil production for the first time. It is important to note that in 2001 the first commercial steam-assisted gravity drainage (SAGD) production occurred in Alberta. Several SAGD schemes have either been approved by the EUB or are under review. The EUB expects higher volumes of commercial production to occur over the next few years.

As was the case last year, the EUB expects that natural gas production will decline over the second half of the forecast period. However, over the past year significant interest in the development of coalbed methane in Alberta has occurred. If these developments are proven to be successful, conventional natural gas supply could be augmented by coalbed methane.

The following table summarizes Alberta's energy reserves at the end of 2001.

|                                  | Crude                        | Crude bitumen        |                              | Crude oil            |                              | Natural gas                 |                     |                   |
|----------------------------------|------------------------------|----------------------|------------------------------|----------------------|------------------------------|-----------------------------|---------------------|-------------------|
|                                  | (million<br>cubic<br>metres) | (billion<br>barrels) | (million<br>cubic<br>metres) | (billion<br>barrels) | (billion<br>cubic<br>metres) | (trillion<br>cubic<br>feet) | (billion<br>tonnes) | (billion<br>tons) |
| Initial in-place                 | 259 200                      | 1 631                | 9 762                        | 61.4                 | 7122                         | 253                         | 94                  | 104               |
| Initial established              | 28 330                       | 178                  | 2 583                        | 16.2                 | 4 180                        | 148                         | 35                  | 39                |
| Cumulative production            | 562                          | 3.5                  | 2 304                        | 14.5                 | 2 996                        | 106                         | 1.14                | 1.3               |
| Remaining established            | 27 768                       | 175                  | 278                          | 1.7                  | 1 184                        | 42                          | 34                  | 38                |
| Annual production                | 43                           | 0.271                | 42                           | 0.264                | 143                          | 5.1                         | 0.033               | 0.036             |
| Ultimate potential (recoverable) | 50 000                       | 315                  | 3 130                        | 19.7                 | 5 600                        | 200                         | 620                 | 683               |

**Reserves Summary 2001** 

# **Crude Bitumen and Crude Oil**

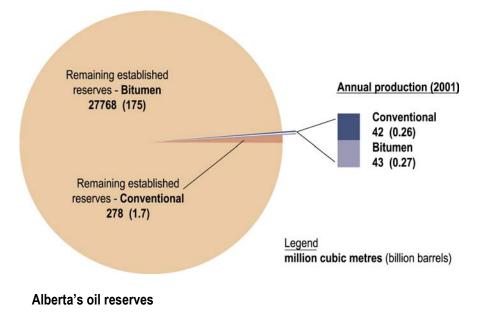
#### **Crude Bitumen Reserves**

Alberta has the largest oil sands (crude bitumen) resource in the world; approximately 50 billion cubic metres  $(m^3)$  (315 billion barrels) are considered potentially recoverable under anticipated technology and economic conditions.

The total in situ and mineable remaining established reserves are 27.7 billion m<sup>3</sup> (175 billion barrels), down slightly from 2000 due to production. To date, only 2 per cent of the initial established crude bitumen reserve has been produced.

## **Crude Bitumen Production**

In 2001, Alberta produced 25 million m<sup>3</sup> (157 million barrels) from the mineable area and 18 million m<sup>3</sup> (113 million barrels) from the in situ area, totalling 43 million m<sup>3</sup> (271 million barrels). Bitumen produced from mining was upgraded, yielding 20 million m<sup>3</sup> (126 million barrels) of synthetic crude oil (SCO). In situ production was marketed as crude bitumen.


In 2001, total raw bitumen production exceeded total conventional crude oil production for the first time. The first commercial SAGD production occurred in 2001.

# **Crude Oil Reserves**

Alberta's remaining established reserves of conventional crude oil was estimated at 278 million m<sup>3</sup> (1.7 billion barrels)—a 4.6 per cent reduction from 2000. Of the 28.6 million m<sup>3</sup> (180 million barrels) added to initial established reserves, exploratory and development drilling, along with new enhanced recovery schemes, added reserves of 23.5 million m<sup>3</sup> (148 million barrels). This replaced 56 per cent of 2001 production. Reevaluation accounted for the remaining 5.1 million m<sup>3</sup> (32 million barrels) addition.

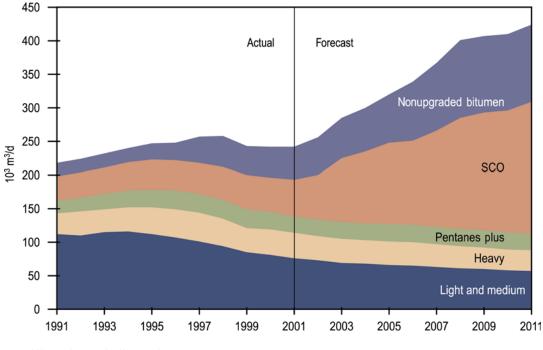
Based on its 1988 study, the EUB estimates the ultimate potential recoverable reserves of crude oil at 3130 million m<sup>3</sup> (19.7 billion barrels). The EUB believes that this estimate of ultimate potential is still reasonable. Future improvements in technology could improve the current average recovery efficiency of 27 per cent.

The following figure shows annual production and remaining established reserves for crude bitumen and crude oil.



# **Crude Oil Production and Drilling**

Alberta's production of conventional crude oil totalled 42 million m<sup>3</sup> (264 million barrels). Despite declining production over the past two decades, Alberta still produces 114 000 m<sup>3</sup>/day (717 000 barrels/day) of conventional crude oil.


The number of successful oil wells decreased by 18 per cent, from 2700 in 2000 to 2220 in 2001. With the expectation that crude oil prices will remain strong, the EUB estimates that 1800 and 2100 successful oil wells will be drilled in 2002 and 2003 respectively, levelling at about 2400 wells per year over the remainder of the forecast.

# **Total Oil Supply and Demand**

Alberta's 2001 production from conventional oil, oil sands sources, and pentanes plus was 243 000  $\text{m}^3$ /day (1.53 million barrels/day)—about the same as in 2000. Production is forecast to reach 424 000  $\text{m}^3$ /day (2.7 million barrels/day) by 2011.

A comparison of conventional oil production and bitumen production over the last 10 years clearly shows a trend towards a larger percentage being allocated to bitumen. This ability to shift from conventional oil to bitumen is unique to Alberta, allowing the province to offset the expected decline in conventional oil with bitumen production.

Although conventional oil production will continue to decline, as expected, the EUB estimates that production of bitumen will triple by 2011, accounting for as much as 75 per cent of Alberta's total oil supply.



Alberta's total oil supply

## **Natural Gas**

### **Natural Gas Reserves**

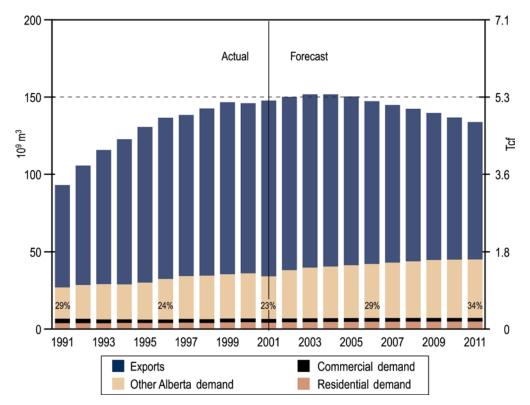
At the end of 2001, Alberta's remaining established reserves of natural gas at the field plant gate stood at 1184 billion m<sup>3</sup> (42 trillion cubic feet). While new drilling has not fully replaced gas production since 1982, last year's record drilling added new reserves, replacing 67 per cent of the production for 2001, compared to 90 per cent in 2000.

Natural gas reserve estimates do not include coalbed methane, which has potential to add to Alberta's reserves in the future. Over the past year, significant interest in the development of coalbed methane in Alberta has occurred. If development is proven commercially successful, gas supply could be augmented by coalbed methane.

In 1992 the EUB estimated Alberta's ultimate marketable gas potential at approximately 5600 billion m<sup>3</sup> (200 trillion cubic feet). To bring this estimate up to date, the EUB has undertaken an ultimate potential study targeted for completion in 2003.

#### **Natural Gas Production and Drilling**

Several major factors have an impact on natural gas production, including natural gas prices, drilling activity, the location of Alberta's reserves, and the performance characteristics of wells. Alberta produced 143 billion m<sup>3</sup> (5.1 trillion cubic feet) of marketable natural gas in 2001. The trend of upward annual production levels evident over the past several years began to show significant flattening in 1999. Production in 2001 shows a continuation of this flattening trend despite record gas well drilling activity.


There were 9682 successful gas wells drilled in Alberta in 2001, a 17 per cent increase over the 8264 gas wells drilled in 2000. The EUB expects continued strong drilling,

estimating 9500 to 11 000 wells for the period 2002 to 2005 and some 10 000 successful wells per year over the remainder of the forecast period.

Much of Alberta's gas development has centred on shallow gas in southeastern Alberta, with over half of the province's producing wells but only 16 per cent of 2001 natural gas production. Over time, the EUB anticipates that the focus of exploration activity will shift to the western portion of the province and correspondingly higher-productivity wells.

# Natural Gas Supply and Demand

The EUB expects gas production to decline by about 2 per cent per year over the final 5 years of the forecast period. New pools are smaller and new wells drilled today are exhibiting lower initial production rates and steeper decline rates. Factoring this in, the EUB believes that new wells drilled will not be able to sustain production levels over the latter half of the forecast period. Future supply is shown in the figure below.



#### Marketable gas production and demand

Although natural gas supply from conventional sources is expected to start declining moderately in the latter half of the forecast period, sufficient supply exists to meet Alberta's demand. If the EUB's demand forecast is realized, Alberta's natural gas requirement will be one-third of total Alberta production by the end of the forecast period.

As Alberta requirements increase and production declines over time, the volumes available for removal from the province will decline. The EUB's mandate requires that the natural gas requirements for Alberta's core market (defined as residential, commercial, and institutional gas consumers) are met over the long term, before any new gas removal permits are approved.

Other potential sources, such as frontier gas and coalbed methane, offer options for supplementing the supply of conventional gas in the future.

#### Ethane, Other Natural Gas Liquids, and Sulphur

Remaining established reserves of ethane are about the same as the 252 million  $m^3$  (1.6 billion barrels) in 2000. Remaining established reserves of ethane, which is expected to be recovered from raw natural gas based on existing technology and market conditions, was estimated at 174 million  $m^3$  (1.1 billion barrels) in 2001.

The production of specification ethane was 12.7 million m<sup>3</sup> (79.9 million barrels), about the same as the 12.8 million m<sup>3</sup> (80.5 million barrels) in 2000. The majority of ethane was used as feedstock for Alberta's petrochemical industry. The supply of ethane is expected to meet demand over the forecast period.

The remaining established reserves of other natural gas liquids (NGLs)—propane, butanes, and pentanes plus— slightly decreased to 212 million m<sup>3</sup> (1.3 billion barrels) in 2001. The supply of propane and butanes is expected to meet demand over the forecast period. However, a shortage of pentanes plus as a diluent for heavy oil and nonupgraded bitumen is expected by 2006. Alternative sources of diluent would be required.

The remaining established reserves of sulphur is 94 million tonnes from natural gas and upgrading of bitumen from mining areas under active development. Sulphur demand is not expected to increase significantly, and Alberta's sulphur inventory will continue to grow over the forecast period.

# Coal

The current estimate for remaining established resources for all types of coal is about 34 billion tonnes. This massive resource continues to help meet the energy needs of Albertans, supplying fuel for about 75 per cent of the province's electricity generation. Alberta's coal reserves represent over a thousand years of supply at current production levels.

Alberta's total coal production in 2001 was 33 million tonnes of raw coal, down slightly from 2000 due to the closure of Smoky River coal mine. Recent increases in coal prices, due to high energy prices and high global steel production, improved prospects for Alberta's low-sulphur coal and created opportunities for extending coal production.

Subbituminous coal production is expected to increase in the middle part of the forecast period to meet demand for additional electrical generating capacity.

# 1 Energy Prices and Economic Performance

Alberta's prosperity as an energy-exporting province, and consequently its own energy supply and demand, is strongly affected by external energy markets. Alberta is Canada's leading producer of crude oil, bitumen, natural gas, natural gas liquids, sulphur and, in volumetric terms, coal. This section describes the outlook for world oil prices, Canadian economic performance, and the economic and demographic outlooks for Alberta. These factors form the basis for projecting energy supply and demand in Alberta and their impact on resource development.

# 1.1 Energy Prices

The price of Alberta crude oil is determined by international market forces and is most closely associated with the reference price of West Texas Intermediate (WTI) crude oil, depicted in **Figure 1.1**. The world oil prices represent crude oil entering international markets, a substantial proportion of which is produced by members of the Organization of Petroleum Exporting Countries (OPEC). The North American crude oil price is set in Chicago and is usually US\$1.50-2.00 higher than the OPEC price, a reflection of quality differences and cost of shipping to Chicago. The EUB uses WTI crude prices as its proxy for world oil prices, as WTI is a more direct determinant of the prices of Alberta crude.

In 2001, the price of WTI crude oil started at US\$29.71 per barrel, peaked at US\$30.09 per barrel in February, and then declined to US\$19.78 per barrel by December. OPEC set the target price range between US\$22 and US\$28.

In 2001, the world demand for crude oil amounted to 76 million barrels per day  $(10^{6} \text{ b/d})$ , a slight increase from last year's demand of 75.9  $10^{6} \text{ b/d}$ . This global demand growth of approximately 100 thousand  $(10^{3})$  b/d was the weakest since 1985. In 1999 and 2000 the global demand growth for crude oil was  $1.6 \ 10^{6} \text{ b/d}$  and  $640 \ 10^{3} \text{ b/d}$  respectively. The sluggish growth in 2001 emerged from several factors, including slowdown in the global economy, relatively high crude oil prices and mild winter weather. After September 11, 2001, unexpected high crude oil prices, in a weak economic environment, along with a mild winter in the U.S. (which uses more than 25 per cent of global energy), significantly lowered the global demand.

To prevent prices from falling, OPEC announced three quota cuts during 2001 totaling  $3.5 \ 10^6 \text{ b/d}$ . A fourth OPEC cut of  $1.5 \ 10^6 \text{ b/d}$  occurred in January 2002, accompanied by a  $0.5 \ 10^6 \text{ b/d}$  production cut by five major non-OPEC oil-exporting nations.

In the first quarter of 2002, the signs of world economic recovery and the Middle East crises pushed the price of crude oil to more than US\$25. It is expected that with the worldwide economic recovery, the demand for crude oil will increase between 0.5 to 0.6 per cent in 2002, followed by 1 to 1.5 per cent in the following year. Over the past two decades global demand for crude oil has increased by an average rate of 1.2 per cent per year. If 1 to 1.5 per cent growth rate in global demand is realized, then global crude production will increase by 10 to 14 10<sup>6</sup> b/d by the end of the forecast period. OPEC's spare capacity is currently 6.4 10<sup>6</sup> b/d. This growth in global demand should result in international crude oil prices stabilizing within OPEC's target range of US \$22 to US\$28.

The EUB recognizes that key issues, such as OPEC compliance with major production cuts and Middle East political stability, will play a major role in shaping the global market over the next few years. The EUB forecasts that the price of WTI will gradually stabilize at roughly US\$24 per barrel. This price level is sufficient to stimulate exploration outside of OPEC countries and foster continuing improvements in exploration and recovery technology. The increase in non-OPEC production, stimulated by high prices, will reduce OPEC's power to increase prices without lowering its market share. **Figure 1.1** illustrates the EUB forecast of WTI at Chicago.

Wellhead oil prices in Alberta are expected to move in tandem with WTI after adjusting for transportation tariffs, exchange rates, and quality differentials. Since Alberta prices are quoted in Canadian dollars, they will vary inversely with the value of the Canadian dollar expressed in U.S. funds. The forecast wellhead price of crude oil in Alberta is shown on a yearly basis in both current and constant Canadian dollars in **Figure 1.2**.

Although they have narrowed considerably over the past year, the differentials between prices of light-medium crude and bitumen or conventional heavy crude are still wide by historical standards. The forecast calls for the bitumen price to revert to 60 per cent of the light-medium price and for conventional heavy to revert to 75 per cent of the light-medium price.

While crude oil prices are determined globally, natural gas prices are set in North America. Nevertheless, natural gas prices will be influenced by crude prices, as potential substitution could occur due to the price differential between crude oil and natural gas in the market. **Figure 1.3** shows the historical and EUB forecast of natural gas prices at the plant gate from 1991 to 2011. The average plant gate natural gas price was \$1.62 per gigajoule (GJ) over the decade 1990-1999; then prices climbed to \$4.27/GJ in 2000 and \$5.12/GJ in 2001. The spot price at the AECO-C Hub reached a monthly peak of \$13.63/GJ in January 2001. The spot price then declined month by month, reaching a low of \$1.95/GJ in October. Many companies in North America that had been major consumers of natural gas either switched to fuel oil or ceased operation rather than pay the going price. Declining industrial gas consumption and mild weather in 2001 combined to 5.3 per cent drop in U.S. demand.

A recent review of the economics of intercontinental trade in liquefied natural gas (LNG) concluded that although LNG would not capture a high market share in North America, it would tend to put an upper limit of US\$2.75/GJ to \$3.50/GJ on the city gate price of natural gas in major coastal consuming areas of the United States. This is broadly consistent with the plant gate natural gas price forecast, shown in **Figure 1.3**, of \$3.50/GJ in 2002 and \$4.00/GJ thereafter.

# 1.2 Canadian Economic Performance

Canadian economic growth, interest rates, inflation, unemployment, and currency exchange rates are key variables that impact the Alberta economy but are beyond the province's control. In addition, the most important economic indicator that can identify whether the economy is contracting or expanding is the real gross domestic product (GDP). In this section the performance of the above economic indicators in 2001 and the first quarter of 2002 is reviewed. These economic indicators for 2001 are depicted in **Figure 1.4**.

In 2001, the performance of global economies was slow, and the Canadian economy shrank in the third quarter by approximately 1.6 per cent. In the fourth quarter, consumer spending rebounded, mainly due to a sharp drop in interest rates. This led to a boost in housing construction and sales and other consumer spending. The revised Canadian GDP showed positive growth in the fourth quarter and, technically, the country avoided a recession. Two consecutive quarters of negative decline in GDP is defined as a recession. During 2001, unemployment increased from 6.9 to 8 per cent.

In 2001, the Bank of Canada, in order to combat the slowing economy, reduced the bank rate from 6 per cent in January to 4.25 per cent in August. Following the events of September 11 and the signs of a recession, the pace of interest rate cuts picked up, and from August to November the bank rate was lowered 175 basis points. This took the bank rate down to a 40-year low, at 2.50 per cent. In January 2002, there was a further drop in the bank rate to 2.25 per cent. However, in April 2002, the Bank of Canada, due to a robust recovery, raised interest rates a quarter point to 2.5 per cent. The prime rate (the benchmark for higher-cost loans to both consumers and businesses) is 150 basis points above the bank rate.

The inflation rate is expressed in terms of total consumer price index (CPI). This economic indicator is higher than core CPI, which represents the underlying trend in inflation by excluding transitory influences of volatile components such as energy, food, mortgage interest, tobacco, and indirect taxes.

Total CPI fluctuated between 2.5 to 3.9 per cent in the first nine months of 2001, before moving down to below 1 per cent in December. This fluctuation could have been the result of volatile energy prices. In 2001, the core inflation showed less fluctuation. In January, inflation began at 2 per cent, then rose to 2.3 per cent before declining to 1.6 per cent in December. The Bank of Canada has set the inflation control target within a range of 1 to 3 per cent until 2006.

The value of the Canadian dollar expressed in U.S. funds declined from 65.53 cents in January 2001 to 62.90 cents in December and to a record low of 61.80 cents in February 2002. The factors that can impact the currency exchange rates are the economic growth rate, unemployment rate, net exports, inflation rate, public debt, interest rate differential, and commodity prices.

In 2001, the dominant factor that caused the Canadian dollar to significantly depreciate against the U.S. dollar was the decline in Canadian exports, which emerged from sluggish global and domestic economies. More than 70 per cent of Canadian exports are shipped to the U.S. In 2001, Canadian exports fell for the fourth consecutive quarter, making it the longest string of quarterly declines in more than a decade. Cyclical declines in commodity prices could be considered another important factor.

Over the forecast period, a gradual upward pressure on the Canadian dollar over the medium term has been justified by the fact that Canada is keeping inflation below and interest rates above the U.S. rates and is reducing the level of public debt. In mid-April 2002, the Canadian exchange rate rose to 63.45 cents against the U.S. dollar.

The EUB assumed the average values for the Canadian economic indicators from 2002 to 2011, as shown in Table 1.1.

|                   | 2002  | 2003 | 2004 | 2005-2011ª |
|-------------------|-------|------|------|------------|
| GDP growth rate   | 3.0%  | 3.5% | 4%   | 3.3%       |
| Interest rate     | 3.75% | 5%   | 6%   | 6%         |
| Inflation rate    | 1.5%  | 2%   | 2.5% | 2.5%       |
| Exchange rate     | 64.50 | 66   | 67   | 68         |
| Unemployment rate | 7.8%  | 7.2% | 6.5% | 6.3%       |

Table 1-1. Major Canadian economic indicators, 2002-2011

<sup>a</sup> Averages over 2005-2011.

# 1.3 Alberta Economic Outlook

The Alberta economy, based on Statistics Canada data, last experienced a contraction on a year-over-year basis in 1991, with provincial GDP declining 0.2 per cent relative to 1990. Since then, Alberta GDP has increased annually and reached almost \$143 billion in 2000. Throughout this period, Alberta GDP per capita was the highest among the provinces.

Over the forecast period, rapid expansion of the oil sands industry will offset the levelling off or decline in conventional fossil fuel output, and Alberta will still be Canada's leading producer of crude oil, bitumen, natural gas, natural gas liquids, sulphur, and coal. The direct and indirect impacts of energy industry expansions, along with expansion of other economic sectors, particularly the service sector, will boost the Alberta GDP to grow on average between 3.1 to 4.3 per cent annually, as shown in **Figure 1.5**.

In the last decade, the Alberta unemployment rate has gradually declined from 9.5 per cent in 1992 to 5 per cent in 2000; currently it is the lowest in Canada. Over the forecast period, the unemployment rate will fluctuate in the range of 4.6 to 7 per cent. Over the same period, the inflation rate is projected to be in the range of 2 to 2.5 per cent.

Alberta's population increased from 2.6 million in 1992 to slightly more than 3 million in 2000, representing an average annual growth rate of 1.4 per cent. Over the forecast period, the population is expected to increase by 400 000, due to natural births and migration. The Alberta population will reach 3.4 million by the end of the forecast period. **Figure 1.6** illustrates the Alberta male and female population.

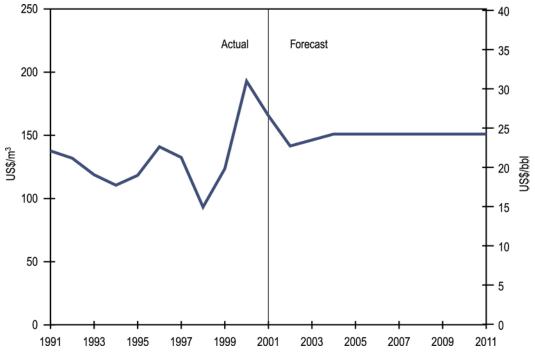



Figure 1.1. Price of WTI at Chicago

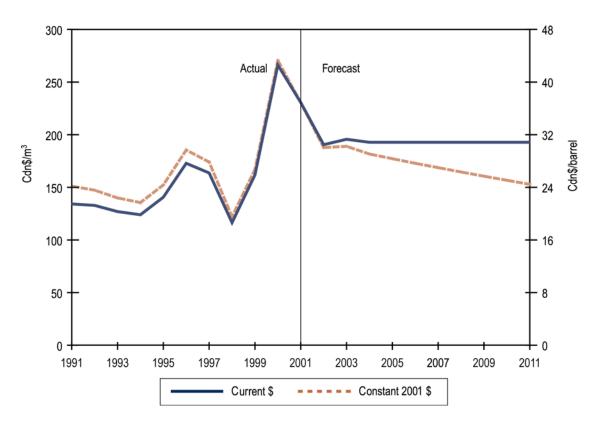



Figure 1.2. Average price of oil at Alberta wellhead

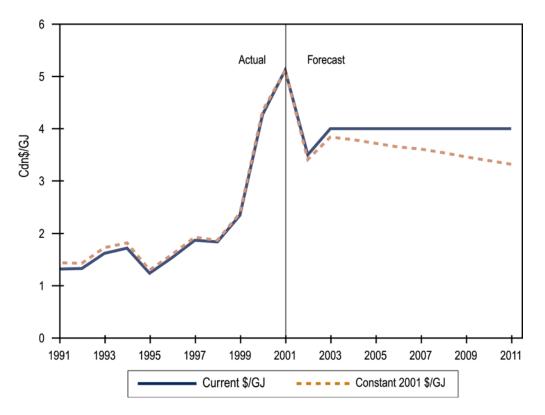



Figure 1.3. Average price of natural gas at plant gate

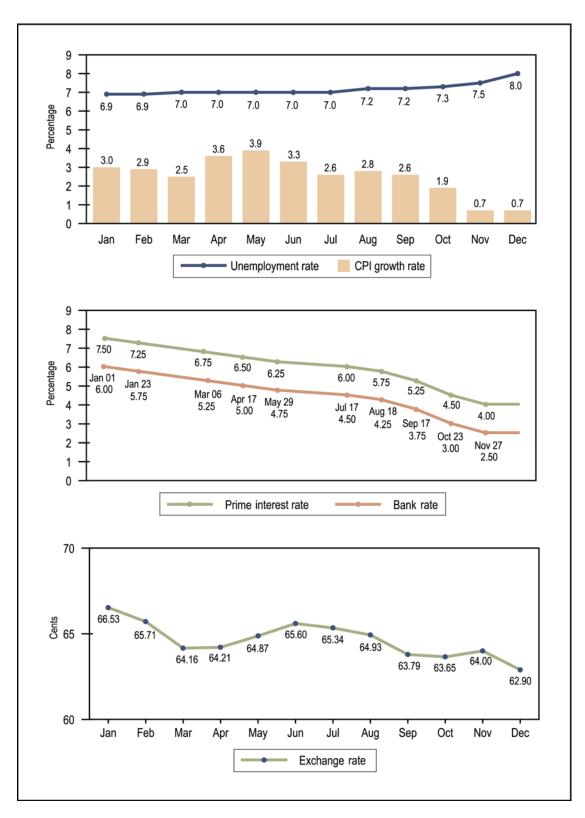



Figure 1.4. Canadian unemployment, inflation, interest, and Canada-U.S. exchange rates, 2001




Figure 1.5. Alberta GDP growth, unemployment, and inflation rates

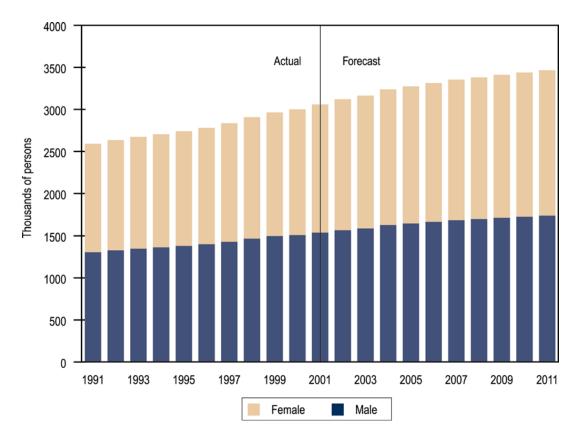



Figure 1.6. Alberta population trends

# 2 Crude Bitumen

# 2.1 Reserves of Crude Bitumen

# 2.1.1 Provincial Summary

The EUB makes separate calculations of Alberta's crude bitumen reserves by estimating those reserves likely to be recovered by mining methods and those by in situ methods. As with the last two reports, this report shows the EUB's estimate of the established reserves determined from all areas in which crude bitumen may reasonably be presumed to be recoverable by in situ methods and not just from within active development areas. The EUB believes that this reporting method more realistically reflects the potential in Alberta for the recovery of crude bitumen.

The EUB estimates the initial volume in-place of crude bitumen in Alberta as of December 31, 2001, to be 259.2 billion cubic metres  $(10^9 \text{ m}^3)$ . Remaining established reserves of crude bitumen by surface-mineable and in situ methods as of this date are estimated to be 27.77  $10^9 \text{ m}^3$ , of which 1.83  $10^9 \text{ m}^3$  are within active development areas. Other than a slight decrease due to production, these numbers are unchanged from last year. The EUB is currently engaged in a significant project to update these reserves. The new values should be available for the report scheduled for release in 2003 or 2004. Table 2.1 summarizes the in-place and established mineable and in situ crude bitumen reserves.

| Recovery<br>method | Initial volume<br>in-place | Initial<br>established<br>reserves | Cumulative production      | Remaining<br>established<br>reserves | Remaining<br>established<br>reserves<br>under active<br>development <sup>a</sup> |
|--------------------|----------------------------|------------------------------------|----------------------------|--------------------------------------|----------------------------------------------------------------------------------|
| Mineable           | 18.0                       | 5.59                               | 0.40                       | 5.20                                 | 1.35                                                                             |
| In situ            | <u>241.2</u>               | 22.74                              | <u>0.17</u>                | <u>22.57</u>                         | <u>0.49</u>                                                                      |
| Total <sup>a</sup> | 259.2<br>(1 631)⁵          | 28.33<br>(178.3) <sup>b</sup>      | 0.56<br>(3.5) <sup>b</sup> | 27.77<br>(174.8)⁵                    | 1.83<br>(11.5)⁵                                                                  |

## Table 2.1. In-place volumes and established reserves of crude bitumen (10<sup>9</sup> m<sup>3</sup>)

<sup>a</sup> Differences are due to rounding.

<sup>b</sup> Imperial equivalent in billions of stock-tank barrels.

**Figure 2.1** compares the relative size of Alberta's remaining established crude oil and crude bitumen reserves with Saudi Arabia's proven remaining crude oil reserves.

The changes in established crude bitumen reserves for 2001 are shown in Table 2.2. The portion of established crude bitumen reserves within approved surface-mineable and in situ areas under active development are shown in Tables 2.3 and 2.4 respectively.

Crude bitumen production from in situ operations totalled 17.7 million cubic metres  $(10^6 \text{ m}^3)$  in 2001. Production from the only two current surface mining projects amounted to 24.6  $10^6 \text{ m}^3$  in 2001, with 15.7  $10^6 \text{ m}^3$  from the Syncrude Canada Ltd. project and 8.9  $10^6 \text{ m}^3$  from the Suncor Energy Inc. project. The Albian Sands Energy Inc. project is nearing completion of construction.

|                                | 2001                                  | 2000                                  | <b>Change</b> <sup>a</sup> |
|--------------------------------|---------------------------------------|---------------------------------------|----------------------------|
| Initial established reserves   |                                       |                                       |                            |
| Mineable                       | 5 590                                 | 5 590                                 | 0                          |
| In situ                        | <u>22 740</u>                         | <u>22 740</u>                         | _0                         |
| Total                          | 28 330<br>(178 280) <sup>b</sup>      | 28 330<br>(178 280) <sup>ь</sup>      | 0                          |
| Cumulative production          | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , |                            |
| Mineable                       | 395                                   | 371                                   | +25                        |
| In situ                        | 167                                   | 150                                   | <u>+18</u>                 |
| Fotal <sup>a</sup>             | 562                                   | 521                                   | +42                        |
| Remaining established reserves |                                       |                                       |                            |
| Mineable                       | 5 195                                 | 5 219                                 | -25                        |
| In situ                        | <u>22 573</u>                         | 22 590                                | <u>-18</u>                 |
| Total                          | 27 768                                | 27 809                                | -42                        |
|                                | (174 741) <sup>b</sup>                | (175 000) <sup>b</sup>                |                            |

#### Table 2.2. Change in established crude bitumen reserves (10<sup>6</sup> m<sup>3</sup>)

<sup>a</sup>Differences are due to rounding.

<sup>b</sup>Imperial equivalent in millions of stock-tank barrels.

| Development  | Project areaª<br>(ha) | Initial<br>mineable<br>volume<br>in-place <sup>b</sup><br>(10 <sup>6</sup> m <sup>3</sup> ) | Initial<br>established<br>mineable<br>reserve <sup>b</sup><br>(10 <sup>6</sup> m <sup>3</sup> ) | Cumulative<br>production<br>(10 <sup>6</sup> m <sup>3</sup> ) | Remaining<br>established<br>mineable<br>reserve<br>(10 <sup>6</sup> m <sup>3</sup> ) |
|--------------|-----------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Albian Sands | 10 096                | 574                                                                                         | 178                                                                                             | 0                                                             | 178                                                                                  |
| Suncor       | 15 370                | 878                                                                                         | 604                                                                                             | 144                                                           | 460                                                                                  |
| Syncrude     | <u>21 672</u>         | <u>1 433</u>                                                                                | 959                                                                                             | <u>250</u>                                                    | 709                                                                                  |
| Totalc       | 47 138                | 2 885                                                                                       | 1 741                                                                                           | 395                                                           | 1 346                                                                                |

# Table 2.3. Remaining established mineable crude bitumen reserves in areas under active development as of December 31, 2001

<sup>a</sup>The project areas correspond to the areas defined in the project approval.

<sup>b</sup>Definitions are given in Figure 2.2.

<sup>c</sup>Differences are due to rounding.

| Development                        | Initial<br>volume<br>in-place <sup>a</sup><br>(10 <sup>6</sup> m <sup>3</sup> ) | Recovery<br>factor (%) | Initial<br>established<br>reserves<br>(10 <sup>6</sup> m <sup>3</sup> ) | Cumulative<br>production <sup>b</sup><br>(10 <sup>6</sup> m <sup>3</sup> ) | Remaining<br>established<br>reserves<br>(10 <sup>6</sup> m <sup>3</sup> ) |
|------------------------------------|---------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Peace River Oil Sands Area         |                                                                                 |                        |                                                                         |                                                                            |                                                                           |
| Thermal commercial projects        | 21.6                                                                            | 40.0                   | 8.6                                                                     | 6.4                                                                        | 2.2                                                                       |
| Subtotal                           | 21.6                                                                            |                        | 8.6                                                                     | 6.4                                                                        | 2.2                                                                       |
| Athabasca Oil Sands Area           |                                                                                 |                        |                                                                         |                                                                            |                                                                           |
| Primary recovery schemes           | <u>2 435.5</u>                                                                  | 5.0                    | <u>121.7</u>                                                            | <u>10.8</u>                                                                | <u>110.9</u>                                                              |
| Subtotal                           | 2 435.5                                                                         |                        | 121.7                                                                   | 10.8                                                                       | 110.9                                                                     |
| Cold Lake Oil Sands Area           |                                                                                 |                        |                                                                         |                                                                            |                                                                           |
| Thermal commercial projects        | 802.8                                                                           | 25.0                   | 200.7                                                                   | 107.3                                                                      | 93.4                                                                      |
| Primary production within projects | 601.1                                                                           | 5.0                    | 30.1                                                                    | 11.7                                                                       | 18.4                                                                      |
| Primary recovery schemes           | 4 347.1                                                                         | 5.0                    | 217.3                                                                   | 21.7                                                                       | 195.6                                                                     |
| Lindbergh primary production       | <u>1 309.3</u>                                                                  | 5.0                    | 65.4                                                                    | 3.8                                                                        | <u>61.6</u>                                                               |
| Subtotal                           | 7 060.3                                                                         |                        | 513.5                                                                   | 144.5                                                                      | 369.0                                                                     |
| Experimental Schemes (all areas)   |                                                                                 |                        |                                                                         |                                                                            |                                                                           |
| Active                             | 24.4                                                                            | 15.0                   | 3.6                                                                     | 2.1                                                                        | 1.5                                                                       |
| Terminated                         | 71.1                                                                            | 9.5                    | 6.7                                                                     | 3.6                                                                        | 3.1                                                                       |
| Subtotal                           | 95.5                                                                            |                        | 10.3                                                                    | 5.7                                                                        | 4.6                                                                       |
| Total                              | 9 612.9                                                                         |                        | 654.1                                                                   | 167.4                                                                      | 486.7                                                                     |

|--|

<sup>a</sup>Thermal reserves are assigned only for lands approved for thermal recovery and having completed drilling development. <sup>b</sup>Cumulative production to December 31, 2001, includes amendments to production reports.

#### 2.1.2 Initial in-Place Volumes of Crude Bitumen

Alberta's massive crude bitumen resources are contained in sand and carbonate formations in the Athabasca, Cold Lake, and Peace River oil sands areas. EUBdesignated Oil Sands Areas (OSAs) define the areal extent of crude bitumen occurrence, and Oil Sands Deposits (OSDs) contain the specific geological zones declared as oil sands deposits.

Initial in-place volumes of crude bitumen in each deposit were determined using drillhole data and geophysical logs. The crude bitumen within the Cretaceous sands was evaluated using a minimum saturation cutoff of 3 mass per cent crude bitumen and a minimum saturated zone thickness of 1.5 m for in situ areas, and 6 mass per cent and 3.0 m for surface-mineable areas. The crude bitumen within the carbonate deposits was determined using a minimum bitumen saturation of 30 per cent of pore volume and a minimum porosity value of 5 per cent.

The volumetric resources are presented on a deposit basis in the table Crude Bitumen Resources and Basic Data, located on the accompanying CD-ROM and summarized by formation in Table 2.5. Individual maps to year-end 1995 are shown in EUB *Statistical Series 96-38*.<sup>1</sup>

|                                                                                                               | Initial                                               |                                     | Average                            | Average bitumen<br>saturation   |                            |                            |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|------------------------------------|---------------------------------|----------------------------|----------------------------|
| Oil sands area<br>Oil sands deposit                                                                           | volume in-<br>place<br>(10 <sup>6</sup> m³)           | Area<br>(10 <sup>6</sup> ha)        | pay<br>thickness<br>( m)           | Mass<br>(%)                     | Pore<br>volume<br>(%)      | Average<br>porosity<br>(%) |
| Athabasca<br>Grand Rapids<br>Wabiskaw-McMurray (mineable)<br>Wabiskaw-McMurray (in situ)<br>Nisku<br>Grosmont | 8 678<br>17 998<br>119 234<br>10 330<br><u>50 500</u> | 689<br>286<br>4 329<br>499<br>4 167 | 7.2<br>30.5<br>19.0<br>8.0<br>10.4 | 6.3<br>9.7<br>7.9<br>5.7<br>4.7 | 56<br>69<br>62<br>63<br>68 | 30<br>30<br>28<br>21<br>16 |
| Subtotal                                                                                                      | 206 740                                               |                                     |                                    |                                 |                            |                            |
| Cold Lake<br>Grand Rapids<br>Clearwater<br>Wabiskaw-McMurray<br>Subtotal                                      | 17 304<br>11 051<br><u>3 592</u><br>31 947            | 1 709<br>589<br>658                 | 5.8<br>15.0<br>5.8                 | 9.5<br>8.9<br>6.3               | 61<br>64<br>54             | 31<br>30<br>26             |
| Subtotal<br>Peace River<br>Bluesky-Gething<br>Belloy<br>Debolt<br>Shunda<br>Subtotal                          | 9 926<br>282<br>7 800<br><u>2 510</u><br>20 518       | 1 254<br>26<br>328<br>143           | 8.7<br>8.0<br>22.5<br>14.0         | 6.4<br>7.8<br>5.3<br>5.3        | 60<br>64<br>65<br>52       | 23<br>27<br>19<br>23       |
| Total                                                                                                         | 259 205                                               |                                     |                                    |                                 |                            |                            |

#### Table 2.5. Initial in-place volumes of crude bitumen

The Surface Mineable Area (SMA) is an EUB-defined area of 37 townships north of Fort McMurray covering that part of the Athabasca Wabiskaw-McMurray deposit where the total overburden generally does not exceed 75 m. As such, it is presumed that the primary method of recovery will be through the use of surface-mining techniques, unlike the rest of Alberta's crude bitumen area, where recovery will be through in situ methods.

The estimate of the initial volume in-place of crude bitumen within the SMA remains unchanged at  $18.0 \ 10^9 \ m^3$ .

Calculation of in situ resources includes a continuing conversion from the former manual process to an automated mapping and resource evaluation system. As a result, the resources for a number of the pools have been determined from geological maps instead of by the original building-block method.

The initial volume of crude bitumen in-place for in situ areas for the designated deposits as of December 31, 2001, is  $241.2 \ 10^9 \ m^3$ , unchanged from last year.

<sup>&</sup>lt;sup>1</sup> Alberta Energy and Utilities Board, 1996, Crude Bitumen Reserves Atlas, Statistical Series 96-38 (Calgary).

# 2.1.3 Surface-Mineable Crude Bitumen Reserves

Potential mineable areas within the SMA were identified using economic strip ratio (ESR) criteria, a minimum saturation cutoff of 7 mass per cent bitumen, and a minimum saturated zone thickness cutoff of 3.0 m. The ESR criteria are fully explained in *ERCB Report 79-H*, Appendix III.<sup>2</sup>

The initial mineable volume in-place of crude bitumen is estimated as of December 31, 2001, to be 9.4  $10^9$  m<sup>3</sup>. Reduction factors were applied to this initial mineable resource volume to determine the established mineable reserve volume. These factors account for ore sterilization due to environmental protection corridors along major rivers (10 per cent), small isolated ore bodies (10 per cent), location of surface facilities (plant sites, tailings ponds, waste dumps) (10 per cent), and mining/extraction losses (18 per cent).

The resulting initial established mineable reserve of crude bitumen is estimated to be  $5.6 \ 10^9 \ m^3$ , unchanged from December 31, 2000.

Only a small fraction of the initial established mineable reserve is under active development. Currently, Suncor and Syncrude are the only two producers in the SMA, and the cumulative bitumen production from these projects is  $395 \ 10^6 \ m^3$ . Albian Sands is presently constructing its Muskeg River Mine, and the reserves for this project are included in Table 2.3.

The remaining established mineable crude bitumen reserve as of December 31, 2001, is  $5.20 \ 10^9 \ m^3$ , slightly lower than last year due to the production of nearly 25  $10^6 \ m^3$  in 2001.

The crude bitumen reserves categories are presented in Figure 2.2.

Table 2.3 shows the remaining established mineable crude bitumen reserves from deposits under active development as of December 31, 2001.

# 2.1.4 In Situ Crude Bitumen Reserves

The EUB has determined an in situ initial established reserve for those areas considered amenable to in situ recovery methods. Reserves attributable to thermal development were determined using a minimum saturation cutoff of 3 mass per cent crude bitumen and a minimum zone thickness of 10.0 m. For primary development, the same saturation cutoff of 3 mass per cent was used, with a minimum zone thickness of 3.0 m. Recovery factors of 20 per cent for thermal development and 5 per cent for primary development were applied to the areas within the cutoffs. The recovery factor for thermal development is lower than some of the active project recovery factors to account for the uncertainty in the recovery processes and the uncertainty of development in the poorer quality resource areas.

The EUB's 2001 estimate of initial established reserves for in situ areas remains unchanged at 22.74  $10^9$  m<sup>3</sup>. This estimate will be significantly refined and the results released in the report scheduled for 2003 or possibly 2004. Cumulative production within the in situ areas now totals 167  $10^6$  m<sup>3</sup>, of which 145  $10^6$  m<sup>3</sup> is from the Cold Lake OSA.

<sup>&</sup>lt;sup>2</sup> Energy Resources Conservation Board, 1979, Alsands Fort McMurray Project, ERCB Report 79-H (Calgary).

As a result of the 18  $10^6$  m<sup>3</sup> production in 2001, remaining established reserves of crude bitumen from in situ areas are now slightly lower, at 22.57  $10^9$  m<sup>3</sup>.

The EUB's 2001 estimate of the established in situ crude bitumen reserves under active development is shown in Table 2.4. The EUB has assigned initial volumes in-place and initial and remaining established reserves for commercial projects, primary recovery schemes, and active experimental schemes where all or a portion of the wells have been drilled and completed. An aggregate reserve is shown for all active experimental schemes, as well as an estimate of initial volumes in-place and cumulative production. An aggregate reserve is also shown for all commercial and primary recovery schemes within a given oil sands deposit and area. The initial established reserves under primary development are based on a 5 per cent average recovery factor. The recovery factors of 40 and 25 per cent for thermal commercial projects in the Peace River and Cold Lake areas respectively reflect the application of various steaming strategies and project designs.

That part of the total remaining established reserves of crude bitumen from within active in situ areas is estimated to be  $486.7 \ 10^6 \text{ m}^3$ , a decrease of  $4.5 \ 10^6 \text{ m}^3$  from 2000.

# 2.1.5 Ultimate Potential of Crude Bitumen

The EUB estimates the ultimate in-place volume of crude bitumen to be about  $400 \ 10^9 \ m^3$ , consisting of 22  $10^9 \ m^3$  within the SMA in deposits that may eventually be amenable to surface mining (as well as some limited in situ recovery), and the remainder being deeper deposits that will require the use of in situ recovery or underground mining techniques.

Although drilling and log analyses indicate the large ultimate in-place volume, knowledge of variations in quality and the effect of this on recovery potential is still limited. In addition, there has been little experimentation to date to establish the expected recovery factor for some types of resources, particularly carbonates. Therefore, the portions of in-place volumes for the Cretaceous sand and Paleozoic carbonate deposits that will require the use of in situ recovery methods were broken down into established and probable categories, and different recovery factors were applied to each category in establishing the ultimate potential of crude bitumen for the in situ areas. The recovery factors selected reflect the EUB's current knowledge respecting the quality of the inplace resources, the amount of experimentation done to date to establish recovery techniques, and a projection of future improvements in those techniques.

The ultimate potential (which is the portion of ultimate in-place volume that is potentially recoverable) of crude bitumen from Cretaceous sediments by in situ recovery methods is estimated to be 33  $10^9$  m<sup>3</sup> and from carbonate sediments some 6  $10^9$  m<sup>3</sup>. Nearly 11  $10^9$  m<sup>3</sup> are expected from within the surface-mineable boundary, with a little more than  $10 \, 10^9$  m<sup>3</sup> coming from surface mining and about 0.4  $10^9$  m<sup>3</sup> from in situ methods. For current projects, it is also assumed that tailings ponds and discard sites will either be located on nonmineable areas or be removed from the mineable areas in order to recover underlying economic mineable ore. The total initial ultimate potential crude bitumen is therefore about 50  $10^9$  m<sup>3</sup>.

# 2.2 Supply of and Demand for Crude Bitumen

In this report, crude bitumen refers to total bitumen production; nonupgraded bitumen refers to the portion of crude bitumen production blended with diluent and sent to markets by pipeline; upgraded bitumen refers to the portion of crude bitumen production upgraded to synthetic crude oil (SCO), which is used by refineries as feedstock. This section discusses production and disposition of crude bitumen. It includes crude bitumen production by surface mining and in situ methods, upgrading of bitumen to SCO, and disposition of both SCO and blended bitumen.

Upgrading is the term given to a process that converts bitumen and heavy crude oil into SCO, which has a density and viscosity similar to conventional light-medium crude oil. Upgraders chemically add hydrogen to bitumen, subtract carbon from it, or both. In upgrading processes, essentially all the sulphur contained in bitumen, either in elemental form or as a constituent of oil sands coke, is removed. Most oil sands coke is stockpiled, with some burned in small quantities to generate electricity. Elemental sulphur is either stockpiled or shipped to facilities that convert it to sulphuric acid for use mainly in the manufacturing of fertilizers.

Two methods are used for recovery of bitumen, depending on the depth of the deposit. The shallow-depth deposits in Athabasca (Fort McMurray) are currently recovered by surface mining. In this method overburden is removed, oil sands ore is mined, and bitumen is extracted using hot water.

Unlike the mineable area of Athabasca, other oil sands deposits are located deeper in the earth. For these deposits, in situ methods have been proven technically and economically feasible. These methods typically use heat from steam to reduce the viscosity of the bitumen, allowing it to be separated from the sand and pumped to the surface. A number of these deposits could be put on production with primary recovery.

Bitumen crude must be diluted with some lighter viscosity product in order to be transported in pipelines. Pentanes plus are currently used in Alberta as diluent. Diluent used to transport bitumen to Alberta destinations is usually recycled. However, the volumes used to dilute bitumen for transport to markets outside Alberta are not returned to the province. Other products such as naptha, light crude oil, and synthetic oil can also be used as diluent to allow bitumen to meet pipeline specifications. Use of heated and insulated pipelines may decrease the amount of diluent required over time.

# 2.2.1 Crude Bitumen Production

In 2001, Alberta produced  $116.6 \ 10^3 \ m^3/d$  of crude bitumen, with surface mining accounting for 58 per cent and in situ for 42 per cent. In the same year, nonupgraded bitumen and SCO accounted for 43 per cent of Alberta's total crude oil and equivalent production.

The forecast of crude bitumen and SCO production relies heavily on information provided by project sponsors. Project viability depends largely on the cost of producing and transporting the products and on the price buyers are willing to pay. Other factors that bear on project economics are refining capacity and competition with other supply sources in the U.S. and Canadian markets.

# 2.2.1.1 Mined Crude Bitumen

Syncrude and Suncor bitumen production has increased steadily, reaching a level of 67.4  $10^3 \text{ m}^3/\text{d}$  in 2001, with Syncrude accounting for 64 per cent and Suncor for 36 per cent.

In projecting the future supply of bitumen from mining, the EUB considered potential production from the existing facilities, as well as supply from future projects. The forecast includes

- the existing production and expected expansions of Suncor, including completion of Millennium and Voyageur Phases I and II;
- the existing and expected expansions of Syncrude, including stages three and four of the four-stage project that began in 1996;
- the Albian Sands project, which is currently under construction and is expected to produce bitumen in 2003, and its expansion planned for 2008;
- the TrueNorth Energy Fort Hill Oil Sands Project, with two phases of production. The first phase is to begin in 2005 and the second phase in 2009. TrueNorth Energy will be the first nonintegrated bitumen producer in the oil sands mining business. The bitumen produced, including diluent, will be transported via third-party pipelines to refineries in Canada and the midwest United States; and
- the Canadian Natural Resources Limited (CNRL) Horizon project, with proposed production beginning in 2007.

The EUB is aware of other announced projects, but they have not been considered in this forecast because of uncertainties about timing and project scope. If production were to come on stream from these proposed projects, it would be in the latter part of the forecast period.

In projecting total mined bitumen over the forecast period, the EUB assumed that potential market restrictions, cost overruns, construction delays, and availability of suitable refinery capacity on a timely basis may impact the timing of production schedules for these projects. The EUB assumed that total mined bitumen production will increase from  $67.4 \ 10^3 \ m^3/d$  in 2001 to some 223  $10^3 \ m^3/d$  by 2011. Figure 2.3 illustrates total mined bitumen production.

# 2.2.1.2 In Situ Crude Bitumen

In situ crude bitumen production has more than doubled since 1991, reaching a level of  $49.2 \ 10^3 \ m^3/d$  in 2001. To date, the majority of in situ bitumen has been marketed in nonupgraded form outside of Alberta and only a small amount (5 per cent) is used in Alberta refineries.

Similar to surface mining, the future supply of in situ bitumen includes production from existing projects, expansions to existing projects, and development of new projects.

In projecting the production from existing and future schemes, the EUB considered all approved projects, projects currently before the EUB, and projects for which it expects applications within the year. For the purposes of this report, it assumed that the existing projects would continue producing at their current production levels over the forecast

period. To this projection the EUB has added production of crude bitumen from new and expanded schemes. The assumed production from future crude bitumen projects takes into account past experiences, project modifications, natural gas prices, pipeline availability, and the ability of North American markets to absorb the increased volumes. The EUB also realizes that key forecast factors, such as diluent requirements and price differentials, may delay some projects. **Figure 2.3** illustrates that in situ crude bitumen production is expected to rise to  $126 \ 10^3 \ m^3/d$  over the forecast period.

It is expected that by the end of the forecast period some 20 per cent of in situ bitumen production will be used as feedstock for SCO production within the province.

# 2.2.2 Synthetic Crude Oil Production

A large portion of Alberta's bitumen production is upgraded to SCO. The two major upgraders, Suncor and Syncrude, produced 19.4  $10^3$  m<sup>3</sup>/d and 36.0  $10^3$  m<sup>3</sup>/d of SCO respectively in 2001. The EUB expects a significant increase in the SCO production over the forecast period. A summary of the SCO projects included in this report are

# Suncor

- the completion of Project Millennium in 2002;
- the addition of an in situ bitumen recovery operation (Firebag In Situ Oil Sands Operation), with start-up expected in 2005;
- modification of the upgrader (the addition of a vacuum tower) to increase capacity of SCO starting in 2005;
- Voyageur Phase I, which involves expanding the existing facility and constructing a new upgrader by 2008; and
- Voyageur Phase II that will add additional processing units.

# Syncrude

- stage one, which included the development of the North mine and debottlenecking of the upgrader in 1999;
- stage two, which consists of the Aurora Train 1 and additional debottlenecking of the upgrader at Mildred Lake in 2002;
- stage three, which includes the upgrader expansion and a second train of production at Aurora by 2005; and
- stage four, which includes Aurora Train 3 and further upgrader expansion in 2008.

Shell Canada expects to commence production of a new upgrader at Scotford, near Edmonton, in early 2003. This upgrader is adjacent to the existing Shell refinery and will upgrade crude bitumen from the Albian Sands project. Shell's production is expected to increase in 2008 to correspond with the expansion of the Albian Sands project.

The proposed OPTI/Nexen - Long Lake Project is an in situ bitumen recovery and upgrading facility located approximately 40 km southeast of Fort McMurray. Phase I of this project will commence in 2005. The second phase is expected to double the capacity of all components by 2008.

CNRL is proposing to develop its oil sands leases located within the Regional Municipality of Wood Buffalo in northeastern Alberta. The three-phase project is expected to begin operation 2007.

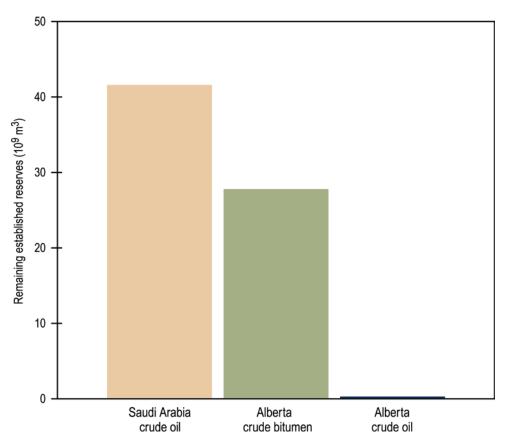
The conversion of crude bitumen to SCO uses different technologies at the two existing plants. Therefore the SCO yield through upgrading can vary, depending on the type of technology, the use of products as fuel in the upgrading, the extent of gas liquids recovery, and the extent of residue upgrading. The overall liquid yield factor for the current Suncor delayed coking operation is approximately 0.81, while that for the current fluid coking/hydrocracking operation at Syncrude is 0.85. The proposed overall liquid yield factor for the Albian Sands project, via the Shell upgrader using a hydrocracking process, is anticipated to be at or above 0.90. The OPTI/Nexen - Long Lake Project will use a new field upgrading technology and hydrocracking that will have a liquid yield factor of approximately 0.80. CNRL will use delayed coking with an approximate 0.86 liquid yield factor.

To project SCO production over the forecast period, the EUB included existing production from Suncor and Syncrude and their planned expansions, plus the new production expected from Shell Canada, OPTI/Nexen, and CNRL. Production from future SCO projects takes into account the high engineering and project material cost and the substantial amount of skilled labour associated with expansions or new projects in the industry. The EUB also recognizes that key factors, such as the length of the construction period and the market penetration of new synthetic volumes, may impact project timing. **Figure 2.4** shows the EUB projection of SCO production. It is expected that the SCO production will increase from 55.4 10<sup>3</sup> m<sup>3</sup>/d in 2001 to 196 10<sup>3</sup> m<sup>3</sup>/d in 2011.

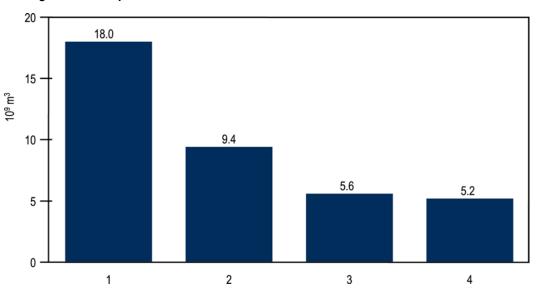
#### 2.2.3 Demand for Synthetic Crude Oil and Nonupgraded Bitumen

SCO has two principal advantages over light crudes: it has very low sulphur content and it produces very little heavy fuel oil. The latter property is particularly desirable in Alberta, where there is virtually no local market for heavy fuel oil. Among the disadvantages of SCO in conventional refineries are the low quality of distillate output, the need to limit SCO intake to a fraction of total crude requirements, and the high level of aromatics (benzene) that may have undesirable environmental properties.

Overall demand for Alberta SCO and blended bitumen is influenced by many factors, including the price differential between light and heavy crude oil, expansion of refineries currently processing SCO and blended bitumen, altering the configuration of current light crude oil refineries, and the availability and price of diluent for shipping blended bitumen.


Alberta oil refineries use SCO, bitumen and other feedstocks to produce a wide variety of refined petroleum products. In 2001, five Alberta refineries, with total capacity of 68  $10^3$  m<sup>3</sup>/d, used 27.3  $10^3$  m<sup>3</sup>/d of SCO and 2.5  $10^3$  m<sup>3</sup>/d of nonupgraded bitumen. The Alberta refinery demand for SCO represents 49 per cent of Alberta SCO production and 5 per cent of nonupgraded bitumen production. **Figure 2.5** shows that in 2011 Alberta demand for SCO will rise slightly to 28.0  $10^3$  m<sup>3</sup>/d and nonupgraded bitumen will remain at a

level of some  $2.5 \ 10^3 \ m^3/d$ .


Given the current quality of SCO, western Canada's nine refineries, with total capacity of 92  $10^3$  m<sup>3</sup>/d, are able to blend up to 30 per cent SCO and a further 4 per cent blended bitumen with crude oil. These refineries receive SCO from both Alberta and Saskatchewan. In eastern Canada, the four Sarnia-area refineries are the sole extra-provincial Canadian market for Alberta SCO.

The largest export markets for Alberta SCO and nonupgraded bitumen is the U.S. midwest, with refining capacity of 575  $10^3 \text{ m}^3/\text{d}$ , and the U.S. Rocky Mountain region, with refining capacity of 85.8  $10^3 \text{ m}^3/\text{d}$ . The refineries in these areas are capable of absorbing a substantial increase in supplies of SCO and nonupgraded bitumen from Alberta.

**Figure 2.5** shows that over the forecast period Alberta exports of SCO will increase from  $28.1 \ 10^3 \text{ m}^3/\text{d}$  to  $168 \ 10^3 \text{ m}^3/\text{d}$  and exports of nonupgraded bitumen will increase from  $46.7 \ 10^3 \text{ m}^3/\text{d}$  to  $113 \ 10^3 \text{ m}^3/\text{d}$ .







1. Initial volume in-place - gross resource volume of crude bitumen established to exist within the surface-mineable area.

 Initial mineable volume in-place – resource volume of crude bitumen calculated using minimum saturation and thickness criteria and based upon the application of economic-strip-ratio criteria within the surface mineable area.

 Initial established mineable reserve – recoverable volume of crude bitumen established within category 2 but excluding mining, extraction, and isolation ore losses and areas unavailable because of placement of mine surface facilities and environmental buffer zones.

4. Remaining established mineable reserve – recoverable volume of crude bitumen established within category 3 minus cumulative production.

# Figure 2.2. Crude bitumen resource and reserve categories

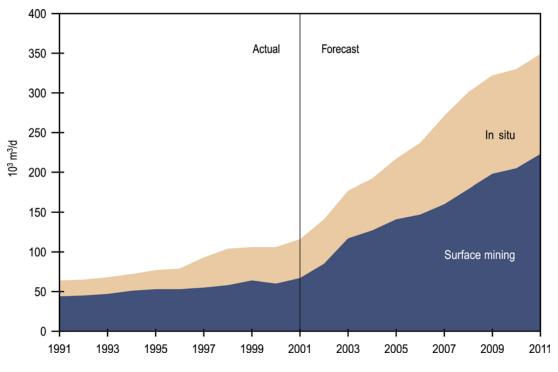



Figure 2.3. Alberta crude bitumen production

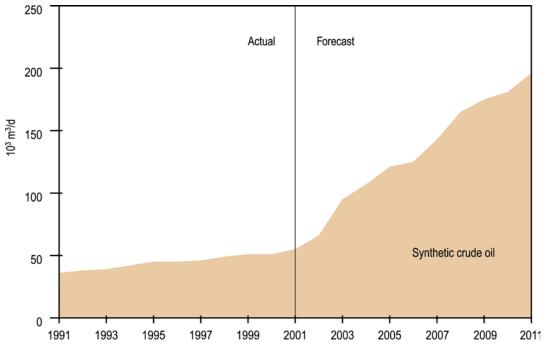



Figure 2.4. Alberta synthetic crude oil production

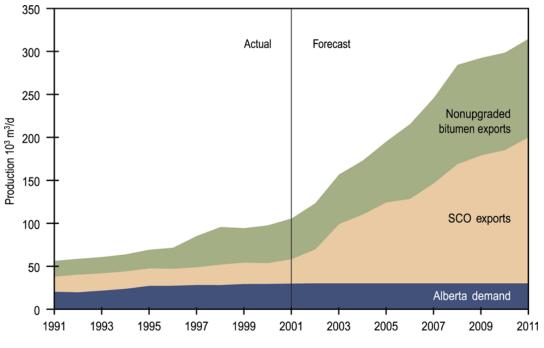



Figure 2.5. Alberta demand and exports of crude bitumen and SCO

# 3 Crude Oil

# 3.1 Reserves of Crude Oil

## 3.1.1 Provincial Summary

The EUB estimates the remaining established reserves of conventional crude oil in Alberta to be 278 million cubic metres  $(10^6 \text{ m}^3)$ , or 1.75 billion barrels, at year-end 2001. This is a decrease from year-end 2000 of 13.1  $10^6 \text{ m}^3$ , resulting from all reserve adjustments and production that occurred during 2001. The changes in reserves and cumulative production for light-medium and heavy crude oil to year-end 2001 are shown in Table 3.1. The decline in remaining conventional oil reserves from 1976 to the present is shown in **Figure 3.1**.

#### Table 3.1. Reserve change highlights (10<sup>6</sup> m<sup>3</sup>)

|                                             | 2001                                  | 2000    | Change         |
|---------------------------------------------|---------------------------------------|---------|----------------|
| Initial established reserves <sup>a</sup>   |                                       |         |                |
| Light-medium                                | 2 238.9                               | 2 225.8 | +13.0          |
| Heavy                                       | 344.2                                 | 328.5   | +15.6          |
| Total                                       | 2 583.0<br>(16 254)⁵                  | 2 554.4 | +28.6          |
| Cumulative production <sup>a</sup>          | , , , , , , , , , , , , , , , , , , , |         |                |
| Light-medium                                | 2 032.8                               | 2 005.3 | 27.5°          |
| Heavy                                       | 271.9                                 | 257.6   | <u>14.3</u> °  |
| Total                                       | 2 304.7                               | 2 262.9 | 41.7<br>(263)⁵ |
| Remaining established reserves <sup>a</sup> |                                       |         | (200)*         |
| Light-medium                                | 206.1                                 | 220.5   | -14.4          |
| Heavy                                       | 72.3                                  | 70.9    | +1.4           |
| Total                                       | 278.3<br>(1 751) <sup>b</sup>         | 291.4   | -13.1          |

<sup>a</sup>Discrepancies are due to rounding.

<sup>b</sup>Imperial equivalent in millions of stock-tank barrels.

<sup>c</sup>May differ slightly from actual production as reported in Statistical Series 2001-17.

# 3.1.2 Reserves Growth

A breakdown of the year's reserves changes, including additions, reassessments, and enhanced recovery, is presented in Table 3.2, while a detailed history of these changes is shown in **Figures 3.2** to **3.4**. The initial established reserves attributed to the 330 new oil pools booked in 2001 totalled 9.1  $10^6$  m<sup>3</sup> (28  $10^3$  m<sup>3</sup> per pool), up from 7.9  $10^6$  m<sup>3</sup> last year, while development of existing pools during 2001 added another 13.6  $10^6$  m<sup>3</sup>. New and expanded enhanced recovery schemes (water and solvent floods) added initial established reserves of 0.8  $10^6$  m<sup>3</sup>. This continues the trend to decreasing contributions to growth by new enhanced recovery schemes due to a lack of suitable quality candidates for such schemes (**Figure 3.5**). Reassessment of reserves resulted in a net reserve addition of 6.5  $10^6$  m<sup>3</sup> to heavy crude and a net reduction of 1.3  $10^6$  m<sup>3</sup> for lightmedium crude. The resulting total increase in initial established reserves for 2001 amounted to 28.6  $10^6$  m<sup>3</sup>, down from last year's total of 32.8  $10^6$  m<sup>3</sup>.

|                                   | Light-medium | Heavy | Total |  |
|-----------------------------------|--------------|-------|-------|--|
| New discoveries                   | 6.3          | 2.8   | 9.1   |  |
| Development of existing pools     | 7.4          | 6.2   | 13.6  |  |
| Enhanced recovery (new/expansion) | 0.7          | 0.1   | 0.8   |  |
| Reassessment                      | <u>-1.3</u>  | 6.5   | 5.2   |  |
| Total                             | 13.0         | 15.6  | 28.6  |  |

Table 3.2. Breakdown of changes in crude oil initial established reserves (10<sup>6</sup> m<sup>3</sup>)

Reserve additions resulting from drilling and new enhanced recovery schemes totalled 23.5  $10^6$  m<sup>3</sup>, up from 22.8  $10^6$  m<sup>3</sup> in 2000. These additions replaced 56 per cent of Alberta's 2001 conventional crude oil production of 41.7  $10^6$  m<sup>3</sup>.

# 3.1.3 Pools with Largest Reserve Changes

Some 1500 oil pools were re-evaluated over the past year, resulting in positive reassessments totalling  $68.3 \ 10^6 \ m^3$  and negative reassessments totalling  $63.1 \ 10^6 \ m^3$ . Recovery efficiencies continue to improve through infill and horizontal drilling in medium and heavy density pools. For example, ultimate recovery in the Bellshill Lake Blairmore Pool is now estimated at 47 per cent under natural water drive. The Hayter Dina B Pool saw an increase in reserves of  $3239 \ 10^3 \ m^3$  due to pool expansion and recognition of a higher recovery factor of 20 per cent. Active exploration within the Suffield Field has resulted in several discoveries, most notably the Suffield Upper Mannville CCC Pool, in which initial established reserves of  $1136 \ 10^3 \ m^3$  have been booked. Table 3.3 lists those pools having the largest reserve changes in 2001.

# 3.1.4 Distribution of Oil Reserves by Size and Geology

At year-end 2001, oil reserves were assigned to some 7200 light-medium and 400 heavy crude oil pools in the province. Sixty-one per cent of these pools consist of a single well. The distribution of reserves by pool size shown in Table 3.4 indicates that some 89 per cent of the remaining reserves is contained in the largest 14 per cent of pools. The smallest 72 per cent of pools contain only 5 per cent of the province's remaining reserves. **Figure 3.6** further illustrates the historical trends in the size of oil pools.

The distribution of conventional crude oil reserves by drive mechanism is presented in Table 3.5 and illustrated in **Figure 3.7**. Table 3.5 shows that waterflood projects have added  $651 \ 10^6 \ m^3$ , or 25 per cent of the province's initial established reserves. Pools under solvent flood have realized an average increase in recovery efficiency of 30 per cent over primary depletion for those pools.

The distribution of reserves by geological period and by formation, found in Tables 3.6 and 3.7 and represented graphically in **Figure 3.8**, indicates that the majority of remaining established reserves will come from formations within the Lower Cretaceous (34 per cent) and Upper Devonian (22 per cent).

| Table | 3.3. | Major | oil | reserve | changes, | 2001 |
|-------|------|-------|-----|---------|----------|------|
|       |      |       |     |         |          |      |

|                                                  |        | tablished<br>es (10³ m³)_ |                                                                                               |
|--------------------------------------------------|--------|---------------------------|-----------------------------------------------------------------------------------------------|
| Pool                                             | 2001   | Change                    | Main reason for change                                                                        |
| Ante Creek Dunvegan D                            | 51     | -152                      | Reassessment of reserves                                                                      |
| Bellshill Lake Blairmore                         | 17 920 | +1 100                    | Reassessment of recovery factor                                                               |
| Bigoray Ostracod                                 | 1 262  | +237                      | Reassessment of waterflood reserves                                                           |
| Bigoray Nisku D                                  | 857    | -177                      | Reassessment of waterflood reserves                                                           |
| Caroline Viking S                                | 300    | -186                      | Reassessment of primary reserves                                                              |
| Cecil Kiskatinaw G                               | 145    | +145                      | New pool                                                                                      |
| Chauvin South Mannville MU #1                    | 11 150 | +410                      | Reassessment of waterflood reserves                                                           |
| Chin Coulee Sawtooth B                           | 676    | +270                      | Pool development                                                                              |
| Chinchaga Slave Point Q                          | 178    | +178                      | New pool                                                                                      |
| Countess Lower Mannville Z                       | 1 707  | +327                      | Expansion of waterflood scheme                                                                |
| Evi Slave Point A                                | 340    | +167                      | Pool development                                                                              |
| Evi Keg River A & Gr Wash N                      | 3 296  | +201                      | Reassessment of primary reserves                                                              |
| Fenn West D-3 H                                  | 153    | -1 220                    | Reassessment of primary reserves                                                              |
| Garrington Card , Vik and Mann #1                | 6 329  | -82                       | Commingled Cardium I &, Viking A ,and Viking CC<br>Mannville B, and Crossfield East Cardium C |
| Goose River Beaverhill Lake A                    | 10 180 | +179                      | Reassessment of waterflood reserves                                                           |
| Halkirk Upper Mannville R                        | 1 813  | +363                      | Reassessment of primary reserves                                                              |
| Haynes D-2 A and D-3 A                           | 879    | +176                      | Reassessment of primary reserves                                                              |
| Hayter Dina B                                    | 9 976  | +3 239                    | Pool development & reassessment of reserves                                                   |
| Jenner Upper Mannville F                         | 1 205  | +301                      | Reassessment of recovery factor                                                               |
| Johnson Glauconitic C                            | 564    | +238                      | Reassessment of waterflood recovery factor                                                    |
| Judy Creek Beaverhill Lake A                     | 58 700 | +320                      | Reassessment of solvent flood recovery factor                                                 |
| Leduc-Woodbend Upper Mann G                      | 65     | -420                      | Reassessment of primary and waterflood reserves                                               |
| Leduc-Woodbend Glauconitic D                     | 630    | +243                      | Recognition of waterflood scheme                                                              |
| Lloydminster Sparky & General<br>Petroleum C & D | 5 583  | +1 355                    | Reassessment of primary recovery factor                                                       |
| Long Coulee Glauconitic Q                        | 1 199  | -377                      | Reassessment of waterflood recovery factor                                                    |
| Loon Granite Wash P                              | 523    | +174                      | Reassessment of recovery factor                                                               |

|                                                           |             | tablished<br>es (10³ m³)_ |                                                                              |
|-----------------------------------------------------------|-------------|---------------------------|------------------------------------------------------------------------------|
| Pool                                                      | 2001 Change |                           | Main reason for change                                                       |
| Medicine River Glauconitic D and<br>Ostracod A            | 1 026       | +178                      | Pool development, reassessment of recovery facto                             |
| Marwayne Sparky D                                         | 1 534       | +719                      | Coalesced Sparky B and recovery reassessment                                 |
| Normandville Beaverhill Lake C                            | 148         | +148                      | New pool                                                                     |
| Norris Upper Mannville H                                  | 470         | +295                      | Pool development and reassessment of recovery factor                         |
| Pembina Belly River C & O                                 | 17 870      | -690                      | Reassessment of primary recovery factor                                      |
| Pembina Nisku L                                           | 4 400       | +300                      | Reassessment of solvent recovery factor                                      |
| Provost Sparky D                                          | 304         | +161                      | Pool development                                                             |
| Provost Lloyd S, X and Cumm N                             | 870         | +174                      | Reassessment of recovery factor                                              |
| Provost Cummings F5F                                      | 157         | +157                      | New pool                                                                     |
| Provost Dina S                                            | 1 868       | -234                      | Reassessment of recovery factor                                              |
| Rainbow Keg River F                                       | 21 280      | +1 990                    | Gas flood converted to solvent flood                                         |
| Redwater Up-Mid-Lower Viking A                            | 1 166       | +460                      | Pool development and reassessment of primary recovery factor                 |
| Simonette Beaverhill A                                    | 5 040       | +211                      | Reassessment of waterflood reserves                                          |
| Surgeon Lake South Triassic F                             | 1 664       | +567                      | Pool development                                                             |
| Suffield Upper Mannville T                                | 200         | +164                      | Pool development                                                             |
| Suffield Upper Mannville CCC                              | 1 136       | +1 136                    | New pool                                                                     |
| Suffield Upper Mannville OOO                              | 236         | +236                      | New pool                                                                     |
| Suffield Upper Mannville PPP                              | 155         | +155                      | New pool                                                                     |
| Swan Hills Beaverhill Lake A & B                          | 141 000     | -3 570                    | Reassessment resulting from coalescence of Swan<br>Hills BHL A&B and C Pools |
| Taber Taber N                                             | 2 174       | +274                      | Reassessment of primary recovery factor                                      |
| Valhalla Doe Creek I                                      | 11 030      | +910                      | Recognition of new waterflood scheme                                         |
| Viking-Kinsella Sparky JJ                                 | 440         | +180                      | Reassessment of recovery factor                                              |
| West Drumheller D-2 A                                     | 5 020       | +201                      | Reassessment of recovery factor                                              |
| Wildmere Lloydminster MM                                  | 243         | +243                      | New pool                                                                     |
| Willesden Green Belly River,<br>Cardium A and Viking MU#1 | 24 030      | +380                      | Reassessment of primary recovery factor                                      |

| Pool size range <sup>a</sup>      | Pools        |               |                                | stablished<br>reserves | Remaining established<br>reserves |     |  |
|-----------------------------------|--------------|---------------|--------------------------------|------------------------|-----------------------------------|-----|--|
| (10 <sup>3</sup> m <sup>3</sup> ) | No.          | %             | 10 <sup>6</sup> m <sup>3</sup> | %                      | 10 <sup>6</sup> m <sup>3</sup>    | %   |  |
| 1000 or more                      | 287          | 3             | 2 135                          | 83                     | 180                               | 65  |  |
| 100-999                           | 1 061        | 11            | 325                            | 12                     | 69                                | 24  |  |
| 30-99                             | 1 385        | 14            | 76                             | 3                      | 18                                | 6   |  |
| 1-29                              | <u>6 931</u> | <u>    72</u> | 47                             | 2                      | 14                                | 5   |  |
| Total                             | 9 664        | 100           | 2 583                          | 100                    | 278                               | 100 |  |

#### Table 3.4. Distribution of oil reserves by pool size

<sup>a</sup>Based on initial established reserves.

#### 3.1.5 **Ultimate Potential**

The ultimate potential of conventional crude oil was estimated by the EUB in 1994 at  $3130 \ 10^6 \ m^3$ , reflecting its estimate of geological prospects. Figure 3.9 shows Alberta's historical and forecast growth of initial established reserves. Figure 3.10 illustrates the historical relationship between remaining reserves and cumulative oil production. Extrapolation of the decline suggests that the EUB's estimate of ultimate potential is still valid. Approximately 74 per cent of the estimated ultimate potential for conventional crude oil has been produced to year-end 2001. Remaining established reserves of 278 10<sup>6</sup> m<sup>3</sup> represent about 9 per cent of the ultimate potential. Known discoveries represent 83 per cent of the ultimate potential, leaving 17 per cent (547  $10^6$  m<sup>3</sup>) of the ultimate potential yet to be discovered. This added to remaining established reserves yields 825 10<sup>6</sup> m<sup>3</sup> of conventional crude oil that is available for future production.

In 2001, both the remaining established reserves and the annual production of crude oil declined. However, there are  $547 \ 10^6 \ m^3$  yet to be discovered, which will mitigate the impact of these declines. Additions to existing pools and the discovery of new pools will continue to bring on new reserves and associated production each year. Any future decline in conventional crude oil production within Alberta will be more than offset by increases in crude bitumen and synthetic production, as discussed in Section 2.2. In fact, in 2001, crude bitumen production exceeded conventional crude oil production for the first time.

|                                                  | Initial<br>volume                             |          | nitial establishe<br>reserves (106 m |                  |       | Δ          | Average recovery (%)     |                  |       |  |
|--------------------------------------------------|-----------------------------------------------|----------|--------------------------------------|------------------|-------|------------|--------------------------|------------------|-------|--|
| Crude oil type<br>and pool type                  | in-place<br>(10 <sup>6</sup> m <sup>3</sup> ) | Primary  | Waterflood/<br>gas flood             | Solvent<br>flood | Total | Primary    | Waterflood/<br>gas flood | Solvent<br>flood | Total |  |
|                                                  | (10 111)                                      | Thinkiry | gus noou                             | noou             | Total | T THINKI Y | gus noou                 | noou             | Total |  |
| Light-medium                                     |                                               |          |                                      |                  |       |            |                          |                  |       |  |
| Primary depletion                                | 3 812                                         | 860      | 0                                    | 0                | 860   | 23         | -                        | -                | 23    |  |
| Waterflood                                       | 2 908                                         | 424      | 387                                  | 0                | 811   | 15         | 13                       | -                | 28    |  |
| Solvent flood                                    | 919                                           | 254      | 166                                  | 107              | 527   | 28         | 18                       | 12               | 57    |  |
| Gas flood                                        | 113                                           | 33       | 8                                    | 0                | 41    | 39         | 7                        | -                | 36    |  |
| Heavy                                            |                                               |          |                                      |                  |       |            |                          |                  |       |  |
| Primary depletion                                | 1 623                                         | 208      | 0                                    | 0                | 208   | 13         | -                        | -                | 13    |  |
| Waterflood                                       | 387                                           | 46       | 90                                   | 0                | 136   | 12         | 23                       | -                | 35    |  |
| Total                                            | 9 762                                         | 1 825    | 651                                  | 107              | 2 584 | 19         |                          |                  | 27    |  |
| Percentage of total initial established reserves |                                               | 71%      | 25%                                  | 4%               | 100%  |            |                          |                  |       |  |

### Table 3.5. Conventional crude oil reserves by recovery mechanism as of December 31, 2001

#### Table 3.6. Conventional crude oil reserves by geological period as of December 31, 2001

|                   | Initial volume in-<br>place (10 <sup>6</sup> m³) |       |                  | Initial established<br>reserves (10 <sup>6</sup> m <sup>3</sup> ) |                  | J established<br>s (10⁰ m³) | Average recovery (%) |       |
|-------------------|--------------------------------------------------|-------|------------------|-------------------------------------------------------------------|------------------|-----------------------------|----------------------|-------|
| Geological period | Light-<br>medium                                 | Heavy | Light-<br>medium | Heavy                                                             | Light-<br>medium | Heavy                       | Light-<br>medium     | Heavy |
| ecclogical period | moulum                                           | nouvy | moulum           | nouvy                                                             | moulum           | nouvy                       | moulum               | nouty |
| Cretaceous        |                                                  |       |                  |                                                                   |                  |                             |                      |       |
| Upper             | 2 160                                            | 0     | 354              | 0                                                                 | 50               | -                           | 16                   | -     |
| Lower             | 1 074                                            | 1 774 | 209              | 300                                                               | 31               | 65                          | 19                   | 17    |
| Jurassic          | 108                                              | 104   | 21               | 32                                                                | 4                | 4                           | 19                   | 31    |
| Triassic          | 323                                              | 24    | 64               | 2                                                                 | 12               | 0                           | 20                   | 8     |
| Permian           | 14                                               | 0     | 7                | 0                                                                 | 1                | -                           | 50                   |       |
| Mississippian     | 605                                              | 63    | 95               | 7                                                                 | 9                | 2                           | 16                   | 11    |
| Devonian          |                                                  |       |                  |                                                                   |                  |                             |                      |       |
| Upper             | 2 461                                            | 25    | 1 133            | 2                                                                 | 61               | 1                           | 46                   | 8     |
| Middle            | 958                                              | 0     | 351              | 0                                                                 | 35               | -                           | 37                   | -     |
| Other             | 49                                               | 20    | 5                | 0                                                                 | 3                |                             | <u>10</u>            | 5     |
| Total             | 7 752                                            | 2 010 | 2 239            | 344                                                               | 206              | 72                          | 29                   | 17    |

| Geological formation | Initial<br>volume<br>in-place<br>(10 <sup>6</sup> m <sup>3</sup> ) | Initial<br>established<br>reserves<br>(10 <sup>6</sup> m <sup>3</sup> ) | Remaining<br>established<br>reserves<br>(10 <sup>6</sup> m <sup>3</sup> ) | Initial<br>volume<br>in-place<br>(%) | Initial<br>established<br>reserves<br>(%) | Remaining<br>established<br>reserves (%) |
|----------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|
|                      |                                                                    |                                                                         |                                                                           | (70)                                 | (70)                                      | 10001100 (70                             |
| Upper Cretaceous     |                                                                    |                                                                         |                                                                           |                                      |                                           |                                          |
| Belly River          | 348                                                                | 46                                                                      | 7                                                                         | 4                                    | 2                                         | 3                                        |
| Chinook              | 5                                                                  | 1                                                                       | 0                                                                         | 0                                    | 0                                         | 0                                        |
| Cardium              | 1 780                                                              | 289                                                                     | 38                                                                        | 17                                   | 11                                        | 14                                       |
| Second White Specks  | 32                                                                 | 3                                                                       | 1                                                                         | 0                                    | 0                                         | 0                                        |
| Doe Creek            | 73                                                                 | 16                                                                      | 4                                                                         | 1                                    | 1                                         | 1                                        |
| Dunvegan             | 22                                                                 | 2                                                                       | 0                                                                         | 0                                    | 0                                         | 0                                        |
| Lower Cretaceous     |                                                                    |                                                                         |                                                                           |                                      |                                           |                                          |
| Viking               | 335                                                                | 65                                                                      | 5                                                                         | 3                                    | 3                                         | 2                                        |
| Upper Mannville      | 1 623                                                              | 262                                                                     | 57                                                                        | 17                                   | 10                                        | 20                                       |
| Lower Mannville      | 890                                                                | 182                                                                     | 34                                                                        | 9                                    | 7                                         | 12                                       |
| Jurassic             | 212                                                                | 53                                                                      | 8                                                                         | 2                                    | 2                                         | 3                                        |
| Triassic             | 347                                                                | 66                                                                      | 12                                                                        | 4                                    | 3                                         | 4                                        |
| Permian-Belloy       | 14                                                                 | 7                                                                       | 1                                                                         | 0                                    | 0                                         | 0                                        |
| Mississippian        |                                                                    |                                                                         |                                                                           |                                      |                                           |                                          |
| Rundle               | 471                                                                | 76                                                                      | 6                                                                         | 5                                    | 3                                         | 2                                        |
| Pekisko              | 89                                                                 | 14                                                                      | 3                                                                         | 1                                    | 1                                         | 1                                        |
| Banff                | 108                                                                | 12                                                                      | 2                                                                         | 1                                    | 0                                         | 1                                        |
| Upper Devonian       |                                                                    |                                                                         |                                                                           |                                      |                                           |                                          |
| Wabamun              | 59                                                                 | 6                                                                       | 1                                                                         | 1                                    | 0                                         | 0                                        |
| Nisku                | 442                                                                | 202                                                                     | 14                                                                        | 5                                    | 8                                         | 5                                        |
| Leduc                | 841                                                                | 505                                                                     | 14                                                                        | 9                                    | 20                                        | 5                                        |
| Beaverhill Lake      | 989                                                                | 393                                                                     | 26                                                                        | 10                                   | 15                                        | 9                                        |
| Slave Point          | 155                                                                | 29                                                                      | 7                                                                         | 2                                    | 1                                         | 3                                        |
| Middle Devonian      |                                                                    |                                                                         |                                                                           |                                      |                                           |                                          |
| Gilwood              | 303                                                                | 130                                                                     | 8                                                                         | 3                                    | 5                                         | 3                                        |
| Sulphur Point        | 9                                                                  | 1                                                                       | 0                                                                         | Ō                                    | 0                                         | 0                                        |
| Muskeg               | 52                                                                 | 8                                                                       | 1                                                                         | 1                                    | 0                                         | 0                                        |
| Keg River            | 498                                                                | 182                                                                     | 23                                                                        | 5                                    | 7                                         | 8                                        |
| Keg River SS         | 44                                                                 | 17                                                                      | 1                                                                         | 0                                    | 1                                         | 0                                        |
| Granite Wash         | 53                                                                 | 13                                                                      | 2                                                                         | 1                                    | 1                                         | 1                                        |

Table 3.7. Distribution of conventional oil reserves by formation as of December 31, 2001

## 3.2 Supply of and Demand for Crude Oil

## 3.2.1 Crude Oil Supply

Over the past several years, production of light-medium and heavy crude oil has been on decline in Alberta. In 2001, total crude oil production declined to  $114.4 \ 10^3 \ m^3/d$ . Light-medium crude oil production declined by approximately  $4.4 \ 10^3 \ m^3/d$  (5 per cent) compared to 2000. Heavy crude oil production in 2001 increased slightly over 2001 levels. This resulted in an overall decline in total crude oil production of 4 per cent from 2000 to 2001, compared to the 2 per cent decline from 1999 to 2000.

While the higher decline rate in 2001 reflects industry's reaction to the decrease in crude oil prices in the latter part of 2001, over time average oil well productivities in Alberta have declined. **Figure 3.11** shows total crude oil production and the number of producing wells by year. As illustrated in this figure, while the number of total producing wells has increased, crude oil production has been on decline.

With regard to average well productivities, **Figure 3.12** shows that roughly half the crude oil wells produce less than 2 m<sup>3</sup>/d per well. In 2001, these 16 100 oil wells operated at an average rate of 1 m<sup>3</sup>/d and produced only 13 per cent of the total crude oil production.

The number of successful oil wells brought on production in 2001, declined to 2220, compared to 2670 in 2000. Both vertical and horizontal well drilling declined in 2001. It should be noted that the number of total producing horizontal wells has not changed appreciably over the past five years. In 2001, some 310 horizontal wells were drilled, representing 14 per cent of the total successful oil wells drilled. In 2001 there were 2750 active horizontal wells, producing approximately 15 per cent of the total crude oil production. Production from horizontal wells drilled in the past five years peaked at an average rate of some 12.0 m<sup>3</sup>/d.

In projecting crude oil production, the EUB considered two components: expected crude oil production from existing wells at 2001 year-end and expected production from new wells. Total production of crude oil is the sum of these two components.

To project crude oil production from the wells drilled prior to 2002, the EUB considered the following assumptions:

- Production from existing wells in 2002 would be  $103.5 \ 10^3 \ m^3/d$ .
- Production from the existing wells will decline at a rate of approximately 15 per cent per annum.

Crude oil production from existing wells over the period 1995-2001 is depicted in **Figure 3.13**. This figure illustrates that approximately 50 per cent of crude oil production in 2001 resulted from wells drilled before 1995. Over the forecast period, production of crude oil from existing wells is expected to decline to  $27 \ 10^3 \ m^3/d$  by 2011.

Production from new wells is assumed to be a function of the number of new wells that will be drilled successfully, peak production, and the decline rate for these new wells. The EUB believes that global crude oil prices will play a major role in drilling activity over the forecast period. As discussed in Section 1, the EUB expects that crude oil prices

will be stable, resulting in healthy activity in drilling for crude oil over the forecast period.

To project crude oil production from new wells, the EUB considered the following assumptions:

- Drilling is projected to decline to 1800 successful wells in 2002, then increase to 2100 wells in 2003. In 2004 and thereafter, drilling is projected to reach to 2400 successful wells and remain at this level over the forecast period. Figure 3.14 illustrates the EUB's crude oil drilling forecast for successful wells for the period 2002 to 2011, along with the historical data.
- Based on recent historical data, it is assumed that the production rate for new wells will peak at 5.0 m<sup>3</sup>/d/well, with a subsequent decline rate of 25 per cent per year. This is a decline from an average of 8.0 m<sup>3</sup>/d/well in the mid 1990s.

The projection of the above two components, production from existing wellbores and production from future successful oil wells, is illustrated in **Figure 3.15.** Light-medium crude oil production is expected to decline from 76.3  $10^3$  m<sup>3</sup>/d in 2001 to 57  $10^3$  m<sup>3</sup>/d in 2011. Although crude oil prices and drilling forecasts are expected to remain at the level of 2004, light crude oil production will continue to decline almost 3 per cent a year, due to the failure of new wells to offset declining production from existing wells. New drilling has been finding smaller reserves over time.

Over the forecast period, heavy crude production is also expected to decrease from 38.1  $10^3 \text{ m}^3/\text{d}$  in 2001 to 31  $10^3 \text{ m}^3/\text{d}$  by the end of the forecast period. Figure 3.15 also illustrates that by 2011 heavy crude oil production will constitute a greater portion of total production compared to 2001, although total production will be smaller.

The combined forecasts from existing and future wells indicate that total crude oil production will decline from 114.4  $10^3$  m<sup>3</sup>/d in 2001 to 88  $10^3$  m<sup>3</sup>/d in 2011. In the first two years of the forecast period, initial established reserves growth is expected to be about 18  $10^6$  m<sup>3</sup>/year and 21  $10^6$  m<sup>3</sup>/year, followed by 24  $10^6$  m<sup>3</sup>/year for the remainder of the forecast period. By 2011, if crude oil production follows the projection, Alberta will have produced some 85 per cent of the estimated ultimate potential of 3130  $10^6$  m<sup>3</sup>.

### 3.2.2 Crude Oil Demand

Oil refineries use mainly crude oil, butanes, and natural gas as feedstock, along with synthetic crude oil (SCO), bitumen, and pentanes plus, to produce a wide variety of refined petroleum products (RPPs). The key determinants of crude oil feedstock requirements for Alberta refineries are domestic demand for RPPs, shipments to other western Canadian provinces, exports to the United States, and competition from other feedstocks. Since Alberta is a "swing" supplier of RPPs within western Canada, a refinery closure or expansion in this market may have a significant impact on the demand for Alberta RPPs and, hence, on Alberta crude oil feedstock requirements.

In 2001, Alberta refineries with 68  $10^3 \text{ m}^3/\text{d}$  of crude oil and equivalent inlet capacity used 31.4  $10^3 \text{ m}^3/\text{d}$  of crude oil. This constituted over 50 per cent of their total crude oil and equivalent feedstock. **Figure 3.16** illustrates the capacity and location of Alberta refineries. It is expected that no new crude oil refining capacity will be added over the forecast period. However, it is assumed that capacity utilization will improve from the

2001 level of 92 per cent to almost full capacity by 2004, as demand for refined petroleum products increases in western Canada. Total crude oil use will reach  $38 \ 10^3 \text{ m}^3/\text{d}$  in 2004, and remain at this level for the duration of the forecast period.

Shipments of crude oil outside of Alberta, depicted in **Figure 3.17**, amounted to 73 per cent of total production in 2001 and are expected to decline to 57 per cent of production by 2011.

## 3.2.3 Crude Oil and Equivalent Supply

**Figure 3.18** shows crude oil and equivalent production. This figure illustrates that total Alberta crude oil and equivalent is expected to increase from 243  $10^3$  m<sup>3</sup>/day in 2001 to 424  $10^3$  m<sup>3</sup>/d in 2011. Over the forecast period the growth in production of nonupgraded bitumen and SCO is expected to significantly offset the decline in conventional crude oil. The share of SCO and nonupgraded bitumen will account for over 70 per cent of total production.

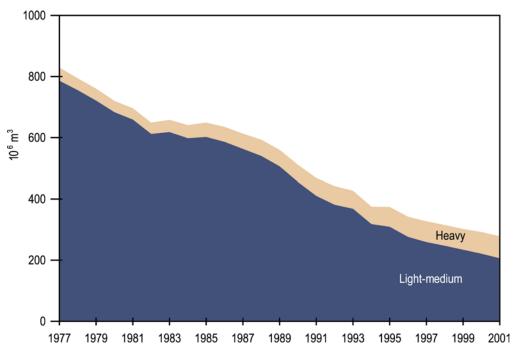



Figure 3.1. Remaining established reserves of crude oil

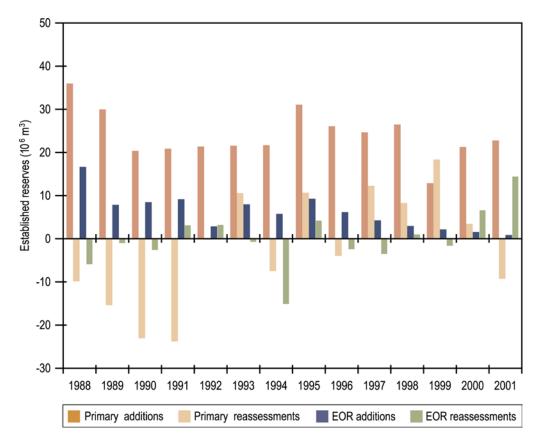



Figure 3.2. Total conventional crude oil reserves additions and reassessments

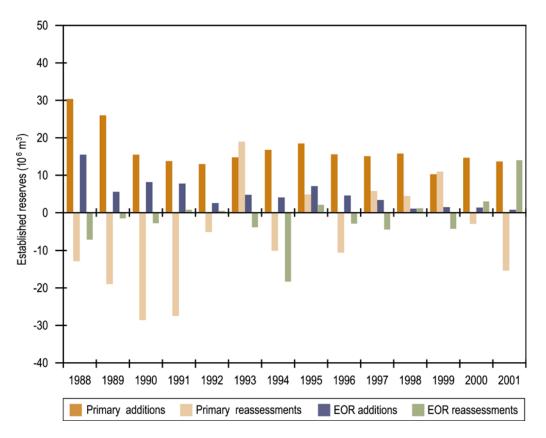



Figure 3.3. Light-medium crude oil reserves additions and reassessments

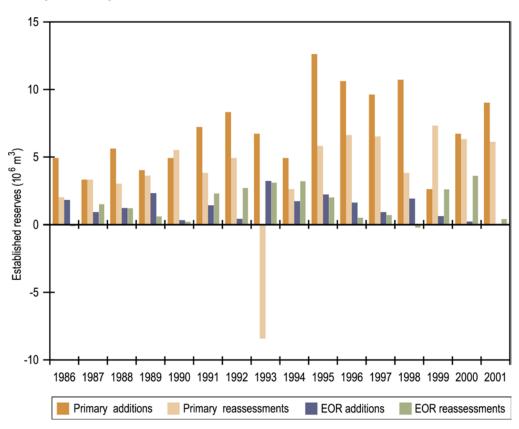



Figure 3.4. Heavy crude oil reserves additions and reassessments

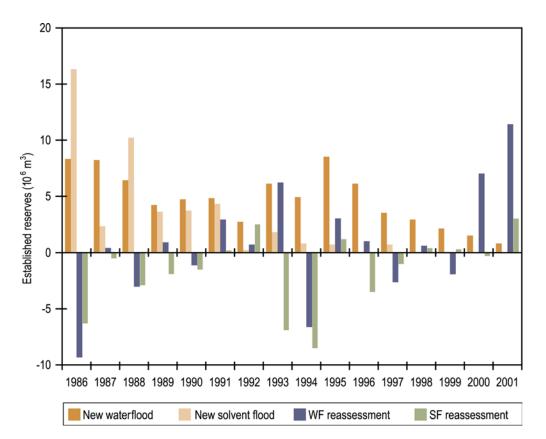



Figure 3.5. Total conventional crude oil enhanced reserves changes

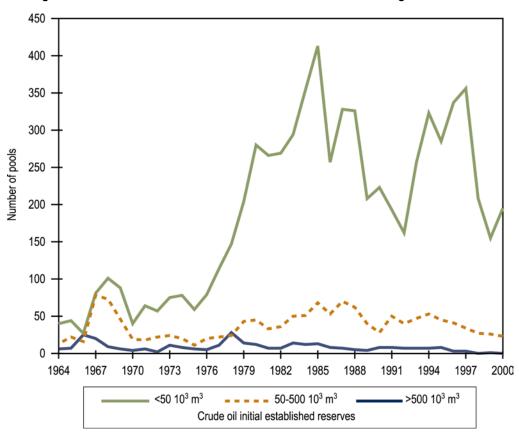



Figure 3.6. Oil pools discovered by size and discovery year

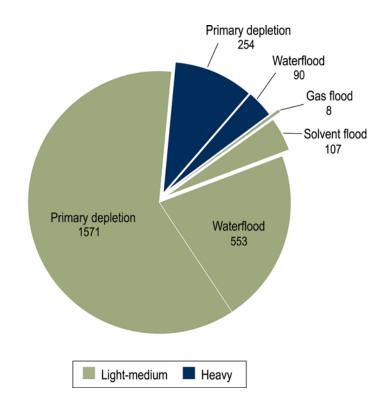



Figure 3.7. Initial established crude oil reserves (primary and incremental over primary) based on various recovery mechanisms (10<sup>6</sup> m<sup>3</sup>)

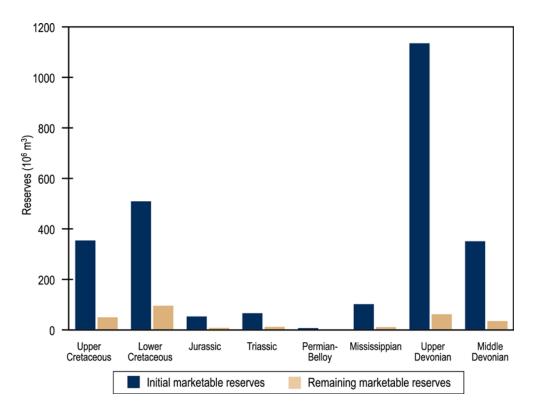



Figure 3.8. Geological distribution of reserves of conventional crude oil

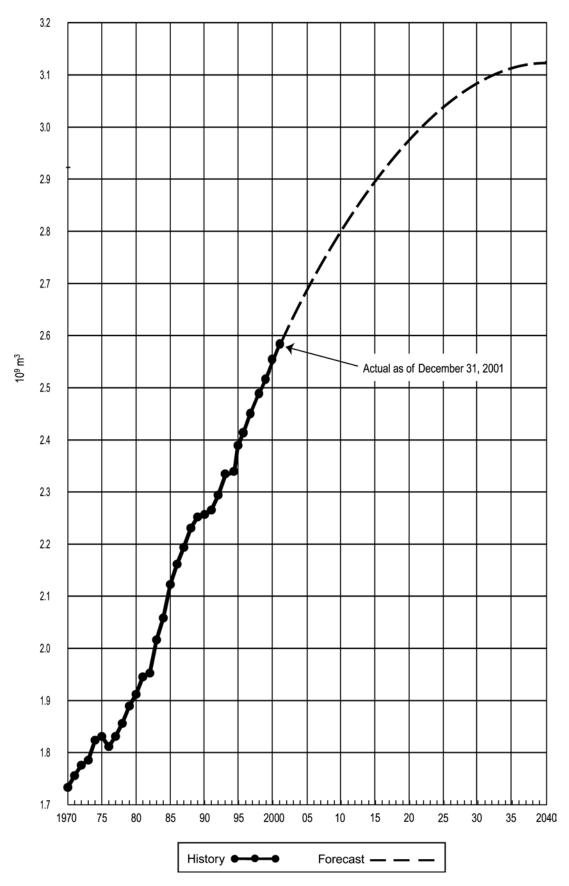



Figure 3.9. Growth of initial established reserves of conventional crude oil

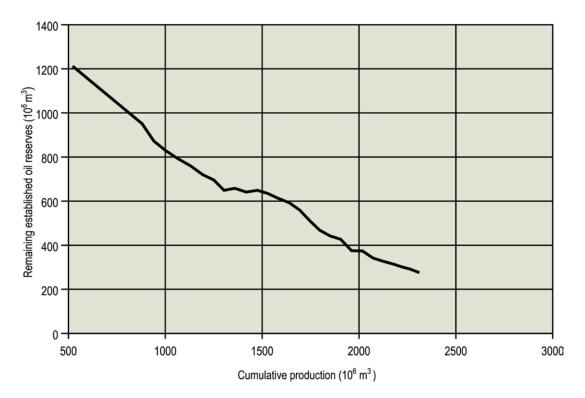



Figure 3.10. Alberta's remaining established oil reserves versus cumulative production

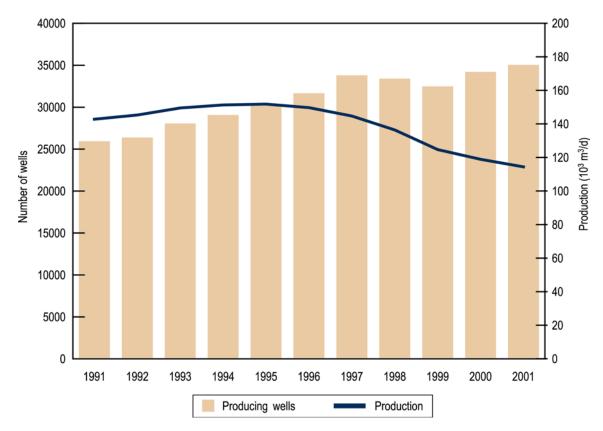



Figure 3.11. Total crude oil production and producing oil wells




Figure 3.12. Crude oil well productivity in 2001

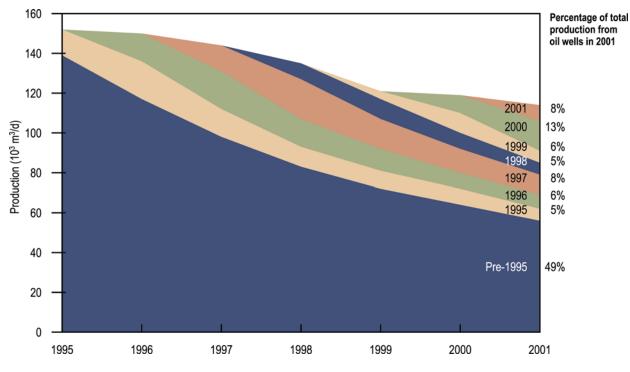



Figure 3.13. Total conventional crude oil production by drilled year

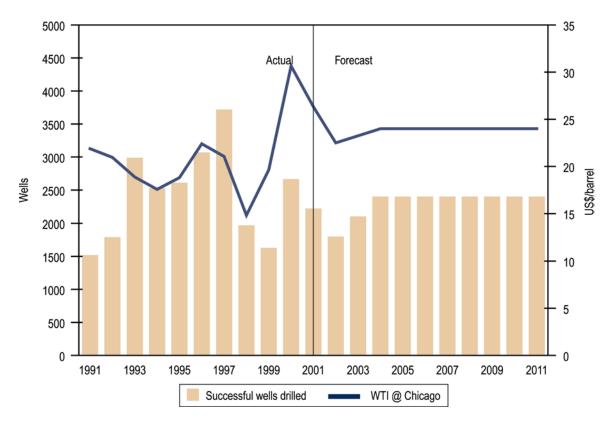



Figure 3.14. Alberta crude oil drilling activity

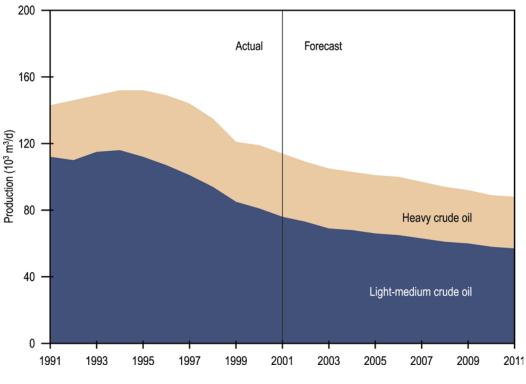



Figure 3.15. Alberta daily production of crude oil

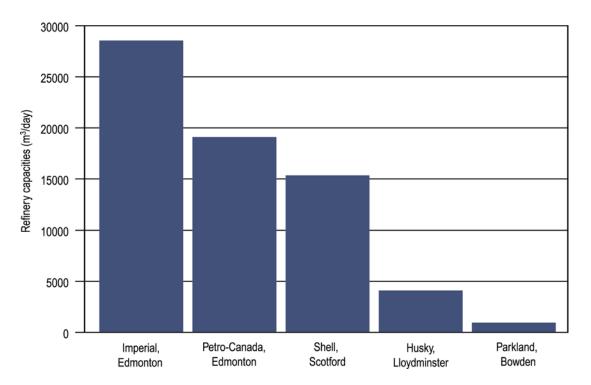



Figure 3.16. Capacity and location of Alberta refineries

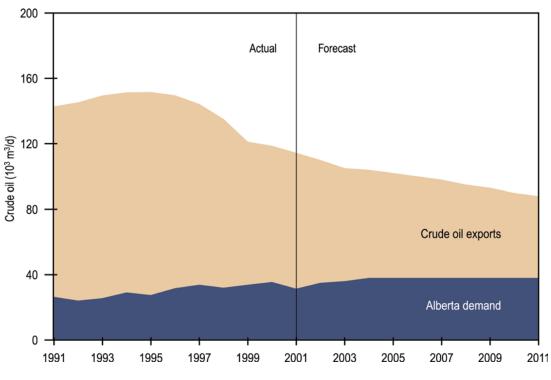



Figure 3.17. Alberta demand and exports of crude oil



Figure 3.18. Alberta supply of crude oil and equivalent

## 4 Natural Gas and Liquids

Raw natural gas consists mostly of methane and other hydrocarbon gases, but also contains impurities, such as hydrogen, nitrogen, carbon dioxide, and hydrogen sulphide. These impurities typically make up less than 10 per cent of raw natural gas. The estimated average composition of the hydrocarbon component after removal of impurities is approximately 91 per cent methane, 5 per cent ethane, and lesser amounts of propane, butanes, and pentanes plus. Ethane and higher paraffin hydrocarbon components are classified as natural gas liquids in this report.

## 4.1 Reserves of Marketable Gas

## 4.1.1 Provincial Summary

The EUB estimates the remaining established reserves of marketable gas in Alberta at December 31, 2001, to be 1141.4 billion cubic metres  $(10^9 \text{ m}^3)$ , having a thermal (heating value) energy content of 43.4 exajoules. This represents a net decrease of 25.3  $10^9 \text{ m}^3$  since December 31, 2000, which is the result of all reserves additions less marketed production that occurred during 2001. This 1141.4  $10^9 \text{ m}^3$  of marketable reserves excludes 43  $10^9 \text{ m}^3$  ethane and other natural gas liquids, which are present in gas leaving the field plant and subsequently recovered at reprocessing plants, as discussed in Section 4.1.7. Details of the changes in remaining reserves during 2001 are shown in Table 4.1. Annual reserves additions and production of natural gas since 1975 are shown in **Figure 4.1**. Over the years additions have fluctuated as a result of economic factors and reassessment of existing pools, while annual production has risen. **Figure 4.2** shows that Alberta's remaining established reserves of marketable gas has been in general decline since 1983.

|                                                              | 2001                                                   | 2000                           | Change                          |
|--------------------------------------------------------------|--------------------------------------------------------|--------------------------------|---------------------------------|
| Initial established reserves                                 | 4 179.9                                                | 4 063.5                        | +116.4                          |
| Cumulative production                                        | 2 995.5                                                | 2 852.8                        | +142.7ª<br>(147.7) <sup>c</sup> |
| Remaining established reserves<br>downstream of field plants | 1 184.4                                                | 1 210.7                        |                                 |
| Minus adjustment for liquids removed at straddle plants      | 43.0                                                   | 44.0                           |                                 |
| Remaining established reserves                               | 1 141.4<br>(40.5) <sup>b</sup><br>(1 161) <sup>c</sup> | 1 166.7<br>(41.4)⁵<br>(1 189)° | -25.3                           |

#### Table 4.1. Reserves of marketable gas (10<sup>9</sup> m<sup>3</sup>)

<sup>a</sup> May differ slightly from actual 2001 production.

<sup>b</sup> Imperial equivalent in trillions of cubic feet at 14.65 pounds per square inch absolute and 60°F.

 $^{\circ}$  On basis of 37.4 MJ/m<sup>3</sup> in 10 $^{9}$  m<sup>3</sup>.

At year-end 2001, natural gas reserves were assigned to 29 061 pools in the province. Of these, 7152 pools have never been placed on production and had aggregate initial established reserves of marketable gas of  $123 \ 10^9 \ m^3$ , or about 10 per cent of the province's remaining established reserves. This is significantly less than in 1994, when approximately 30 per cent of the province's reserves were attributed to nonproducing

pools. This decrease resulted primarily from the deletion of reserves from those pools that were abandoned or deemed uneconomic and to a lesser extent the placement of some of these pools on production.

## 4.1.2 Growth of Marketable Gas Reserves

Initial established reserves increased by 116.4  $10^9$  m<sup>3</sup> from year-end 2000, which is 26.3  $10^9$  m<sup>3</sup>, or 18 per cent, less than Alberta's annual production of 142.7  $10^9$  m<sup>3</sup>. This increase includes the addition of 62.5  $10^9$  m<sup>3</sup> attributed to new pools booked in 2001, development of existing pools, which added another 32.4  $10^9$  m<sup>3</sup>, and net reassessment of 21.5  $10^9$  m<sup>3</sup>. Therefore, drilling alone added a total of 94.9  $10^9$  m<sup>3</sup>, replacing 67 per cent of Alberta's 2001 annual production of marketed gas. **Figure 4.3** depicts the growth of marketable gas reserves for 2001 by Petroleum Services Association of Canada (PSAC) areas and shows that 52.6 per cent of the annual growth occurred in Area 2 (Western Plains).

The addition of 21.5  $10^9$  m<sup>3</sup> from reassessments resulted from the review of some 4000 gas pools by EUB staff, which yielded positive reassessments totalling 112  $10^9$  m<sup>3</sup> and negative reassessments totalling 90.5  $10^9$  m<sup>3</sup>. A positive reassessment of 20  $10^9$  m<sup>3</sup> resulted from recognition of some 665 previously unbooked producing gas wells drilled prior to 2000. During the year, EUB staff reviewed some 1500 single well pools with a remaining life of over 50 years. This resulted in a downward revision of 27.0  $10^9$  m<sup>3</sup> due to reassessment of in-place gas reserves and reduction of drainage area assigned to these wells. Pools that had significant reserve changes are listed in Table 4.2. Of particular interest are a number of new pools in the Western Plains region, which have added significant reserves to this area during 2001. Four of these pools, the Cordel Turner Valley L and Lovett River Rundle F, G, and J Pools, which are deep, high-pressured pools with excellent deliverability, together added new reserves of 6.9  $10^9$  m<sup>3</sup>.

### 4.1.3 Distribution of Natural Gas Reserves by Pool Size

The distribution of marketable gas reserves by pool size is shown in Table 4.3. For the purposes of this table, commingled pools are considered as one and the southeastern Alberta Gas System (MU) is considered on a field basis. The data shows that pools with reserves of  $30 \ 10^6 \ m^3$  or less, while representing 60 per cent of all pools, contain only 9 percent of the remaining marketable reserves. Similarly, the largest one per cent of pools contain 34 per cent of the remaining reserves. **Figure 4.4** shows natural gas pool sizes by discovery year since 1950 and illustrates that the majority of pools drilled since the mid-1970s were pools with 30  $10^6 \ m^3$  or less of initial established reserves.

## 4.1.4 Geological Distribution of Reserves

The distribution of reserves by geological period and formation is shown in Table 4.4 and graphically in **Figure 4.5**. The Upper and Lower Cretaceous period contains some 65.2 per cent of the province's remaining established reserves. The formations containing the largest reserves of natural gas are the Lower Cretaceous Mannville, with 34.8 per cent, the Upper Cretaceous Milk River and Medicine Hat, with 11.4 per cent, and the Mississippian Rundle, with 9 per cent of the province's remaining reserves.

|                                                     |                        | tablished                    |                                            |
|-----------------------------------------------------|------------------------|------------------------------|--------------------------------------------|
| Pool                                                | <u>reserve</u><br>2001 | <u>es (10º m³)</u><br>Change | Main reasons for change                    |
| Ansell Cardiun G                                    | 6 953                  | +1 853                       | Pool development                           |
| Ardenode Belly River O                              | 406                    | +406                         | New pool                                   |
| Bashaw Edmonton & Belly<br>River MU #1              | 2 698                  | +431                         | Pool development                           |
| Benjamin Rundle O                                   | 498                    | +498                         | New pool                                   |
| Benjamin Rundle A & B                               | 3 452                  | +1 412                       | Re-evaluation of initial volume in-place   |
| Boyer Bluesky A and Gething A & M                   | 12 160                 | +591                         | Re-evaluation of initial volume in-place   |
| Brazeau River Nisku CC                              | 474                    | +474                         | New pool                                   |
| Cordel Turner Valley L                              | 3 157                  | +3 157                       | New pool                                   |
| Drumheller Mannville F                              | 20                     | -336                         | Re-evaluation of initial volume in-place   |
| Elmworth Falher F                                   | 94                     | -336                         | Reserves set at production, pool abandoned |
| Eyremore Southeastern Alberta<br>Gas System (MU)    | 1 041                  | +921                         | Pool development                           |
| Ferrier Ellerslie V, Y & AA and<br>Rock Creek F & H | 1 534                  | +785                         | Re-evaluation of initial volume in-place   |
| Godwin Wabamun B                                    | 20                     | -384                         | Reserves set at production, pool abandoned |
| Gordondale Doig A                                   | 194                    | -481                         | Re-evaluation of initial volume in-place   |
| Hamburg Slave Point I                               | 273                    | -491                         | Reserves set at production, pool abandoned |
| Hamburg Slave Point Y                               | 431                    | +431                         | New pool                                   |
| Hamburg Slave Point Z                               | 92                     | +516                         | Re-evaluation of initial volume in-place   |
| Kaybob South Gething P                              | 1 812                  | +402                         | Pool development                           |
| Knopcik Doig B                                      | 238                    | -1 047                       | Re-evaluation of initial volume in-place   |
| Lambert Viking A                                    | 521                    | +521                         | New pool                                   |
| Lambert D-3 A                                       | 815                    | -543                         | Re-evaluation of initial volume in-place   |
| Lanaway D-3 C                                       | 24                     | -520                         | Re-evaluation of initial volume in-place   |
| Lathom Southeastern Alberta                         | 799                    | +423                         | Pool development                           |
| Gas System (MU)                                     |                        |                              | (continu                                   |

#### Table 4.2. Major natural gas reserve changes, 2001

(continued)

Table 4.2. Major natural gas reserve changes, 2001 (concluded)

|                                                             |        | tablished<br>s (10 <sup>6</sup> m <sup>3</sup> ) |                                                              |  |  |
|-------------------------------------------------------------|--------|--------------------------------------------------|--------------------------------------------------------------|--|--|
| Pool                                                        | 2001   | Change                                           | Main reasons for change                                      |  |  |
| Leismer Mannville MU #1                                     | 20 056 | +1 106                                           | Re-evaluation of initial volume in-place and recovery factor |  |  |
| Lovett River Rundle F                                       | 1 741  | +1 741                                           | New pool                                                     |  |  |
| Lovett River Rundle G                                       | 494    | +494                                             | New pool                                                     |  |  |
| Lovett River Rundle J                                       | 1 544  | +1 544                                           | New pool                                                     |  |  |
| Majorville Upper Mannville F                                | 116    | -482                                             | Reserves set at production, pool abandoned                   |  |  |
| Minnehik-Buck Lake Pekisko A                                | 22 770 | +1 170                                           | Re-evaluation of initial volume in-place                     |  |  |
| Peppers Leduc A                                             | 859    | +859                                             | New pool                                                     |  |  |
| Pembina Cardium Z and Ellerslie II                          | 634    | -1 041                                           | Re-evaluation of initial volume in-place and recovery factor |  |  |
| Pembina Nisku BB                                            | 83     | -703                                             | Re-evaluation of initial volume in-place                     |  |  |
| Pine Creek Bluesky A, Gething A,<br>D, E, & F and Cardium A | 4 910  | +1 092                                           | Re-evaluation of initial volume in-place                     |  |  |
| Shouldice Southeastern Alberta<br>Gas System (MU)           | 1 429  | +753                                             | Re-evaluation of initial volume in-place                     |  |  |
| Smith Coulee Second White<br>Specks J                       | 904    | +571                                             | Re-evaluation of initial volume in-place                     |  |  |
| Smokey Cardium B                                            | 533    | +533                                             | New pool                                                     |  |  |
| Smokey Cardium C                                            | 386    | +386                                             | New pool                                                     |  |  |
| Stolberg Rundle H                                           | 711    | -1 290                                           | Re-evaluation of initial volume in-place and recovery factor |  |  |
| Sturgeon Lake South Triassic F                              | 85     | -386                                             | Re-evaluation of initial volume in-place                     |  |  |
| Wapiti Falher A-10                                          | 409    | +409                                             | New pool                                                     |  |  |
| Wildcat Hills Viking-Blairmore E                            | 590    | -525                                             | Re-evaluation of initial volume in-place                     |  |  |
| Wildhay Cardium A                                           | 426    | +426                                             | New pool                                                     |  |  |
| Wild River Leduc G                                          | 419    | +419                                             | New pool                                                     |  |  |
| Wintering Hills Southeastern Alberta<br>Gas System (MU)     | 4 262  | -679                                             | Re-evaluation of initial volume in-place and recovery factor |  |  |
| Wolverine Bluesky A &<br>Gething-Wabamun A                  | 1 406  | -1 121                                           | Re-evaluation of initial volume in-place                     |  |  |

| Reserve range                     | Poo    | ols       | Initial esta<br>marketab       | ablished<br>le reserves | Remaining established<br>marketable reserves |     |
|-----------------------------------|--------|-----------|--------------------------------|-------------------------|----------------------------------------------|-----|
| (10 <sup>6</sup> m <sup>3</sup> ) | #      | %         | 10 <sup>9</sup> m <sup>3</sup> | %                       | 10 <sup>9</sup> m <sup>3</sup>               | %   |
| 1500+                             | 323    | 1         | 2 313                          | 55                      | 397                                          | 34  |
| 300-1499                          | 1 346  | 4         | 784                            | 19                      | 249                                          | 21  |
| 100-299                           | 2 955  | 10        | 494                            | 12                      | 222                                          | 19  |
| 31-100                            | 7 338  | 25        | 403                            | 10                      | 215                                          | 18  |
| Less than 30                      | 18 123 | <u>60</u> | 186                            | 4                       | 102                                          | 9   |
| Total                             | 29 061 | 100       | 4 180                          | 100                     | 1 184ª                                       | 100 |

<sup>a</sup> Reserves estimated at field plants.

## 4.1.5 Reserves of Natural Gas Containing Hydrogen Sulphide

Natural gas that contains greater than 0.01 per cent hydrogen sulphide ( $H_2S$ ) is referred to as sour in this report. As of December 31, 2001, sour gas accounts for some 22.9 per cent (271 10<sup>9</sup> m<sup>3</sup>) of the province's total remaining established reserves and about 28 per cent of natural gas marketed in 2001. The average  $H_2S$  concentration of initial producible reserves of sour gas in the province at year-end 2001 is 9.3 per cent.

The distribution of reserves for sweet and sour gas listed in Table 4.5 shows that 204  $10^9$  m<sup>3</sup>, or approximately 75 per cent, of remaining sour gas reserves occurs in nonassociated pools. **Figure 4.6** shows the remaining marketable reserves of sweet and sour gas since 1984 and indicates that the proportion of sour gas reserves has remained fairly constant at about 25 per cent of the total. The distribution of sour gas reserves by H<sub>2</sub>S content is shown in Table 4.6. This table also shows that 59  $10^9$  m<sup>3</sup>, or 21 per cent, of sour gas contains H<sub>2</sub>S concentrations greater than 10 per cent.

## 4.1.6 Reserves of Retrograde Condensate Pools

Reserves of major retrograde condensate pools are tabulated both on energy content and on a volumetric basis. The initial energy in-place, recovery factor, and surface loss factor (both on an energy basis), as well as the initial marketable energy for each pool, are listed in Appendix 2-1. The table also lists raw- and marketable-gas heating values used to convert from a volumetric to an energy basis. The volumetric reserves of these pools are included in the Gas Reserves and Basic Data table, which is available on CD.

## 4.1.7 Reserves Accounting Methods

The EUB books remaining marketable gas reserves on a pool-by-pool basis initially on volumetric determination of in-place reserves and application of recovery efficiency and surface loss. Subsequent reassessment of reserves is made using additional geological, material balance, and production decline information. Based on the gas analysis for each pool, a surface loss is estimated using an algorithm that reflects expected recovery of liquids at field plants, as shown in **Figure 4.7**. A minimum 5 per cent is added to account for loss due to lease fuel (4 per cent) and flaring. Reserves of individual pools on the EUB's gas reserves database therefore reflect expected recovery after processing at field plants. Additional liquids contained in the gas stream leaving the field plants are extracted downstream at reprocessing or straddle plants. As the removal of these liquids cannot be tracked back to individual pools, a gross adjustment for these liquids is made to arrive at the estimate for remaining reserves of marketable gas for the province. These reserves therefore represent the volume and average heating content of gas available for sale after removal of liquids from both field and straddle plants.

|                           | <u>Raw gas</u>                    | Marketak                          |                                   | Raw gas            | Marketa                |                       |
|---------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------|------------------------|-----------------------|
|                           | Initial<br>volume                 | Initial<br>established            | Remaining established             | Initial<br>volume  | Initial<br>established | Remaining established |
|                           | in-place                          | reserves                          | reserves                          | in-place           | reserves               | reserves              |
| Geological period         | (10 <sup>9</sup> m <sup>3</sup> ) | (10 <sup>9</sup> m <sup>3</sup> ) | (10 <sup>9</sup> m <sup>3</sup> ) | (%)                | (%)                    | (%)                   |
| Upper Cretaceous          |                                   |                                   |                                   |                    |                        |                       |
| Belly River               | 184                               | 111                               | 47                                | 2.6                | 2.7                    | 4.0                   |
| Milk River & Med Hat      | 566                               | 367                               | 134                               | 7.9                | 8.8                    | 11.4                  |
| Cardium                   | 412                               | 84                                | 40                                | 5.8                | 2.0                    | 3.3                   |
| Second White Specks       | 12                                | 8                                 | 5                                 | 0.2                | 0.1                    | 0.4                   |
| Other                     |                                   | 78                                | 19                                |                    |                        |                       |
| Subtotal                  | <u>144</u><br>1 318               | <u>78</u><br>648                  | <u>19</u><br>245                  | <u>2.0</u><br>18.5 | <u>1.9</u><br>15.5     | <u>1.6</u><br>20.7    |
| _ower Cretaceous          |                                   |                                   |                                   |                    |                        |                       |
| Viking                    | 382                               | 268                               | 61                                | 5.4                | 6.4                    | 5.2                   |
| Basal Colorado            | 42                                | 34                                | 3                                 | 0.6                | 0.8                    | 0.2                   |
| Mannville                 | 1 964                             | 1 279                             | 413                               | 28.0               | 30.6                   | 34.8                  |
|                           | 241                               |                                   |                                   |                    |                        |                       |
| Other                     |                                   | <u>162</u>                        | <u>51</u>                         | 3.4                | <u>3.9</u><br>41.7     | <u>4.3</u>            |
| Subtotal                  | 2 629                             | 1 743                             | 528                               | 37.0               | 41.7                   | 44.5                  |
| lurassic                  | 05                                | 04                                | 07                                |                    | 4 5                    | 0.0                   |
| Jurassic                  | 95                                | 61                                | 27                                | 1.4                | 1.5                    | 2.3                   |
| Other                     | <u>52</u><br>147                  | <u>34</u><br>95                   | <u>10</u><br>37                   | <u>0.7</u><br>2.1  | <u>0.8</u><br>2.3      | <u>0.8</u><br>3.1     |
| Subtotal                  | 147                               | 95                                | 37                                | 2.1                | 2.3                    | 3.1                   |
| Friassic                  |                                   |                                   |                                   |                    |                        |                       |
| Triassic                  | 193                               | 119                               | 62                                | 2.7                | 2.8                    | 5.3                   |
| Other                     | <u>27</u>                         | <u>19</u>                         | 4                                 | 0.4                | 0.5                    | <u>0.3</u>            |
| Subtotal                  | <u>27</u><br>220                  | <u>19</u><br>138                  | <u>4</u><br>66                    | <u>0.4</u><br>3.1  | <u>0.5</u><br>3.3      | <u>0.3</u><br>5.6     |
| Permian                   |                                   |                                   |                                   |                    |                        |                       |
| Belloy                    | 9                                 | 6                                 | 3                                 | 0.0                | 0.1                    | 0.3                   |
| Subtotal                  | <u>9</u><br>9                     | <u>6</u><br>6                     | <u>3</u><br>3                     | <u>0.0</u><br>0.1  | <u>0.1</u><br>0.1      | <u>0.3</u><br>0.3     |
|                           | 0                                 | Ū                                 | Ū                                 | 0.1                | 0.1                    | 0.0                   |
| Mississippian             | 000                               | 570                               | 400                               | 10 7               | 40.7                   | 0.0                   |
| Rundle                    | 908                               | 572                               | 106                               | 12.7               | 13.7                   | 9.0                   |
| Other                     | <u>306</u>                        | <u>204</u>                        | <u>36</u>                         | <u>4.3</u>         | <u>4.9</u>             | <u>3.0</u>            |
| Subtotal                  | 1 214                             | 776                               | 142                               | 17.0               | 18.6                   | 12.0                  |
| Jpper Devonian            |                                   |                                   |                                   |                    |                        |                       |
| Wabamun                   | 237                               | 113                               | 28                                | 3.3                | 2.7                    | 2.4                   |
| Nisku                     | 121                               | 57                                | 20                                | 1.7                | 1.4                    | 1.7                   |
| Leduc                     | 473                               | 244                               | 29                                | 6.7                | 5.9                    | 2.4                   |
| Beaverhill Lake           | 480                               | 214                               | 47                                | 6.7                | 5.1                    | 4.0                   |
| Other                     | <u>158</u>                        | <u>94</u>                         | <u>12</u>                         | <u>2.2</u>         | <u>2.2</u>             | <u>1.0</u>            |
| Subtotal                  | 1 469                             | 722                               | 136                               | 20.6               | 17.3                   | 11.5                  |
| Middle Devonian           |                                   |                                   |                                   |                    |                        |                       |
| Sulphur Point             | 13                                | 8                                 | 4                                 | 0.2                | 0.2                    | 0.3                   |
| Muskeg                    | 5                                 | 8<br>2                            | 1                                 | 0.0                | 0.1                    | 0.0                   |
| Keg River                 | 62                                | 26                                | 16                                | 0.8                | 0.6                    | 1.4                   |
| Other                     | <u>33</u>                         |                                   |                                   | <u>0.5</u>         |                        |                       |
| Subtotal                  | 113                               | <u>14</u><br>50                   | <u>4</u><br>25                    | <u>0.0</u><br>1.6  | <u>0.3</u><br>1.2      | <u>0.3</u><br>2.1     |
| Confidential <sup>a</sup> |                                   |                                   |                                   |                    |                        |                       |
| Subtotal                  | 3                                 | 2                                 | 2                                 | 0.0                | 0.0                    | 0.2                   |
|                           |                                   |                                   |                                   |                    |                        |                       |
| Total                     | 7 122<br>(253)ª                   | 4 180<br>(148)ª                   | 1 184<br>(42)ª                    | 100.00             | 100.00                 | 100.00                |

Table 4.4. Geological distribution of established natural gas reserves, 2001

<sup>a</sup> Imperial equivalent in trillions of cubic feet at 14.65 pounds per square inch absolute and 60°F. **Table 4.5. Distribution of sweet and sour gas reserves, 2001 (10<sup>6</sup> m<sup>3</sup>)** 

|                        | Raw gas                       |                       | Marketable g                       | as                              |                                      |  |  |
|------------------------|-------------------------------|-----------------------|------------------------------------|---------------------------------|--------------------------------------|--|--|
| Type of gas            | Initial<br>volume<br>in-place | Initial<br>producible | Initial<br>established<br>reserves | Net<br>cumulative<br>production | Remaining<br>established<br>reserves |  |  |
| Sweet                  |                               |                       |                                    |                                 |                                      |  |  |
| Associated<br>Solution | 475<br>770                    | $379 \\ 287 $         | 537                                | 386                             | 151                                  |  |  |
| Nonassociated          | 3 410                         | <u>2 454</u>          | <u>2 277</u>                       | <u>1 514</u>                    | <u>763</u>                           |  |  |
| Subtotal               | 4 655                         | 3 120                 | 2 813                              | 1 900                           | 914                                  |  |  |
| Sour                   |                               |                       |                                    |                                 |                                      |  |  |
| Associated<br>Solution | 433<br>302                    | 351<br>173            | 376                                | 308                             | 68                                   |  |  |
| Nonassociated          | 1 732                         | <u>1 356</u>          | 991                                | 787                             | <u>204</u>                           |  |  |
| Subtotal               | 2 467                         | 1 880                 | 1 367                              | 1 095                           | 271                                  |  |  |
| Total                  | 7 122<br>(253)ª               | 5 000<br>(178)ª       | 4 180<br>(148)ª                    | 2 995<br>(106)ª                 | 1 184 <sup>ь</sup><br>(42)ª          |  |  |
| Sour gas % of total    | 34.6                          | 37.6                  | 32.7                               | 36.5                            | 22.9                                 |  |  |

<sup>a</sup> Imperial equivalent in billions of cubic feet at 14.65 pounds per square inch absolute and 60°F.

<sup>b</sup> Reserves estimated at field plants.

|                             | Initial establi | shed_reserves (10 <sup>9</sup> m <sup>3</sup> ) | Remaining e  | stablished reserves (* | l 0º m³) |     |
|-----------------------------|-----------------|-------------------------------------------------|--------------|------------------------|----------|-----|
| H <sub>2</sub> S content in | Associated &    | x                                               | Associated 8 | x                      |          |     |
| raw gas                     | solution        | Nonassociated                                   | Solution     | Nonassociated          | Total    | %   |
| Less than 2                 | 247             | 318                                             | 46           | 75                     | 121      | 45  |
| 2.00-9.99                   | 91              | 354                                             | 13           | 78                     | 91       | 34  |
| 10.00-19.99                 | 27              | 180                                             | 6            | 24                     | 30       | 11  |
| 20.00-29.99                 | 11              | 49                                              | 2            | 15                     | 17       | 6   |
| Over 30                     | 0               | 90                                              | 0            | 12                     | 12       | 4   |
| Total                       | 376             | 991                                             | 67           | 204                    | 271      | 100 |
| Per cent                    | 28              | 72                                              | 25           | 75                     |          |     |

#### Table 4.6. Distribution of sour gas reserves by H<sub>2</sub>S content. 2001

The remaining established reserves of natural gas discussed in Section 4.1.1 excludes liquids expected to be removed from the gas stream. It is expected that some 43  $10^9$  m<sup>3</sup> will be extracted at straddle plants, thereby reducing the remaining established reserves of marketable gas estimated at field plant from 1184.4  $10^9$  m<sup>3</sup> to 1141.4 $10^9$  m<sup>3</sup> and the thermal energy content from 47.7 to 43.4 exajoules. This 1141.4  $10^9$  m<sup>3</sup> of marketable gas is composed of approximately 98 per cent methane and represents the volume and average heating content of marketable gas available after all processing.

**Figure 4.7** also shows the average percentage of remaining established reserves of each hydrocarbon component expected to be extracted at field and straddle plants. For example, of the total ethane content in raw natural gas, about 20 per cent is expected to be removed at field plants and an additional 45 per cent at straddle plants. Therefore, the EUB

estimates extractable reserves of liquid ethane that will be extracted based on 65 per cent of the total raw ethane gas reserves. The remaining 35 per cent of the ethane is left in the marketable gas and sold for its heating value. This reserve is booked as part of the marketable gas and represents a potential source for future ethane supply.

Reserves of NGLs are discussed in more detail in Section 4.2 of this report.

## 4.1.8 Multifield Pools

Pools that extend over more than one field are classified as multifield pools and are listed in Appendix 2-2. Each multifield pool shows the individual initial established reserves assigned to each field and the total initial established reserves for the multifield pool.

## 4.1.9 Coalbed Methane Reserves

There has been a significant resurgence in the interest in coalbed methane (CBM) development in Alberta over the past year. This interest has led to a number of pilot projects commencing in various parts of the province, resulting in initial attempts to produce this resource. However, while the EUB views CBM to be a significant resource for the province, reserves cannot be established until actual production data become available to prove its economic viability. Therefore, it is not possible to conduct a reasonable assessment of CBM reserves at this time, since such data are only now becoming available. It is anticipated that sufficient data may become available to conduct a preliminary assessment of CBM reserves for certain parts of the province for next year-end.

## 4.1.10 Ultimate Potential

In 1992 the EUB (then the ERCB) issued *ERCB 92-A*,<sup>1</sup> which presented the results of its detailed review of Alberta's ultimate potential of marketable gas reserves. This review took into consideration geological prospects, technology, and economics. The EUB adopted an estimate of 5600  $10^9$  m<sup>3</sup> (200 trillion cubic feet) as Alberta's ultimate potential for marketable gas. To bring this estimate up to date, the EUB has undertaken an ultimate potential study targeted for completion in 2003. **Figure 4.8** shows the historical and forecast growth in initial established reserves of marketable gas.

**Figure 4.9** plots production and remaining established reserves of marketable gas compared to the 1992 estimate of ultimate potential.

Table 4.7 provides details on the ultimate potential of marketable gas, with all values converted to the standard heating value of  $37.4 \text{ MJ/m}^3$ . It shows initial established reserves of  $4287 \ 10^9 \text{ m}^3$  (at the field gate), or that 76.6 per cent of the ultimate potential of 5600  $10^9 \text{ m}^3$  has been discovered as of year-end 2001. This leaves  $1313 \ 10^9 \text{ m}^3$ , or 23.4 per cent, of marketable gas yet to be discovered. Cumulative production of  $3074 \ 10^9 \text{ m}^3$  at year-end 2001 represents 54.9 per cent of the ultimate potential, leaving 2526  $10^9 \text{ m}^3$  or 45.1 per cent available for future use.

<sup>&</sup>lt;sup>1</sup> Alberta Energy and Utilities Board, 1992, *Ultimate Potential and Supply of Natural Gas in Alberta, Report 92-A* (Calgary).

| Yet-to-be-established        | 5 600        |
|------------------------------|--------------|
| Ultimate potential           | <u>4 287</u> |
| Minus initial established    | 1 313        |
| Remaining established        | 4 287        |
| Initial established          | <u>3 074</u> |
| Minus cumulative production  | 1 213        |
| Remaining ultimate potential | 1 313        |
| Yet-to-be-established        | <u>1 213</u> |
| Plus remaining established   | 2 526        |

#### Table 4.7. Remaining ultimate potential of marketable gas, 2001 (10<sup>9</sup> m<sup>3</sup> at 37.4 MJ/m<sup>3</sup>)

The regional distribution of remaining reserves and yet-to-be-established reserves is shown by PSAC area in **Figure 4.10**. It shows that the Western Plains contains about 40 per cent of the remaining established reserves and 50 per cent of the yet-to-be-established reserves. Although the majority of gas wells are being drilled in the Southern Plains (Areas 3, 4, and 5) and the Northern Plains (Areas 6, 7, and 8), it shows that Alberta natural gas supplies will depend on significant reserves being discovered in the Western Plains.

## 4.2 Natural Gas Liquids

The EUB estimates remaining reserves of natural gas liquids (NGLs) that are expected to be recovered from raw natural gas based on existing technology and market conditions. It also estimates the liquids reserves that are not removed from natural gas. The latter is included as part of the province's marketable gas reserves discussed in Section 4.1. The EUB's projections on the overall recovery of each NGL component are explained in Section 4.1.7 and shown graphically in **Figure 4.7**. Estimates of the remaining established reserves of extractable NGLs are summarized in Tables 4.8 and 4.9. **Figure 4.11** shows remaining established reserves of extractable NGLs compared to 2001 production.

|                           | 2001         | 2000         | Change                  |
|---------------------------|--------------|--------------|-------------------------|
|                           | -            |              |                         |
| Cumulative net production |              |              |                         |
| Ethane                    | 169.0        | 156.3        | +12.7                   |
| Propane                   | 206.3        | 197.7        | +8.6 <sup>b</sup>       |
| Butanes                   | 118.7        | 113.8        | +4.9 <sup>b</sup>       |
| Pentanes plus             | <u>278.7</u> | <u>269.9</u> | <u>+8.8<sup>b</sup></u> |
| Total                     | 772.7        | 737.7        | +35.0                   |
| Remaining (expected to be | 9            |              |                         |
| extracted)                |              |              |                         |
| Ethane                    | 173.7        | 176.8        | -3.1                    |
| Propane                   | 84.1         | 85.5         | -1.4                    |
| Butanes                   | 49.9         | 50.4         | -0.5                    |
| Pentanes plus             | <u>77.5</u>  | <u>80.7</u>  | <u>-3.2</u>             |
| Total                     | 385.2        | 393.4        | -8.2                    |

# Table 4.8. Established reserves and production of extractable NGLs as of December 31, 2001 (10<sup>6</sup> m<sup>3</sup> liquid)

<sup>a</sup> Net production means production minus those volumes returned to the formation or injected to enhance the recovery of oil.

<sup>b</sup> May differ slightly with actual production as reported in Statistical Series (ST) 3: Oil and Gas Monthly Statistics.

|                                              | Ethane | Propane | Butanes | Pentanes plus | Total |
|----------------------------------------------|--------|---------|---------|---------------|-------|
| Total remaining reserves                     | 252.1  | 98.9    | 55.3    | 77.5          | 483.8 |
| Liquids expected to remain in marketable gas | 78.4   | 14.8    | 5.4     | 0             | 98.6  |
| Remaining established recoverable from       |        |         |         |               |       |
| Field plants                                 | 44.8   | 49.2    | 32.5    | 69.2          | 195.7 |
| Straddle plants                              | 100.9  | 34.5    | 16.3    | 7.7           | 159.4 |
| Solvent floods                               | 28.0   | 0.4     | 1.1     | 0.6           | 30.1  |
| Total                                        | 173.7  | 84.1    | 49.9    | 77.5          | 385.2 |

#### Table 4.9. Reserves of NGLs as of December 31, 2001 (10<sup>6</sup> m<sup>3</sup>)

### 4.2.1 Ethane

As of December 31 2001, the EUB estimates remaining established reserves of extractable ethane to be 173.7  $10^6$  m<sup>3</sup> in liquefied form. This estimate includes 28  $10^6$  m<sup>3</sup> of recoverable reserves from the ethane component of solvent injected into several pools throughout the province to enhance oil recovery. As shown in Table 4.9, there is an additional 78.4  $10^6$  m<sup>3</sup> (liquid) of ethane estimated to remain in the marketable gas stream and available for potential recovery. This yields a total remaining ethane reserve of 252.1  $10^6$  m<sup>3</sup>.

During 2001, the extraction of specification ethane was  $12.7 \ 10^6 \ m^3$ , about the same as the  $12.8 \ 10^6 \ m^3$  produced in 2000. Although the EUB believes that ethane extraction at crude oil refineries and at plants producing synthetic crude oil might become viable in the future, it has not attempted to estimate the prospective reserves from those sources.

For individual gas pools, the ethane content of gas in Alberta falls within the range of 0.0025 to 0.20 mole per mole (mol/mol). As shown in Table 4.10, the volume-weighted average ethane content of all remaining gas was 0.052 mol/mol. This table lists ethane volumes recoverable from major fields and from solvent floods. These major fields contain 32.6 per cent ( $56.6 \ 10^6 \ m^3$ ) of the remaining established reserves with the Caroline and Pembina fields, accounting for 9 per cent of the total.

|                  | Ethane content | Remaining est<br>reserves of eth      |                                          |
|------------------|----------------|---------------------------------------|------------------------------------------|
| Fields           | (mol/mol)      | Gas (10 <sup>9</sup> m <sup>3</sup> ) | Liquid (10 <sup>6</sup> m <sup>3</sup> ) |
| Brazeau River    | 0.102          | 1.2                                   | 4.4                                      |
| Caroline         | 0.169          | 2.4                                   | 8.4                                      |
| Elmworth         | 0.062          | 1.0                                   | 3.5                                      |
| Ferrier          | 0.093          | 1.1                                   | 3.8                                      |
| Kaybob South     | 0.095          | 1.3                                   | 4.7                                      |
| Pembina          | 0.094          | 2.2                                   | 8.0                                      |
| Rainbow          | 0.116          | 1.3                                   | 4.4                                      |
| Ricinus          | 0.084          | 1.2                                   | 4.4                                      |
| Valhalla         | 0.076          | 1.0                                   | 3.5                                      |
| Wapiti           | 0.072          | 1.3                                   | 4.6                                      |
| Willesden Green  | 0.079          | 1.0                                   | 3.6                                      |
| Wizard Lake      | 0.152          | 1.0                                   | 3.3                                      |
| All other fields | 0.044          | 24.9                                  | 89.1                                     |
| Solvent floods   | -              | 8.0                                   | 28.0                                     |
| Total            | 0.052ª         | 48.9                                  | 173.7                                    |

 Table 4.10. Remaining ethane reserves in major fields as of December 31, 2001

<sup>a</sup> Volume weighted average

### 4.2.2 Other Natural Gas Liquids

As of December 31, 2001, the EUB estimates remaining extractable reserves of propane, butanes, and pentanes plus to be  $84.1 \ 10^6 \ m^3$ ,  $49.9 \ 10^6 \ m^3$ , and  $77.5 \ 10^6 \ m^3$  respectively. The overall changes in the reserves during the past year are shown in Table 4.8. The fields with the largest changes for 2001 are shown in Table 4.11.

| Field              | Remaining<br>established-2001 | Reserves change     | Main reason for change    |
|--------------------|-------------------------------|---------------------|---------------------------|
|                    |                               | itteetiitee entange | india l'oucon los chango  |
| Garrington         | 2.0                           | -1.4                | Re-evaluation of reserves |
| Farrier            | 2.5                           | +0.5                | Re-evaluation of reserves |
| Jumping Pound West | 2.8                           | +1.0                | Re-evaluation of reserves |
| Rainbow            | 4.2                           | -0.5                | Re-evaluation of reserves |
| Wapiti             | 0.9                           | -2.1                | Re-evaluation of reserves |

Table 4.11. Major NGL reserves (excluding ethane) changes, 2001 (106 m<sup>3</sup>)

Listed in Appendix 2-3 are propane, butanes, and pentanes plus reserves in fields containing major reserves of extractable liquids. These fields account for 53 per cent of the provincial total, with the Caroline and Pembina fields accounting for about 15 per cent of the total. The volumes recoverable at straddle plants are not included in the field totals but are shown separately at the end of the table. During 2001, propane and butanes recovery at crude oil refineries was 355 and 1157 thousand (10<sup>3</sup>) m<sup>3</sup> respectively.

#### 4.2.3 Ultimate Potential

The remaining ultimate potential for liquid ethane is considered to be those reserves that could reasonably be recovered as liquid from the remaining ultimate potential of natural gas. Historically, only a fraction of the ethane that could be extracted has been recovered. However, the recovery has increased over time to about 50 per cent due to increased market demand. The EUB estimates that 70 per cent of the remaining ultimate potential of ethane gas will be extracted. Based on remaining ultimate potential for ethane gas of 160 10<sup>9</sup> m<sup>3</sup>, the EUB estimates remaining ultimate potential of liquid ethane to be 398 10<sup>6</sup> m<sup>3</sup>. The other 30 per cent, or 48 10<sup>9</sup> m<sup>3</sup>, of ethane gas is expected to be sold for its heating value as part of marketable gas.

For liquid propane, butanes, and pentanes plus together, the remaining ultimate potential reserves are  $534 \ 10^6 \ m^3$ . This assumes that remaining ultimate potential as a percentage of ultimate potential is similar to that of marketable gas, which currently stands at 46 per cent.

## 4.3 Supply of and Demand for Natural Gas

## 4.3.1 Natural Gas Supply

Alberta produced 147.7 10<sup>9</sup> m<sup>3</sup> of marketable gas in 2001, an increase of 1 per cent over last year.<sup>2</sup> Growth in gas production has slowed in recent years, while demand has grown. Major factors affecting Alberta natural gas production include natural gas prices, drilling activity, the location of Alberta's reserves, and the production characteristics of today's wells.

High demand for Alberta natural gas has led to a considerable increase in the level of drilling in the province in the past few years. Producers are using strategies such as infill drilling to increase production levels. The number of successful natural gas wells drilled in Alberta from 1991 to 2001 is shown in **Figure 4.12**, along with the number of wells connected (placed on production) in each year. In 2001, some 9682 successful natural gas wells were drilled in the province, an increase of 17 per cent over 2000 levels. A large portion of recent natural gas drilling activity has taken place in southeastern Alberta, representing 52 per cent of all natural gas wells drilled in 2001.

The number of natural gas wells connected in a given year historically tends to follow natural gas well drilling activity, indicating that most natural gas wells are connected shortly after being drilled. However, in years 1991-2000, a much larger number of natural gas wells were connected than drilled. Alberta had a large inventory of nonassociated gas wells that had been drilled in previous years and were left shut in. Many of these wells were placed on production during the 1990s. The distribution of natural gas well connections and the initial maximum day production of the connected wells in the year 2001 are illustrated in **Figures 4.13** and **4.14** respectively.<sup>3</sup>

**Figure 4.15** illustrates historical gas production from gas wells by modified PSAC area. Production has increased slightly in most areas, most notably in Area 2 (Western Plains) and Area 3 (Southeastern Alberta). Gas production from oil wells has held fairly constant over the historical period.

The number of gas wells on production in Alberta from 1991 to 2001 is shown in **Figure 4.16**, along with the marketable gas production in each year. From 1991 to 1996 the annual growth in gas production was consistent with the annual increase in the number of gas producing wells. From 1996 forward, the number of producing gas wells increased dramatically year over year, while gas production slowed to average 1.6 per cent growth per year. By 2001, the total number of producing gas wells increased to 65 000, from 29 500 wells in 1991. The large number of gas wells placed on production in Southeastern Alberta, where production rates are low, was a key contributing factor behind this increase.

Average gas well productivities have been declining over time. As shown in **Figure 4.17**, about half the operating gas wells produce less than  $2 \ 10^3 \ m^3/d$ . In 2001, these 32 000 gas wells operated at an average rate of  $1.2 \ 10^3 \ m^3/d$  per well and produced less than 10 per cent of the total gas production. Only 9 per cent of the total gas wells produced over  $100 \ 10^3 \ m^3/d$ .

<sup>&</sup>lt;sup>2</sup> Marketable gas volumes are normalized to 37.4 megajoules (MJ) per m<sup>3</sup>.

<sup>&</sup>lt;sup>3</sup> The EUB has divided the province into 8 areas. This breakdown is a modified version of the PSAC areas, with PSAC Area 7 divided into Areas 7 and 8.

The historical raw gas production by drilling vintage in Alberta is presented in **Figure 4.18**. Generally, a surface loss factor of around 15 per cent can be applied to raw gas production to yield marketable gas production. The bottom band represents gas production from oil wells. Each band thereafter represents production from new gas well connections by year. The percentages shown on the right-hand side of the chart by each band represent the share of that band's production to the total production from gas wells in 2001. For example, 13 per cent of gas production in 2001 came from wells connected in that year. This figure shows that in 2001, only about 37 per cent of gas production came from gas wells drilled prior to 1995.

Declines in natural gas production from new gas well connections from 1991 to 1999 have been evaluated after the wells drilled in a given year complete a full year of production. Table 4.12 shows decline rates for gas wells connected from 1991 to 1999 with respect to the first, second, third, and fourth year of decline. More recently connected wells are exhibiting steeper declines in production in the first three years compared to wells connected in the early 1990s. However, by the fourth year of production the decline rates have not changed significantly over time. The decline rates tend to stabilize at some 17 per cent from the fourth year forward.

| Year wells<br>Connected | First-year<br>decline | Second-year<br>decline | Third-year<br>decline | Fourth-year<br>decline |
|-------------------------|-----------------------|------------------------|-----------------------|------------------------|
| 1991                    | 11                    | 19                     | 19                    | 17                     |
| 1992                    | 29                    | 23                     | 17                    | 19                     |
| 1993                    | 25                    | 17                     | 18                    | 16                     |
| 1994                    | 26                    | 23                     | 16                    | 15                     |
| 1995                    | 30                    | 25                     | 23                    | 19                     |
| 1996                    | 31                    | 27                     | 21                    | 18                     |
| 1997                    | 32                    | 28                     | 23                    |                        |
| 1998                    | 32                    | 28                     | -                     |                        |
| 1999                    | 34                    | -                      | -                     |                        |

Table 4.12. Production decline rates for new well connections (%)

New well connections today start producing at much lower rates than new wells placed on production in previous years. **Figure 4.19** shows the average initial productivities (peak rate) of new wells by connection year. Average initial productivities for new wells excluding Southeastern Alberta (Area 3) are also shown in the figure. This figure shows the impact that the low-productivity wells in Southeastern Alberta have on the provincial average.

Based on the projection of natural gas prices provided in Section 1.2 and current estimates of reserves, the EUB expects that the number of successful natural gas wells drilled in the province will hold steady for 2002 at 9500 and increase to 10 500 in 2003, with roughly half of the wells being drilled in Southeastern Alberta. By 2004, some 11 000 natural gas wells are forecast to be drilled annually, falling to 10 000 per year from 2006 onward. **Figure 4.20** illustrates the drilling forecast.

In projecting natural gas production, the EUB considered three components: expected production from existing gas wells, expected production from new gas well connections, and gas production from oil wells.

Based on observed performance, gas production from existing producing wells at yearend 2001 is assumed to decline by 17 per cent per year initially and move to 16 per cent by the second half of the forecast period.

To project production from new gas well connections, the EUB considered the following assumptions:

- The average initial productivity of new natural gas wells in Southeastern Alberta will be  $3 \ 10^3 \text{ m}^3/\text{d}$  in 2002 and will decrease to  $1.5 \ 10^3 \text{ m}^3/\text{d}$  by 2011.
- The average initial productivity of new natural gas wells in the rest of the province will be  $11 \ 10^3 \ m^3/d$  in 2002 and will decrease to  $9 \ 10^3 \ m^3/d$  by 2011.
- Production from new wells will decline at a rate of 32 per cent the first year, 28 per cent the second year, 22 per cent the third year, and 17 per cent in the fourth year and thereafter.

Gas production from oil wells was held constant at 2001 levels.

Based on current established and yet-to-be-established reserves and the assumptions described above, the EUB generated the forecast of natural gas production to 2011, as shown in **Figure 4.21**. The production of natural gas from conventional reserves is expected to increase slightly, from 147.7  $10^9$  m<sup>3</sup> in 2001 to 151.8  $10^9$  m<sup>3</sup> by 2003. Production levels are expected to decline to 133.8  $10^9$  m<sup>3</sup> by the end of the forecast period.

At current prices, companies are assessing the potential for coalbed methane production in Alberta, which may supplement conventional supply during the forecast period. However, due to uncertainty surrounding its potential, no allowance was made for coalbed methane production over the forecast period. Producers in Alberta are largely drilling for conventional gas strikes in areas where outcome is more certain. By 2011, if natural gas production rates follow the projection, Alberta will have recovered some 81 per cent of the 5600  $10^9$  m<sup>3</sup> of ultimate potential. This ultimate potential is under review and is targeted for completion in 2003.

## 4.3.2 Natural Gas Storage

Commercial natural gas storage is used by the natural gas industry to provide short-term deliverability and is not used in the EUB's long-term production projection. Several pools in the province are being used for commercial natural gas storage to provide an efficient means of balancing supply with fluctuating market demand. Commercial natural gas storage is defined as the storage of third-party nonnative gas and allows marketers to take advantage of seasonal price differences, effect custody transfers, and maintain reliability of supply. Natural gas from many sources may be stored at these facilities under fee-for-service, buy-sell, or other contractual arrangements.

In the summer season, when demand is lower, natural gas is injected into these pools. As the winter approaches, the demand for natural gas supply rises, injection slows or ends, and production generally begins at high withdrawal rates. **Figure 4.22** illustrates the natural gas injection into and withdrawal rates from the storage facilities in the province. Commercial natural gas storage pools, along with the operators and storage information, are listed in Table 4.13.

| Pool                                                        | Operator                          | Storage<br>capacity<br>(10 <sup>6</sup> m <sup>3</sup> ) | Maximum<br>deliverability<br>(10 <sup>3</sup> m <sup>3</sup> /d) | Injection<br>volumes,<br>2001<br>(10 <sup>6</sup> m <sup>3</sup> ) | Withdrawal<br>volumes,<br>2001<br>(10 <sup>6</sup> m <sup>3</sup> ) |
|-------------------------------------------------------------|-----------------------------------|----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| Carbon Glauconitic                                          | ATCO                              | 1 127                                                    | 15 500                                                           | 1 071                                                              | 736                                                                 |
| Crossfield East Elkton A<br>& D                             | Amoco Canada<br>Petroleum Limited | 1 197                                                    | 14 790                                                           | 1 480                                                              | 452                                                                 |
| Hussar Glauconitic R                                        | Husky Oil<br>Operations Ltd.      | 423                                                      | 5 635                                                            | 390                                                                | 139                                                                 |
| McLeod Cardium A                                            | Texaco Canada<br>Petroleum Inc.   | 986                                                      | 18 310                                                           | 774                                                                | 350                                                                 |
| Sinclair Gething D                                          | Alberta Energy<br>Company Ltd.    | 282                                                      | 5 634                                                            | 250                                                                | 196                                                                 |
| Suffield Upper<br>Mannville I & K, and<br>Bow Island N & BB | Alberta Energy<br>Company Ltd.    | 2 395                                                    | 50 715                                                           | 1 995                                                              | 1 380                                                               |

 Table 4.13. Commercial natural gas storage pools as of December 31, 2001

As **Figure 4.22** illustrates, 2001 natural gas injections exceeded withdrawals by 2707  $10^6 \text{ m}^3$  (2839  $10^6 \text{ m}^3$  at 37.4 MJ/m<sup>3</sup>). This volume represents 1.9 per cent of marketable gas production in the province that year. The large decrease in withdrawal volumes resulted from unusually warm weather conditions, soft natural gas demand, and record natural gas prices in the winter months.

Marketable gas production volumes determined for 2001 were adjusted to account for the imbalance in injection volumes to withdrawal volumes to these storage pools. For the purpose of projecting future natural gas production, the EUB assumes that injections and withdrawals are balanced for each year during the forecast period.

### 4.3.3 Alberta Natural Gas Demand

The EUB reviews the projected demand for Alberta natural gas on a periodic basis. The focus of these reviews is on intra-Alberta natural gas use, and a detailed analysis is undertaken of many factors, such as population, economic activity, and environmental issues, that influence natural gas consumption in the province. Forecasting demand for Alberta natural gas in markets outside the province is done on a less rigorous basis. For Canadian ex-Alberta markets, historical demand growth and published estimates of other organizations are used in developing the forecasts. Export markets are forecast based on export pipeline capacity available to serve such markets and the recent historical trends in meeting that demand.

With the official start-up of the Alliance pipeline in December 2000, Alberta will continue to have excess take-away capacity available for some time, depending on when new natural gas supplies are developed and how they are transported to market. The Alliance

pipeline has firm service capacity to move  $37.5 \ 10^6 \ m^3/d$  of rich natural gas from British Columbia and Alberta to the Chicago area, with physical capacity at some  $45 \ 10^6 \ m^3/d$ . Alliance is running close to physical capacity today, with 80 per cent of the natural gas sourced from Alberta.

**Figure 4.21** shows Alberta natural gas demand and production. Exports represent the difference between natural gas production and Alberta demand. In the year 2001, some 23 per cent of Alberta production was used domestically. The remainder was exported to other Canadian provinces and the United States.

The Gas Resources Preservation Act (first proclaimed in 1949) provides supply security for consumers in Alberta by "setting aside" large volumes of gas for their use before exports are permitted. The act requires that when a company proposes to remove gas from Alberta, it must apply to the EUB for a permit authorizing the removal. Exports of gas from Alberta are only permitted if the gas to be removed is surplus to the needs of Alberta's core consumers for the next 15 years. Core consumers are defined as Alberta residential, commercial, and institutional gas consumers who do not have alternative sustainable fuel sources.

By the end of forecast period, domestic demand will reach 45  $10^9$  m<sup>3</sup>, compared to 34  $10^9$  m<sup>3</sup> in 2001, representing 33 per cent of total production. **Figure 4.23** illustrates the breakdown of natural gas demand in Alberta by sector.

Residential gas requirements are expected to grow moderately over the forecast period at an average annual rate of 1.7 per cent. The key variables that impact residential gas demand are natural gas prices, population, the number of households, energy efficiencies, and the weather. Energy efficiency improvements prevent energy use per household from rising significantly. Commercial gas demand in Alberta has fluctuated over the past 10 years, but has shown an overall decline rate of 0.5 per cent. This has been largely due to gains in energy efficiencies and a shift to electricity.

The significant increase in Alberta demand is due to increased development in the industrial sector. The natural gas requirements for bitumen recovery and upgrading to synthetic crude oil are expected to increase annually from  $4 \ 10^9 \ m^3$  in 2001 to  $11 \ 10^9 \ m^3$  by 2011. The potential high usage of natural gas in bitumen production and upgrading has exposed the companies involved in the business to the risk of volatile gas prices. These companies are now exploring the option of self-sufficiency for their gas requirements. The existing gasification technology is one attractive alternative now being pursued. If implemented, natural gas requirements for this sector could decrease substantially.

The electricity generating industry will also require increased volumes of natural gas to fuel some of the new plants expected to come on stream over the next few years. Natural gas requirements for electricity generation are expected to double over the forecast period, from some 3  $10^9$  m<sup>3</sup> in 2001 to 6  $10^9$  m<sup>3</sup> by 2011.

## 4.4 Supply of and Demand for Natural Gas Liquids (NGL)

### 4.4.1 Supply of Ethane and Other Natural Gas Liquids

Ethane and other NGL are recovered from several sources, including gas processing plants in the field, that extract ethane, propane, butanes, and pentanes plus as products or recover an NGL mix from raw gas production. NGL mixes are sent from these field plants to fractionation plants to recover individual NGL specification products. Straddle plants (on NOVA Gas Transmission Lines and ATCO systems) recover NGL products from gas that has been processed in the field. To compensate for the liquids removed, lean make-up gas volumes are purchased by the straddle plants and added to the marketable gas stream leaving the plant. Although some pentanes plus is recovered in the field as gas condensate, the majority of the supply is recovered from the processing of natural gas.

The other source of NGL supply is from crude oil refineries, where small volumes of propane and butanes are recovered. **Figure 4.24** illustrates the stages involved in processing raw gas and crude oil for the recovery of ethane, propane, butanes, and pentanes plus.

Ethane and other NGL production is a function of raw gas production, as well as its liquid content, gas plant recovery efficiencies, and prices. High gas prices may cause gas processors to reduce liquid recovery. In this situation gas would be sold for its heating value.

Ethane extracted at Alberta processing facilities decreased slightly, from 12.8  $10^6 \text{ m}^3$  (35.1  $10^3 \text{ m}^3/\text{d}$ ) in 2000 to 12.7  $10^6 \text{ m}^3$  (34.8  $10^3 \text{ m}^3/\text{d}$ ) in 2001. Table 4.14 shows the volumes of specification ethane extracted at the three types of processing facilities during 2001.

| Gas plants           | Volume (10 <sup>6</sup> m <sup>3</sup> ) | % of total |
|----------------------|------------------------------------------|------------|
| Field plants         | 1.2                                      | 9          |
| Fractionation plants | 3.0                                      | 24         |
| Straddle plants      | 8.5                                      | 67         |
| Total                | 12.7                                     | 100        |

Table 4.14. Ethane extraction volumes at gas plants in Alberta, 2001

Table 4.15 outlines the volumes of ethane, propane, butanes, and pentanes plus recovered from natural gas processing in 2001. Ratios of the liquid production in  $m^3$  to  $10^6 m^3$  marketable gas production are shown as well. Propane and butanes volumes recovered at crude oil refineries were 0.4  $10^6 m^3 (1.0 \ 10^3 m^3/d)$  and 1.2  $10^6 m^3 (3.2 \ 10^3 m^3/d)$  respectively.

In 2001, natural gas liquids production declined year over year due to several factors. In the first few months of the year, high natural gas prices caused the gas industry to leave more gas liquids in the gas stream for its energy value. Further, ethane recovery within Alberta was hampered due to high  $CO_2$  concentration levels in the gas stream entering a straddle plant. It is noted that the Alliance pipeline placed on production in December 2000 moved gas directly to Chicago, Illinois, where liquid recovery occurs.

For the purpose of forecasting ethane and other NGL's, the richness and gas production volumes from established and new reserves have an impact on future production. For ethane, demand also plays a major role in future production. The NGL content from the new reserves is assumed to be somewhat higher than existing reserves, as a large portion

of yet to be discovered gas is in the deeper part of the basin.

In 2001, ethane extraction in Alberta was  $34.8 \ 10^3 \ m^3/d$ , or 47 per cent recovery of the total ethane in the gas stream. It is expected that ethane recovery will increase to  $45.9 \ 10^3 \ m^3/d$  in 2002 and hold there for the remainder of the forecast period, as shown in **Figure 4.25**. Current processing plant capacity for ethane in Alberta is some  $60 \ 10^3 \ m^3/d$  and therefore not a restraint to recovering the volumes forecast. Based on the historical ethane content of marketable gas in Alberta, adequate volumes of ethane are available to meet the forecast demand. In fact, additional volumes of ethane are available for extraction, should the demand increase further in the future.

Over the forecast period ratios of ethane, propane, butanes, and pentanes plus in  $m^3$  (liquid) to  $10^6 m^3$  marketable gas increase, as shown in Table 4.15. Figures 4.26 to 4.28 show forecast production volumes to 2011 for propane, butanes, and pentanes plus respectively. No attempt has been made to include ethane and other NGL production from the solvent flood banks injected into pools throughout the province to enhance oil recovery. High gas prices may cause gas processors to reduce liquid recovery from the volumes forecast.

|               | Yea                                                       | r 2001                                                     |                                                 |                                                           | Year 2011                                     |                                                 |
|---------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|
| Gas<br>liquid | Yearly<br>production<br>(10 <sup>6</sup> m <sup>3</sup> ) | Daily<br>production<br>(10 <sup>3</sup> m <sup>3</sup> /d) | Liquid/<br>gas ratio<br>(m³/10 <sup>6</sup> m³) | Yearly<br>production<br>(10 <sup>6</sup> m <sup>3</sup> ) | Daily<br>production<br>(10 <sup>3</sup> m³/d) | Liquid/<br>gas ratio<br>(m³/10 <sup>6</sup> m³) |
| Ethane        | 12.7                                                      | 34.8                                                       | 86                                              | 16.8                                                      | 45.9                                          | 125                                             |
| Propane       | 8.6                                                       | 23.5                                                       | 58                                              | 8.6                                                       | 23.5                                          | 64                                              |
| Butanes       | 4.9                                                       | 13.5                                                       | 33                                              | 5.2                                                       | 14.3                                          | 39                                              |
| Pentanes+     | 8.8                                                       | 24.0                                                       | 59                                              | 9.2                                                       | 25.2                                          | 69                                              |

Table 4.15. Liquid production at gas plants in Alberta, 2001 and 2011

#### 4.4.2 Demand for Ethane and Other Natural Gas Liquids

Of the ethane extracted in the year 2001, some 96 per cent was used by the Alberta petrochemical industry as feedstock to produce ethylene, while the remainder was exported out of the province. The petrochemical industry in Alberta is the major consumer

of ethane recovered from natural gas in the province, with four plants using ethane as feedstock for the production of ethylene. Small volumes of ethane are exported from the province by the Cochin pipeline under removal permits.

As shown in **Figure 4.25**, Alberta demand for ethane is projected to be  $42.5 \ 10^3 \ m^3/d$  for the forecast period, with all four ethylene plants running at 90 per cent of capacity. Supplies are tighter than they have been historically, due in part to the large increase in demand by the fourth ethylene plant placed on production in October 2000 and the Alliance pipeline that came on stream in December 2000. For purposes of this forecast, it was assumed that no new ethylene plants will be built during the forecast period requiring

Alberta ethane as feedstock. It is noted that alternative feedstock to ethane such as propane and butanes are being considered by the petrochemical industry in an effort to enhance operating flexibility and longer-term growth opportunities. Globally, naptha is by far the most common feedstock used for ethylene production.

**Figure 4.26** shows Alberta demand for propane compared to the total available supply from gas processing plants. The difference between Alberta requirements and total supply represents volumes used by ex-Alberta markets. Propane is used as a fuel in remote areas for space and water heating, as an alternative fuel in motor vehicles, and for barbecues and grain drying.

**Figure 4.27** shows Alberta demand for butanes compared to the total available supply from gas processing plants. The difference between Alberta requirements and total supply represents volumes used by ex-Alberta markets. Alberta demand for butanes will increase as refinery requirements grow. Butanes are used in gasoline blends as an octane enhancer. Another major use of butanes in the province is as a petroleum feedstock in the production of methyl-tertiary-butyl-ether (MTBE), which when added to gasoline improves combustion efficiency and reduces pollutants, especially ground-level ozone and carbon monoxide. The state of California, which is the main market for the MTBE produced in Alberta, has set a ban deadline by 2004 for its use. The one plant in Alberta currently producing this product has options available to it and may redesign the plant to produce iso-octane if MTBE is banned from the U.S. market. The other petrochemical consumer of butanes in Alberta is a plant that uses butanes to produce vinyl acetate.

**Figure 4.28** shows Alberta demand for pentanes plus compared to the total available supply. Alberta pentanes plus is used as diluent for transporting heavy crude oil and bitumen. Diluent is required to increase the API gravity and reduce the viscosity of heavy crude oil and bitumen to facilitate transportation through pipelines. As a result of a review of diluent requirements, our numbers have been refined over last year, and it is assumed that heavy crude oil requires some 5.5 per cent diluent for Bow River and 17 per cent for Lloydminster. The required diluent for bitumen varies from a low of 17 per cent to as high as 31.6 per cent, depending on the producing regions of the province.

Over the forecast period, pentanes plus demand as diluent is expected to increase from  $16.8 \ 10^3 \ m^3/d$  to  $37.2 \ 10^3 \ m^3/d$ . The diluent requirement for heavy crude oil is expected to decline from  $3.2 \ 10^3 \ m^3/d$  in 2001 to  $2.6 \ 10^3 \ m^3/d$  by the end of the forecast, due to declining crude oil production. However, diluent requirements for bitumen are expected to increase quite dramatically, from  $13.6 \ 10^3 \ m^3/d$  in 2001 to  $34.6 \ 10^3 \ m^3/d$  by 2011. Shortages of pentanes plus as diluent are forecast to occur by 2006 if alternatives are not considered. Several steps have been taken to reduce the pentanes plus diluent requirements in past years, including the Enbridge pipeline system implementing a new viscosity standard in 1999, which reduced the diluent requirement by about 10 per cent. In addition, industry may consider alternatives to pentanes plus, such as

- upgrading of bitumen to SCO within Alberta;
- blending bitumen with SCO or light sweet oil;
- blending refinery naptha and distillates, due to their low viscosity and density; and
- heating bitumen and insulating pipelines, with little or no diluent required to move bitumen through pipelines.

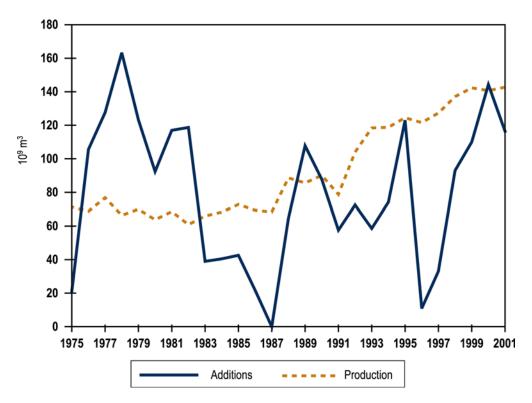



Figure 4.1. Annual reserves additions and production of marketable gas

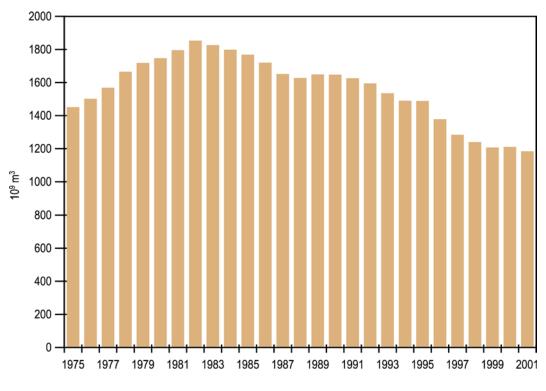



Figure 4.2. Remaining established marketable gas reserves

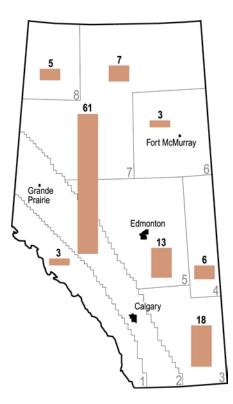



Figure 4.3. Marketable gas reserves additions, 2001 (10<sup>9</sup> m<sup>3</sup>)

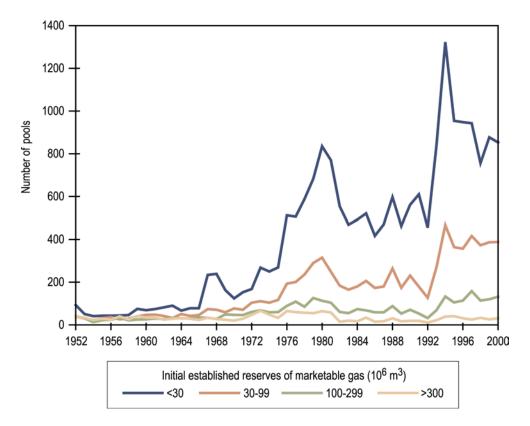



Figure 4.4. Gas pools by size and discovery year

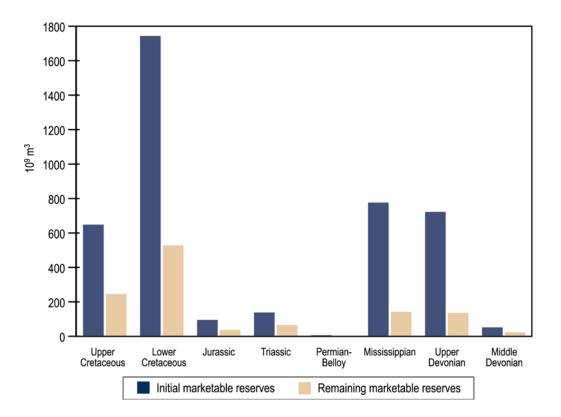



Figure 4.5. Geological distribution of gas reserves

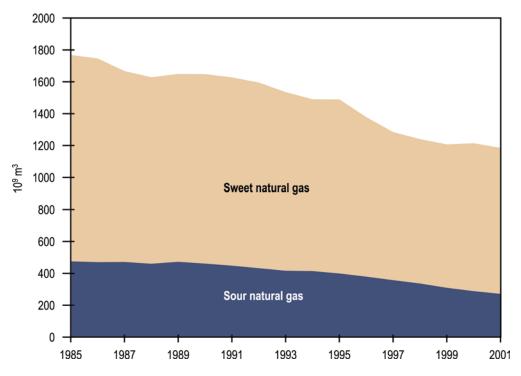



Figure 4.6. Remaining established marketable reserves of sweet and sour gas

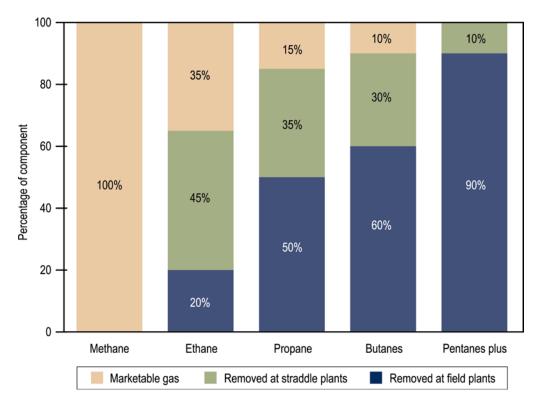



Figure 4.7. Natural gas components

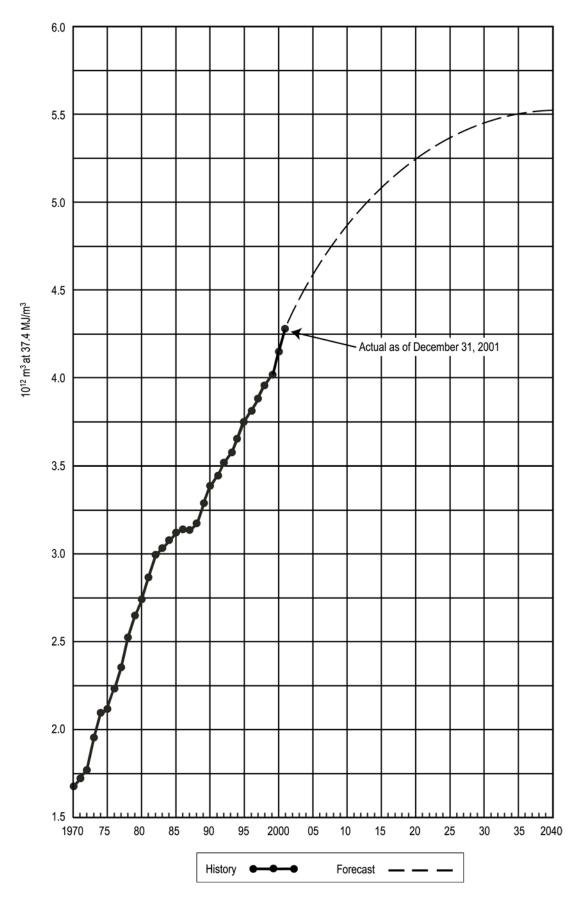



Figure 4.8. Growth of initial established reserves of marketable gas

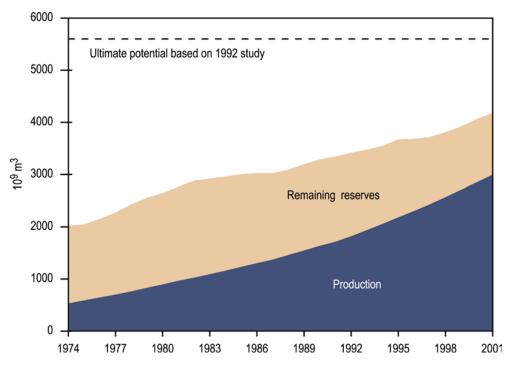



Figure 4.9. Gas ultimate potential

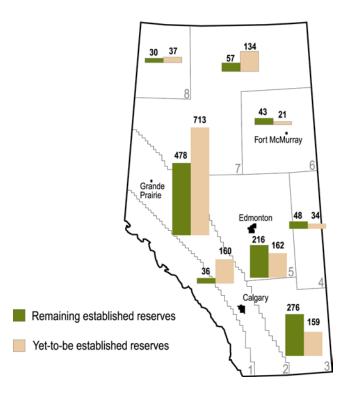



Figure 4.10. Regional distribution of marketable gas reserves (10<sup>9</sup> m<sup>3</sup>)

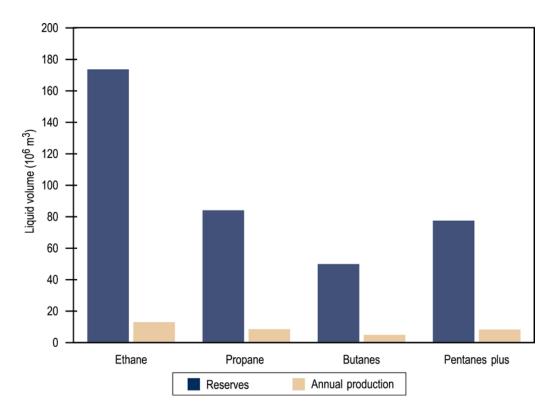



Figure 4.11. Remaining established NGL reserves expected to be extracted and annual production

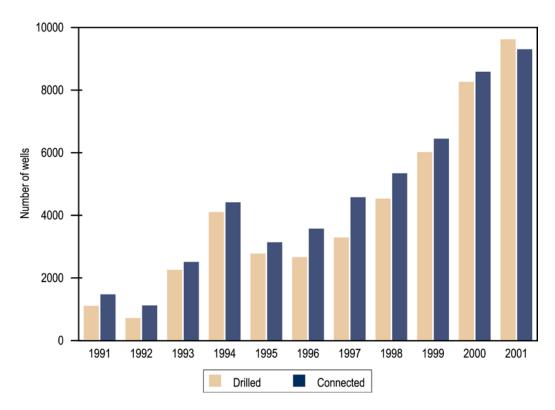



Figure 4.12. Gas wells drilled and connected

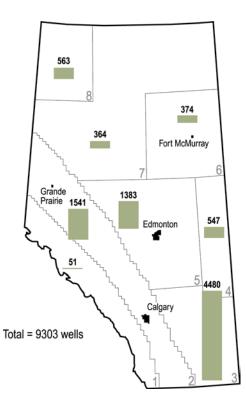



Figure 4.13. Alberta gas well connections, 2001

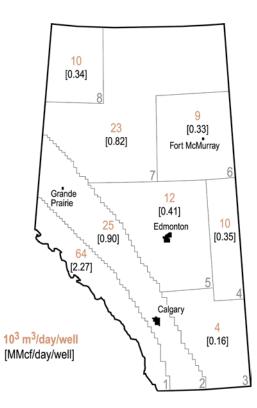



Figure 4.14. Initial operating day rates of connections, 2001

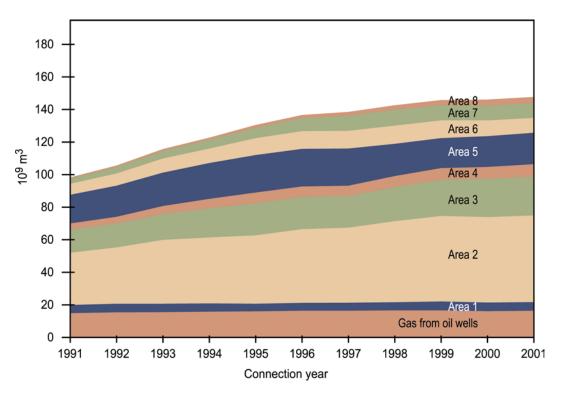



Figure 4.15. Marketable gas production by modified PSAC area

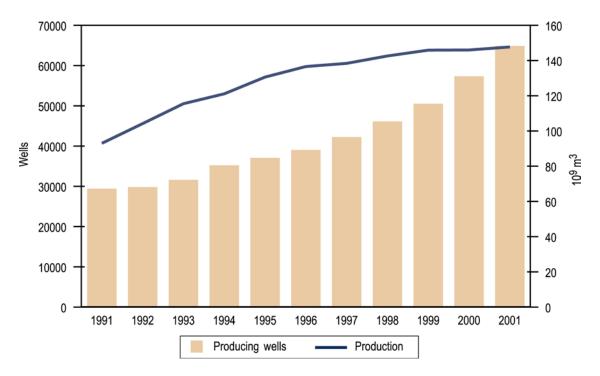



Figure 4.16. Marketable gas production and the number of producing wells

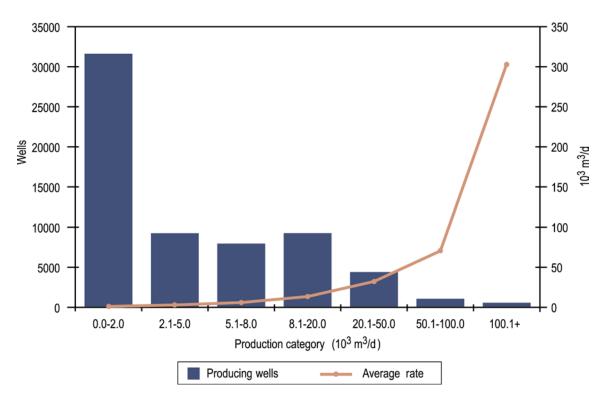



Figure 4.17. Natural gas well productivity in 2001

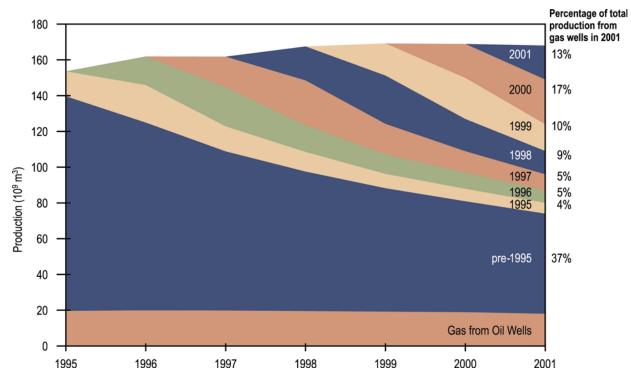



Figure 4.18. Raw gas production by connection year

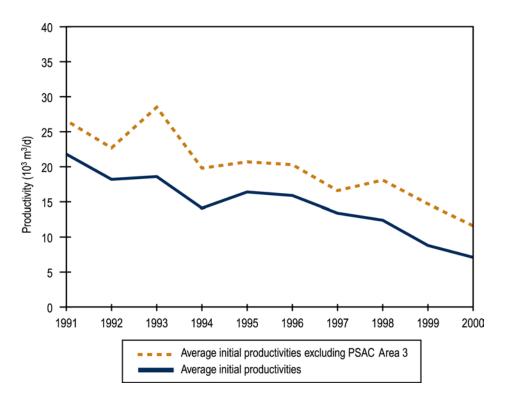



Figure 4.19. Average initial gas well productivity in Alberta

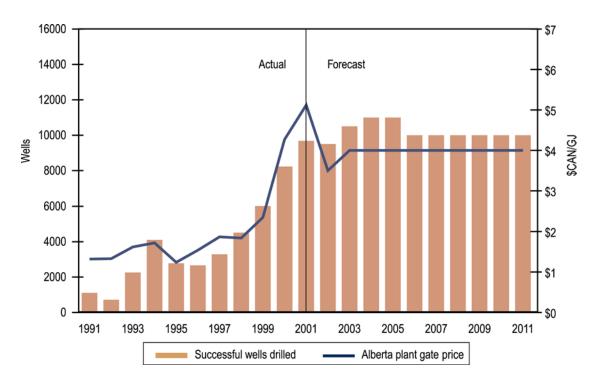



Figure 4.20. Alberta natural gas drilling activity and price

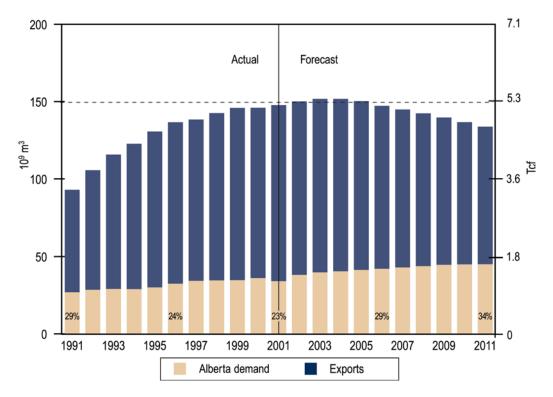



Figure 4.21. Disposition of marketable gas production

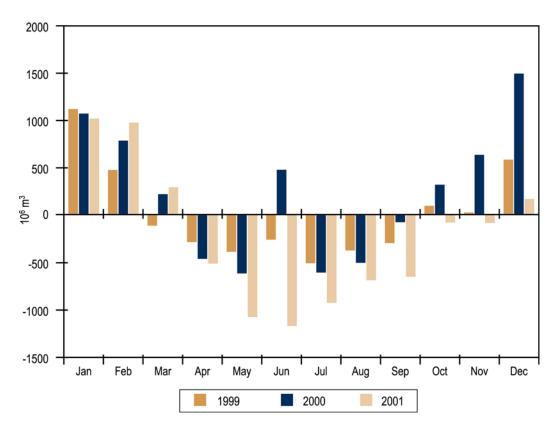



Figure 4.22. Alberta natural gas storage injection/withdrawal volumes

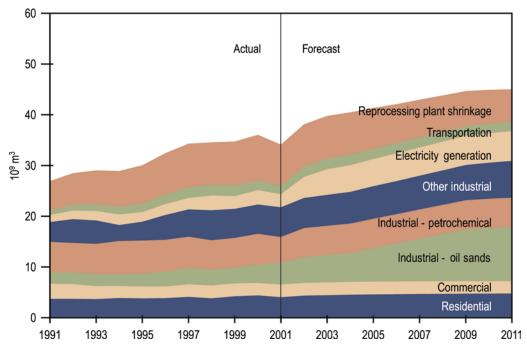



Figure 4.23. Alberta gas demand by sector

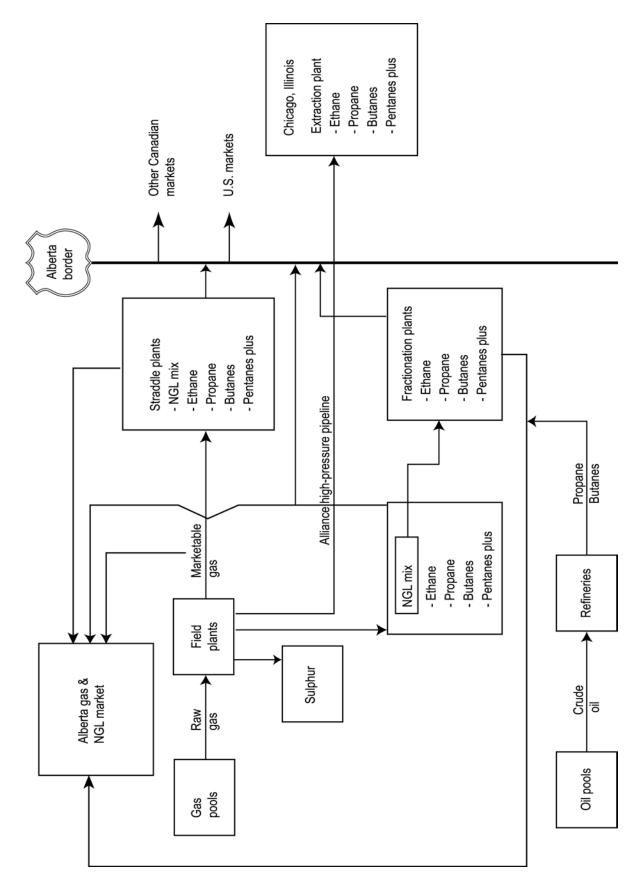



Figure 4.24. Schematic of Alberta NGL flows

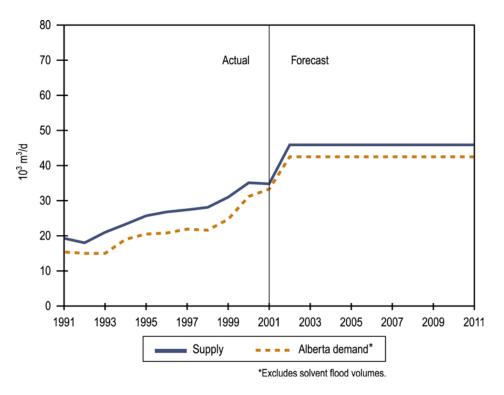



Figure 4.25. Liquid ethane supply and demand from natural gas

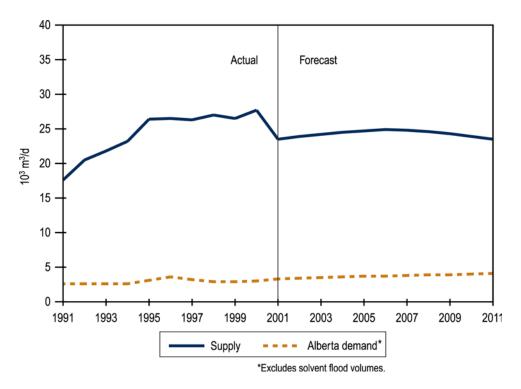



Figure 4.26. Propane supply and demand from natural gas

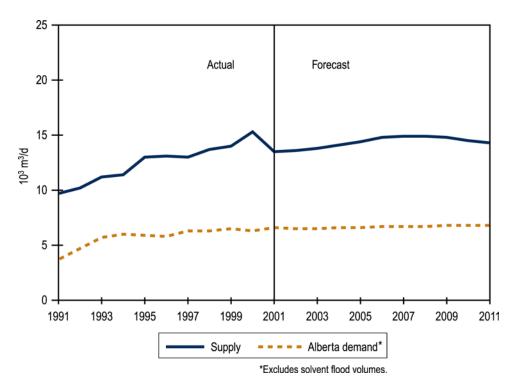



Figure 4.27. Butanes supply and demand from natural gas

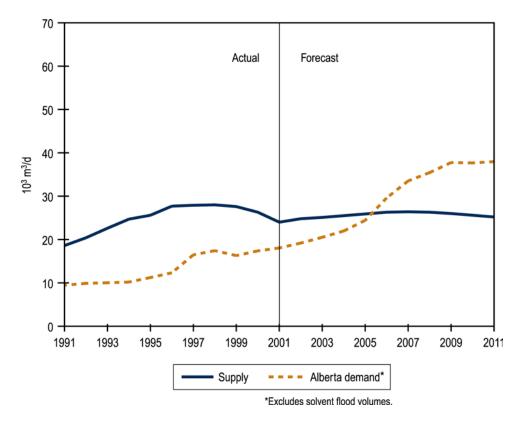



Figure 4.28. Pentanes plus supply and demand from natural gas

## 5 Coal

#### 5.1 Reserves of Coal

#### 5.1.1 Provincial Summary

The following information summarizes and marginally updates the material found in EUB statistical report *ST-2000-31: Reserves of Coal*. Those seeking more detailed information or a greater understanding of the parameters and procedures used to calculate established coal reserves are referred to that report.

The significant amount of data generated in the exploration for coal has been used by the EUB to estimate coal reserves throughout the province. The EUB currently estimates that Alberta's established initial in-place resources of all types of coal total about 94 gigatonnes (Gt).<sup>1</sup> Of this amount, about 34 Gt, or approximately 36 per cent, are considered remaining to be recovered (by surface and underground methods), and of these reserves, 1.0 Gt are within permit boundaries of mines that were active in 2001. Table 5.1 gives a breakdown by rank of resources and reserves from 244 coal deposits.

| December of                      | Initial               |                       |                    | Remaining                |
|----------------------------------|-----------------------|-----------------------|--------------------|--------------------------|
| Rank<br>Classification           | in-place<br>resources | Cumulative production | Remaining reserves | reserves in active mines |
| Low- and medium-                 |                       |                       |                    |                          |
| volatile bituminous <sup>a</sup> |                       |                       |                    |                          |
| Surface                          | 1.7                   | 0.21                  | 0.60               |                          |
| Underground                      | <u>5.1</u>            | <u>0.10</u>           | 0.62               |                          |
| Subtotal <sup>b</sup>            | 6.8                   | 0.32                  | 1.22               | 0.05                     |
| High-volatile bituminous         |                       |                       |                    |                          |
| Surface                          | 2.6                   | 0.13                  | 1.80               |                          |
| Underground                      | <u>3.3</u>            | <u>0.05</u>           | <u>0.91</u>        |                          |
| Subtotal <sup>b</sup>            | 5.9                   | 0.18                  | 2.71               | 0.17                     |
| Subbituminous                    |                       |                       |                    |                          |
| Surface                          | 14                    | 0.57                  | 8.4                |                          |
| Underground                      | <u>67</u>             | <u>0.07</u>           | <u>21</u>          |                          |
| Subtotal <sup>b</sup>            | 81                    | 0.64                  | 30                 | 0.81                     |
| Total♭                           | 94                    | 1.14                  | 34                 | 1.0                      |

# Table 5.1. Established initial in-place resources and remaining reserves of coal in Alberta as of December 31, 2001 (Gt)

<sup>a</sup> Includes minor amounts of semi-anthracite.

<sup>b</sup> Totals are not arithmetic sums but are the result of separate determinations.

<sup>c</sup> Includes minor lignite.

Minor changes in remaining established reserves from December 31, 2000, to December 31, 2001, resulted from increases in cumulative production. During 2001 the low- and medium-volatile, high-volatile, and subbituminous production were 0.004 Gt, 0.005 Gt, and 0.024 Gt respectively.

<sup>&</sup>lt;sup>1</sup> Giga =  $10^9$ ; 1 tonne = 1000 kilograms.

#### 5.1.2 Initial in-Place Resources

Several techniques, in particular the block kriging, grid, polygon, and cross-section methods, have been used for calculating in-place volumes, with separate volumes calculated for surface- and underground-mineable coal.

In general, shallow coal is mined more cheaply by surface than by underground methods; such coal is therefore classified as surface-mineable. At some stage of increasing depth and strip ratio, the advantage passes to underground mining; this coal is considered underground-mineable. The classification scheme used to differentiate between surface-and underground-mineable coal is very broadly based on depth and strip ratio, designed to reflect relative costs, but it does not necessarily mean that the coal could be mined under the economic conditions prevailing today.

#### 5.1.3 Established Reserves

Certain parts of deposits are considered nonrecoverable for technical, environmental, or safety reasons and therefore have no recoverable reserves. For the remaining areas, recovery factors have been determined for the surface-mineable coal, as well as the thicker underground classes.

A recovery factor of 90 per cent has been assigned to the remaining in-place surfacemineable area, followed by an additional small coal loss at the top and a small dilution at the bottom of each seam.

In the case of underground-mineable coal, geologically complex environments may make mining significant parts of some deposits uneconomic. Because there is seldom sufficient information to outline such areas, it is assumed that in addition to the coal previously excluded, only a percentage of the remaining deposit areas would be mined. Thus a "deposit factor" has been allowed for where, on average, only 50 per cent of the remaining deposit area is considered to be mineable in the mountain region,<sup>2</sup> 70 per cent in the foothills, and 90 per cent in the plains.

A mining recovery factor of 75 per cent is then applied to both medium (1.5 - 3.6 m) and thick (> 3.6 m) seams, with a maximum recoverable thickness of 3.6 m applied to thick seams. Thin seams (0.6 - <1.5 m) are not considered recoverable by underground methods.

Any developer wishing to mine coal in Alberta must first obtain a permit and licence from the EUB. An application for a permit must include extensive information on such matters as coal reserves, proposed mining methods, and marketing of coal. Coal reserves within the applied-for mine area must be at least sufficient to meet the marketing plans of the applicant.

Table 5.2 shows the established resources and reserves within the current permit boundaries of those mines active in 2001. The large reduction in low- and medium-volatile bituminous reserves is due to the closure of the Smoky River Mine in 2000.

<sup>&</sup>lt;sup>2</sup> The EUB has designated three regions within Alberta where coals of similar quality and mineablility are recovered.

<sup>5-2 •</sup> EUB Statistical Series 2002-98: Alberta's Reserves 2001 and Supply/Demand Outlook / Coal

| Decen                    | ider 31, 2001       |                                                         |                                           |                                                 |                                                           |
|--------------------------|---------------------|---------------------------------------------------------|-------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
| Rank<br><u>Mine</u>      | Permit area<br>(ha) | Initial<br>in-place<br>resources<br>(10 <sup>6</sup> t) | Initial<br>reserve<br>(10 <sup>6</sup> t) | Cumulative<br>production<br>(10 <sup>6</sup> t) | Remaining<br>reserves <sup>a</sup><br>(10 <sup>6</sup> t) |
| Low- and medium          | -                   |                                                         |                                           |                                                 |                                                           |
| volatile bituminous      |                     |                                                         |                                           |                                                 |                                                           |
| Gregg River <sup>b</sup> | 3 540               | 103                                                     | 62                                        | 46                                              | 16                                                        |
| Luscar                   | 5 050               | 32                                                      | 130                                       | 94                                              | 36                                                        |
|                          |                     |                                                         |                                           |                                                 |                                                           |
| Subtotal <sup>a</sup>    | 8 590               | 435                                                     | 192                                       | 141                                             | 52                                                        |
| High-volatile bitum      | ninous              |                                                         |                                           |                                                 |                                                           |
| Coal Valley <sup>c</sup> | 6 400               | 349                                                     | 167                                       | 95                                              | 72                                                        |
| Obed                     | 7 590               | <u>162</u>                                              | <u>137</u>                                | <u>38</u>                                       | 99                                                        |
| Subtotal                 | 13 990              | 511                                                     | 304                                       | 133                                             | 171                                                       |
| Subbituminous            |                     |                                                         |                                           |                                                 |                                                           |
| Vesta                    | 2 410               | 69                                                      | 54                                        | 35                                              | 19                                                        |
| Paintearth               | 2 710               | 94                                                      | 67                                        | 35                                              | 32                                                        |
| Sheerness                | 7 000               | 196                                                     | 150                                       | 51                                              | 99                                                        |
| Dodds                    | 140                 | 2                                                       | 2                                         | 1                                               | 1                                                         |
| Whitewood                | 2 800               | 163                                                     | 98                                        | 69                                              | 29                                                        |
| Highvale                 | 12 140              | 1 021                                                   | 764                                       | 275                                             | 489                                                       |
| Genesee                  | 7 320               | 250                                                     | 176                                       | <u>    36</u>                                   | <u>140</u>                                                |
| Subtotalª                | 34 520              | 1 795                                                   | 1 311                                     | 502                                             | 808                                                       |
| Total                    | 57 100              | 2 741                                                   | 1 807                                     | 776                                             | 1 031                                                     |

| Table 5.2 | Established resources and reserves of coal under active development as of |
|-----------|---------------------------------------------------------------------------|
|           | December 31, 2001                                                         |

<sup>a</sup> Differences are due to rounding.

<sup>b</sup> Limited operations in 2001.

<sup>c</sup> Does not include area of expansion approved in 2001.

#### 5.1.4 Ultimate Potential

A combination of two methods has been used to estimate ultimate potentials. The first, the volume method, gives a broad estimate of area, coal thickness, and recovery ratio for each coal-bearing horizon, while the second method estimates the ultimate potential from the trend of initial reserves versus exploration effort.

A large degree of uncertainty is inevitably associated with estimation of an ultimate potential. New data could substantially alter results derived from the current best fit. To avoid large fluctuations of ultimate potentials from year to year, the EUB has adopted the policy of using the figures published in the previous *Reserves of Coal* report and adjusting them slightly to reflect the most recent trends. Table 5.3 gives quantities by rank for surface- and underground-mineable ultimate in-place resources, as well as the ultimate potentials.

| Coal rank                | Ultimate           | Ultimate   |
|--------------------------|--------------------|------------|
| Classification           | in-place           | potential  |
|                          |                    |            |
| Low- and medium-         |                    |            |
| volatile bituminous      |                    |            |
| Surface                  | 2.7                | 1.2        |
| Underground              | <u>18</u>          | 2.0        |
| Subtotal                 | 21                 | 3.2        |
| High-volatile bituminous |                    |            |
| Surface                  | 10                 | 7.5        |
| Underground              | 490                | <u>150</u> |
| Subtotal                 | 500                | 160        |
| Subbituminous            |                    |            |
| Surface                  | 14                 | 9.3        |
| Underground              | <u>1 400</u>       | 460        |
| Subtotal                 | 1 500              | 470        |
| Total                    | 2 000 <sup>b</sup> | 620        |

<sup>a</sup> Tonnages have been rounded to two significant figures and totals are not arithmetic sums but are the results of separate determinations..
 <sup>b</sup> Work done by the Alberta Geological Survey suggests that the value is likely significantly larger.

#### 5.2 Supply of and Demand for Coal

Alberta produces three types of marketable coal: subbituminous, metallurgical bituminous, and thermal bituminous. Subbituminous coal is the type used for electricity generation in Alberta. Metallurgical bituminous coal is exported and used for industrial applications, such as steel making. Thermal bituminous coal is also exported and used to fuel electricity generators in distant markets. The higher calorific content of bituminous thermal coal makes it possible to economically transport the coal over long distances. While subbituminous coal is burned without any form of upgrading, both types of export coal are sent in raw form to a preparation plant, whose output is referred to as clean coal. Subbituminous coal and clean bituminous coal are collectively known as marketable coal. Historical and forecast Alberta coal production for each of the three types of marketable coal are shown in **Figure 5.1**.

#### 5.2.1 Coal Supply

In 2001, Alberta sold  $30.6 \ 10^6$  t of marketable coal. Subbituminous coal accounted for 80.4 per cent of the total, bituminous metallurgical was 9.6 per cent, and bituminous thermal coal constituted the remaining 10 per cent.

In the same year, ten mine sites supplied coal in Alberta, as shown in Table 5.4. Five large mines and a very small one produce subbituminous coal. The large mines serve nearby electric power plants, while the small mine supplies residential and commercial customers. Because of the need for long-term supply to power plants, most of the reserves have been dedicated to the power plants.

Over the past few years, subbituminous coal production has stabilized, as no new coalfired power plants have been built and no substantial generating capacity has been taken out of operation. Two operators, however, received regulatory approval in 2001/2002 for three new coal-fired generating units, which are slated for commissioning in 2005 and 2006. In all cases the fuel would be subbituminous coal.

Alberta's only operating preparation plant producing clean metallurgical coal for export is at the Luscar Mine, which is slated for closure due to the exhaustion of coal reserves expected in late 2004 or early 2005. Meanwhile, other operators have proposed to begin mining in the vicinity of the defunct Smoky River Mine, to supply coal to the H.R. Milner Power Plant or to produce export grade metallurgical coal. The proposed Cheviot Mine, which has obtained regulatory approvals, is incorporated in the forecast; it is assumed that operation will start in 2005.

Although metallurgical grade coal underlies much of the mountain region, very few areas have been sufficiently explored to identify recoverable reserves. Without higher, stable prices, it is unlikely that any additional mines, other than the proposed Cheviot Mine, will come on stream over the next decade.

The two producing thermal bituminous coal mines have been shipping coal to export markets and have recently resumed shipments to Ontario. In addition, some coal from the Obed Mountain mine has been sent to the H.R. Milner power plant to make up for coal supply lost due to the closure of the Smoky River mine. Substantial reserves exist in areas that have been permitted for mining but have not been brought into production.

| •••                      |                                                                                                                | Production in 2001                                                                                                                                                                                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mine                     | Location                                                                                                       | (10 <sup>6</sup> t)                                                                                                                                                                                      |
|                          |                                                                                                                |                                                                                                                                                                                                          |
| Genesee                  | Genesee                                                                                                        | 3.5                                                                                                                                                                                                      |
| Sheerness                | Sheerness                                                                                                      | 3.6                                                                                                                                                                                                      |
| Paintearth               | Halkirk                                                                                                        | 3.2                                                                                                                                                                                                      |
| Highvale                 | Wabamun                                                                                                        | 11.6                                                                                                                                                                                                     |
| Whitewood                | Wabamun                                                                                                        | 2.1                                                                                                                                                                                                      |
| Dodds                    | Ryley                                                                                                          | 0.04                                                                                                                                                                                                     |
|                          |                                                                                                                |                                                                                                                                                                                                          |
| Luscar                   | Luscar                                                                                                         | 2.9                                                                                                                                                                                                      |
| Gregg River <sup>a</sup> | Gregg River                                                                                                    | -                                                                                                                                                                                                        |
|                          |                                                                                                                |                                                                                                                                                                                                          |
| Coal Valley              | Coal Valley                                                                                                    | 1.6                                                                                                                                                                                                      |
| Obed Mtn.                | Hinton                                                                                                         | 1.4                                                                                                                                                                                                      |
|                          | Sheerness<br>Paintearth<br>Highvale<br>Whitewood<br>Dodds<br>Luscar<br>Gregg River <sup>a</sup><br>Coal Valley | Genesee Genesee<br>Sheerness Sheerness<br>Paintearth Halkirk<br>Highvale Wabamun<br>Whitewood Wabamun<br>Dodds Ryley<br>Luscar Luscar<br>Gregg River <sup>a</sup> Gregg River<br>Coal Valley Coal Valley |

#### Table 5.4. Alberta coal mines and marketable coal production in 2001

<sup>a</sup> Limited operations in 2001.

#### 5.2.2 Coal Demand

In Alberta, the subbituminous mines primarily serve coal-fired electric generation plants, and their production ties in with electricity generation. Subbituminous coal production is expected to increase in the middle part of the forecast period to meet demand for additional electrical generating capacity. Beyond that, it is expected that the demand for additional subbituminous coal will level off, barring strong increases in electricity demand.

Although the North American steel industry has been going through reorganization and production declines, Asian steel production has been steady in recent years. Alberta's metallurgical coal primarily serves the latter market, mainly in Japan. While prices of both thermal and metallurgical coal entering international markets have been rising in recent months, no production from export mines, except for the proposed Cheviot Mine, has been assumed in this forecast. The Cheviot Mine is expected to begin production in 2005 but is likely contingent on securing long-term contracts for its output. Alberta's export coal producers, as always, have the competitive disadvantage of long distances from mine to port.

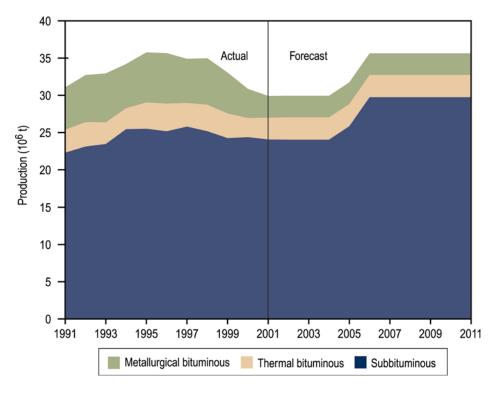



Figure 5.1. Alberta marketable coal production

## 6 Sulphur

#### 6.1 Reserves of Sulphur

#### 6.1.1 Provincial Summary

The EUB estimates the remaining established reserves of elemental sulphur in the province as of December 31, 2001, to be some 93.8 million tonnes ( $10^6$  t). The changes in sulphur reserves during the past year are shown in Table 6.1.

|                                | 2001  | 2000   | Change      |
|--------------------------------|-------|--------|-------------|
| Initial established reserves   |       |        |             |
| Natural gas                    | 240.0 | 237.5  | +2.5        |
| Crude bitumen <sup>a</sup>     | 67.7  | 67.7   | <u>0.0</u>  |
| Total                          | 307.7 | 305.2  | +2.5        |
| Cumulative net production      |       |        |             |
| Natural gas                    | 201.5 | 195.4  | +6.1        |
| Crude bitumen <sup>b</sup>     | 12.4  | 11.8   | <u>+0.6</u> |
| Total                          | 213.9 | 207.2  | +6.7        |
| Remaining established reserves |       |        |             |
| Natural gas                    | 38.5  | 42.1   | -3.6        |
| Crude bitumen <sup>a</sup>     | 55.3  | _ 55.9 | <u>-0.6</u> |
| Total                          | 93.8  | 98.0   | -4.2        |

 Table 6.1. Reserves of sulphur as of December 31, 2001 (10<sup>6</sup> t)

<sup>a</sup> Recoverable reserves of elemental sulphur under active development at Suncor, Syncrude, and Albian Sands operations as of December 31, 2001.

<sup>b</sup> Production from surface mineable area only.

\* Floudelion nom sunace mineable area only

#### 6.1.2 Sulphur from Natural Gas

The EUB recognizes  $38.5 \ 10^6$  t of remaining established sulphur from natural gas reserves at year-end 2001. This estimate from gas has been prepared by applying the appropriate hydrogen sulphide (H<sub>2</sub>S) content and sulphur recovery efficiency to the remaining established reserves of raw gas in each pool. Where sulphur is currently being recovered, actual recovery efficiencies have been used. Where sulphur recovery is anticipated from gas reserves not yet being produced, the recovery efficiency has been estimated on the basis of the minimum sulphur recovery efficiency guidelines published in EUB *Interim Directive (ID) 2001-03:Sulphur Recovery Guidelines for the Province of Alberta*. The remaining established reserves of sulphur for cycling schemes were determined from an assessment of each pool, but because the H<sub>2</sub>S content in the gas changes with time, only the remaining sulphur reserves are reported. The EUB estimates the ultimate potential for sulphur from natural gas to be  $330 \ 10^6$  t and from ultra-high H<sub>2</sub>S pools to be  $40 \ 10^6$  t. This leaves sulphur reserves of  $130 \ 10^6$  t yet to be established from future discoveries of conventional gas. The EUB's sulphur reserve estimates from natural gas are shown in Table 6.2. Fields containing 800 thousand tonnes  $(10^3 \text{ t})$  or more of recoverable sulphur are listed individually and those containing less are grouped under other small reserves. For historical reasons, some fields now containing less than 800  $10^3$  t of recoverable sulphur have also been included in this table. Sulphur reserves declined most notably in the Caroline and Waterton fields as a result of production.

#### 6.1.3 Sulphur from Crude Bitumen

Crude bitumen in oil sands deposits contains significant amounts of sulphur. As a result of current upgrading operations in which bitumen is converted to synthetic crude oil, an average of 90 per cent of the sulphur contained in the crude bitumen is either recovered in the form of elemental sulphur or remains in products including coke.

It is currently estimated that some 211  $10^6$  t of elemental sulphur will be recoverable from the 5.2 billion cubic metres ( $10^9$  m<sup>3</sup>) of remaining established crude bitumen reserves in the surface-mineable area. These sulphur reserves were estimated by multiplying the remaining established reserves of crude bitumen by a factor of 40.5 t/1000 m<sup>3</sup> of crude bitumen. In 1989, this ratio was revised from previous estimates to reflect both current operations and the expected use of high-conversion hydrogen-addition upgrading technologies for the future development of surface-mineable crude bitumen reserves. Hydrogen-addition technology yields a higher elemental sulphur production than does an alternative carbon-rejection technology, since a larger percentage of the sulphur in the bitumen remains in upgrading residues, as opposed to being converted to H<sub>2</sub>S.

#### 6.1.4 Sulphur from Crude Bitumen Reserves under Active Development

Only a portion of the surface-mineable established crude bitumen reserves is under active development at the approved Suncor, Syncrude, and Albian Sands projects. The EUB has estimated the initial established sulphur reserves from these projects to be  $67.7 \ 10^6$  t. A total of 12.4  $10^6$  t of elemental sulphur has been produced from these projects, leaving a remaining established reserve of 55.3  $10^6$  t. During 2001, 0.6  $10^6$  t of elemental sulphur were produced at the Suncor and Syncrude projects; the Albian Sands project is still to come on stream.

| Field                 | Zone                                                             | Remaining<br>established<br>reserves<br>of raw gas (10 <sup>6</sup> m <sup>3</sup> ) | H <sub>2</sub> S content <sup>a</sup><br>(mol/mol) | Recovery<br>efficiency <sup>ь</sup> (%) | Remaining<br>established<br>reserves<br>of sulphur (10 <sup>3</sup> t |
|-----------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|
| Benjamin              | Mississippian                                                    | 5 676                                                                                | 0.047                                              | 99                                      | 355                                                                   |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 355                                                                   |
| Blackstone            | Beaverhill Lake                                                  | 5 440                                                                                | 0.107                                              | 98                                      | 775                                                                   |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 775                                                                   |
| Brazeau River         | Mississippian<br>Nisku <sup>c</sup>                              | 1 362                                                                                | 0.010                                              | 99<br>-                                 | 18<br>1 465                                                           |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 1 483                                                                 |
| Burmis                | Mississippian<br>Wabamun                                         | 7 020<br>421                                                                         | 0.09<br>0.118                                      | 98<br>95                                | 844<br><u>64</u>                                                      |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 908                                                                   |
| Caroline              | Mississippian<br>Leduc<br>Beaverhill Lake                        | 1 100<br>140<br>22 826                                                               | 0.012<br>0.068<br>0.365                            | 99<br>100°<br>100°                      | 18<br>13<br><u>11 303</u>                                             |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 11 334                                                                |
| Coleman               | Mississippian<br>Wabamun                                         | 1 146<br>427                                                                         | 0.279<br>0.279                                     | 99<br>99                                | 429<br>160                                                            |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 589                                                                   |
| Crossfield            | Belly River<br>Mannville<br>Jurassic<br>Mississippian<br>Wabamun | 42<br>1 315<br>90<br>1 776<br>3 402                                                  | 0.108<br>0.010<br>0.009<br>0.005<br>0.315          | 98<br>98<br>92<br>99<br>98              | 6<br>17<br>1<br>11<br><u>1 422</u>                                    |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 1 457                                                                 |
| Crossfield East       | Mannville<br>Wabamun                                             | 233<br>396                                                                           | 0.003<br>0.350                                     | 98<br>99                                | 1<br>186                                                              |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 187                                                                   |
| Gold Creek            | Mississippian<br>Wabamun                                         | 149<br>4 975                                                                         | 0.015<br>0.088                                     | 98<br>98                                | 3<br>579                                                              |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 582                                                                   |
| Hanlan                | Winterburn<br>Beaverhill Lake                                    | 207<br>9 550                                                                         | 0.053<br>0.092                                     | 95<br>99                                | 14<br>1 147                                                           |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 1 188                                                                 |
| Jumping Pound<br>West | Mississippian                                                    | 9 593                                                                                | 0.062                                              | 97                                      | 779                                                                   |
|                       | Subtotal                                                         |                                                                                      |                                                    |                                         | 779<br>(continued)                                                    |

Table 6.2. Remaining established reserves of sulphur from natural gas as of December 31, 2001

| Field          | Zone                         | Remaining<br>established<br>reserves<br>of raw gas (10 <sup>6</sup> m <sup>3</sup> ) | H₂S contentª<br>(mol/mol) | Recovery<br>efficiency <sup>b</sup> (%) | Remaining<br>established<br>reserves<br>of sulphur (10 <sup>3</sup> t) |
|----------------|------------------------------|--------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|------------------------------------------------------------------------|
| Kaybob South   | Triassic                     | 1 211                                                                                | 0.007                     | 99                                      | 12                                                                     |
|                | Winterburn                   | 876                                                                                  | 0.192                     | 99                                      | 226                                                                    |
|                | Leduc                        | 159                                                                                  | 0.136                     | 99                                      | 29                                                                     |
|                | Beaverhill Lake <sup>c</sup> | -                                                                                    | -                         | -                                       | 647                                                                    |
|                | Subtotal                     |                                                                                      |                           |                                         | 914                                                                    |
| Limestone      | Mississippian                | 4 397                                                                                | 0.051                     | 99                                      | 301                                                                    |
|                | Wabamun                      | 1 347                                                                                | 0.183                     | 99                                      | 330                                                                    |
|                | Winterburn                   | 136                                                                                  | 0.121                     | 99                                      | 22                                                                     |
|                | Leduc                        | 512                                                                                  | 0.192                     | 99                                      | 132                                                                    |
|                | Subtotal                     |                                                                                      |                           |                                         | 785                                                                    |
| Moose          | Mississippian                | 3 037                                                                                | 0.137                     | 99                                      | 558                                                                    |
|                | Wabamun                      | 351                                                                                  | 0.329                     | 99                                      | 155                                                                    |
|                | Subtotal                     |                                                                                      |                           |                                         | 713                                                                    |
| Okotoks        | Mannville                    | 62                                                                                   | 0.012                     | 99                                      | 1                                                                      |
|                | Mississippian                | 54                                                                                   | 0.014                     | 99                                      | 1                                                                      |
|                | Wabamun                      | 1 268                                                                                | 0.322                     | 99                                      | 548                                                                    |
|                | Subtotal                     |                                                                                      |                           |                                         | 550                                                                    |
| Pine Creek     | Jurassic                     | 249                                                                                  | 0.003                     | 99                                      | 1                                                                      |
|                | Mississippian                | 300                                                                                  | 0.023                     | 98                                      | 9                                                                      |
|                | Wabamun                      | 1 050                                                                                | 0.277                     | 99                                      | 390                                                                    |
|                | Leduc                        | 1 032                                                                                | 0.210                     | 99                                      | 291                                                                    |
|                | Beaverhill Lake              | 500                                                                                  | 0.187                     | 98                                      | 124                                                                    |
|                | Subtotal                     |                                                                                      |                           |                                         | 815                                                                    |
| Ricinus        | Leduc                        | 684                                                                                  | 0.305                     | 99                                      | 280                                                                    |
|                | Subtotal                     |                                                                                      |                           |                                         | 280                                                                    |
| Ricinus West   | Winterburn                   | 109                                                                                  | 0.007                     | 99                                      | 1                                                                      |
|                | Leduc                        | 1 720                                                                                | 0.332                     | 99                                      | 767                                                                    |
|                | Subtotal                     |                                                                                      |                           |                                         | 768                                                                    |
| Waterton       | Mississippian                | 6 101                                                                                | 0.205                     | 99                                      | 1 678                                                                  |
|                | Wabamun                      | 506                                                                                  | 0.186                     | 99                                      | 11                                                                     |
|                | Rundle-Wabamun <sup>c</sup>  | -                                                                                    | -                         | -                                       | 544                                                                    |
|                | Subtotal                     |                                                                                      |                           |                                         | 2 233                                                                  |
| Subtotal       |                              |                                                                                      |                           |                                         | 26 695                                                                 |
| Other small    |                              |                                                                                      |                           |                                         | <u>11 777</u>                                                          |
| reserves       |                              |                                                                                      |                           |                                         | <u> </u>                                                               |
| Total reserves |                              |                                                                                      |                           |                                         | 38 472                                                                 |

<sup>a</sup> Volume-weighted average.

<sup>b</sup> All recovery efficiencies are rounded to the nearest whole percentage point.

<sup>c</sup> Includes gas-cycling pool. Gas reserves are calculated on an energy basis. H<sub>2</sub>S content is not included because of gas composition changing with time.

#### 6.2 Supply of and Demand for Sulphur

#### 6.2.1 Sulphur Supply

There are three sources of sulphur production in Alberta: processing of sour natural gas, upgrading of bitumen to synthetic crude oil (SCO), and refining of crude oil into refined petroleum products. In 2001, Alberta produced  $6.9 \, 10^6$  t of sulphur, of which  $6.1 \, 10^6$  t was derived from sour gas,  $0.8 \, 10^6$  t from upgrading of bitumen to SCO, and just 10  $10^3$  t from oil refining. Sulphur production from these sources is depicted in **Figure 6.1**. While sulphur production from sour gas is expected to increase to  $8.0 \, 10^6$  from  $6.2 \, 10^3$  in 2001, sulphur recovery in bitumen upgrading will increase fourfold to  $3.2 \, 10^3$  by the end of the forecast period. No significant change is expected in sulphur recovery at refineries.

#### 6.2.2 Sulphur Demand

Demand for sulphur within the province in 2001 was only about 0.3 10<sup>6</sup> t. It was used in production of phosphate fertilizer and kraft pulp and in other chemical operations. Some 96 per cent of the sulphur marketed by Alberta producers was shipped outside the province, primarily to Florida, Asia, and North Africa.

In the early 1990s, a number of traditionally sulphur-importing countries installed sulphurrecovery equipment in oil refineries and other sulphur-emitting facilities, largely for environmental reasons. Consequently many of these countries became self-sufficient in sulphur and the price declined significantly. Under such low-price conditions, many of Alberta's competitors ceased production of sulphur, enabling Alberta's market share to rise throughout the late 1990s. Demand for Alberta sulphur, both domestic and export, is expected to rise slowly, levelling off at 7.5  $10^6$  t per year. **Figure 6.2** depicts the Alberta demand and sulphur removal.

#### 6.2.3 Imbalances between Sulphur Supply and Demand

Because elemental sulphur (in contrast to sulphuric acid and the energy resources described in this document) is fairly easy to store, imbalances between production and disposition have traditionally been accommodated through net additions to or removals from sulphur stockpiles. If demand exceeds supply, as was the case over the period 1985-1991, sulphur is withdrawn from stockpiles; if supply exceeds demand, as has been the case since 1992, sulphur is added to stockpiles. Sulphur stockpiles are expected grow until markets recover from the current glut. Changes to the sulphur inventory are illustrated in **Figure 6.2** as the difference between total supply and total demand.

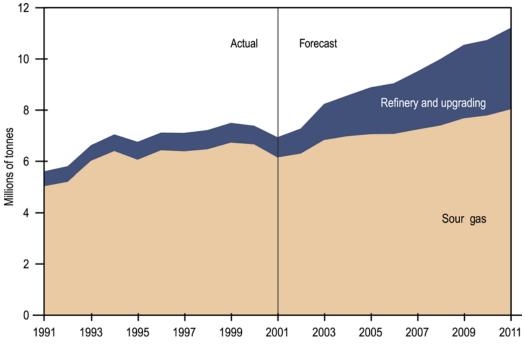



Figure 6.1. Sources of Alberta sulphur production

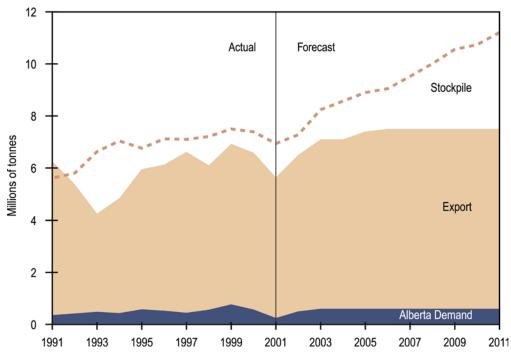



Figure 6.2. Alberta sulphur production and demand

## Appendix 1 Terminology, Abbreviations, and Conversion Factors

## 1.1 Terminology

| Area                        | The area used to determine the bulk rock volume of the oil-, crude<br>bitumen-, or gas-bearing reservoir, usually the area of the zero<br>isopach or the assigned area of a pool or deposit.                                                                                                                                                                                                                                                               |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burner-tip                  | The location where a fuel is used by a consumer.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Butanes                     | In addition to its normal scientific meaning, a mixture mainly of butanes that ordinarily may contain some propane or pentanes plus (Oil and Gas Conservation Act, Section $1(1)(c.1)$ ).                                                                                                                                                                                                                                                                  |
| Coalbed<br>Methane          | The naturally occurring dry, predominantly methane gas produced during the transformation of organic matter into coal.                                                                                                                                                                                                                                                                                                                                     |
| Compressibility<br>Factor   | A correction factor for nonideal gas determined for gas from a pool at<br>its initial reservoir pressure and temperature and, where necessary,<br>including factors to correct for acid gases.                                                                                                                                                                                                                                                             |
| Condensate                  | A mixture mainly of pentanes and heavier hydrocarbons that may be<br>contaminated with sulphur compounds and is recovered or is<br>recoverable at a well from an underground reservoir. It may be<br>gaseous in its virgin reservoir state but is liquid at the conditions<br>under which its volume is measured or estimated (Oil and Gas<br>Conservation Act, Section $1(1)(d.1)$ ).                                                                     |
| Connected<br>Wells          | Gas wells that are tied into facilities through a pipeline.                                                                                                                                                                                                                                                                                                                                                                                                |
| Crude Bitumen               | A naturally occurring viscous mixture mainly of hydrocarbons<br>heavier than pentane that may contain sulphur compounds and that in<br>its naturally occurring viscous state will not flow to a well (Oil Sands<br>Conservation Act, Section 1(1)(f)).                                                                                                                                                                                                     |
| Crude Oil<br>(Conventional) | A mixture mainly of pentanes and heavier hydrocarbons that may be<br>contaminated with sulphur compounds and is recovered or is<br>recoverable at a well from an underground reservoir. It is liquid at the<br>conditions under which its volume is measured or estimated and<br>includes all other hydrocarbon mixtures so recovered or recoverable<br>except raw gas, condensate, or crude bitumen (Oil and Gas<br>Conservation Act, Section 1(1)(f.1)). |
| Crude Oil<br>(Heavy)        | Crude oil is deemed to be heavy crude oil if it has a density of 900 kg/m <sup>3</sup> or greater, but the EUB may classify crude oil otherwise than in accordance with this criterion in a particular case, having regard to its market utilization and purchasers' classification.                                                                                                                                                                       |

| Crude Oil<br>(Light-Medium)                        | Crude oil is deemed to be light-medium crude oil if it has a density of less than 900 kg/m <sup>3</sup> , but the EUB may classify crude oil otherwise than in accordance with this criterion in a particular case, having regard to its market utilization and purchasers' classification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crude Oil<br>(Synthetic)                           | A mixture mainly of pentanes and heavier hydrocarbons that may<br>contain sulphur compounds and is derived from crude bitumen. It is<br>liquid at the conditions under which its volume is measured or<br>estimated and includes all other hydrocarbon mixtures so derived (Oil<br>and Gas Conservation Act, Section $1(1)(t.1)$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Datum Depth                                        | The approximate average depth relative to sea level of the midpoint of<br>an oil or gas productive zone for the wells in a pool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Decline Rate                                       | The annual rate of decline in well productivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Deep-cut<br>Facilities                             | A gas plant adjacent to or within gas field plants that can<br>extract ethane and other natural gas liquids using a turboexpander.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Density                                            | The mass or amount of matter per unit volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Density, Relative                                  | The density relative to air of raw gas upon discovery, determined by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Raw Gas)                                          | an<br>analysis of a gas sample representative of a pool under atmospheric<br>conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Diluent                                            | Lighter viscosity petroleum products that are used to dilute crude bitumen for transportation in pipelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Discovery Year                                     | The year when drilling was completed of the well in which the oil or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ·                                                  | gas pool was discovered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Economic<br>Strip Ratio                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Economic                                           | gas pool was discovered.<br>Ratio of waste (overburden material that covers mineable ore) to<br>ore (in this report refers to coal or oil sands) used to define an<br>economic limit below which it is economical to remove the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Economic<br>Strip Ratio<br>Established             | <ul> <li>gas pool was discovered.</li> <li>Ratio of waste (overburden material that covers mineable ore) to ore (in this report refers to coal or oil sands) used to define an economic limit below which it is economical to remove the overburden to recover the ore.</li> <li>Those reserves recoverable under current technology and present and anticipated economic conditions specifically proved by drilling, testing, or production, plus the portion of contiguous recoverable reserves that are interpreted to exist from geological, geophysical, or</li> </ul>                                                                                                                                                                                               |
| Economic<br>Strip Ratio<br>Established<br>Reserves | <ul> <li>gas pool was discovered.</li> <li>Ratio of waste (overburden material that covers mineable ore) to ore (in this report refers to coal or oil sands) used to define an economic limit below which it is economical to remove the overburden to recover the ore.</li> <li>Those reserves recoverable under current technology and present and anticipated economic conditions specifically proved by drilling, testing, or production, plus the portion of contiguous recoverable reserves that are interpreted to exist from geological, geophysical, or similar information with reasonable certainty.</li> <li>In addition to its normal scientific meaning, a mixture mainly of ethane that ordinarily may contain some methane or propane (Oil and</li> </ul> |

| Field Plant                                       | A natural gas facility that processes raw gas and is located near the source of the gas, upstream of the pipelines that move the gas to markets. These plants remove impurities, such as water and hydrogen sulfide, and may also extract natural gas liquids from the raw gas stream.                                                                                                                 |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field Plant Gate                                  | The point at which the gas exits the field plant and enters the pipeline.                                                                                                                                                                                                                                                                                                                              |
| Fractionation<br>Plant                            | A processing facility that takes a natural gas liquids stream<br>and separates out the component parts as specification products.                                                                                                                                                                                                                                                                      |
| Frontier Gas                                      | In this report this refers to gas produced from areas of northern and offshore Canada.                                                                                                                                                                                                                                                                                                                 |
| Gas                                               | Raw gas, marketable gas, or any constituent of raw gas, condensate, crude bitumen, or crude oil that is recovered in processing and is gaseous at the conditions under which its volume is measured or estimated (Oil and Gas Conservation Act, Section $1(1)(j.1)$ ).                                                                                                                                 |
| Gas                                               | Gas in a free state in communication in a reservoir with crude oil                                                                                                                                                                                                                                                                                                                                     |
| (Associated)                                      | initial reservoir conditions.                                                                                                                                                                                                                                                                                                                                                                          |
| Gas                                               | A mixture mainly of methane originating from raw gas, or if necessary                                                                                                                                                                                                                                                                                                                                  |
| (Marketable)                                      | from the processing of the raw gas for the removal or partial removal<br>of some constituents, and that meets specifications for use as a<br>domestic, commercial, or industrial fuel or as an industrial raw<br>material (Oil and Gas Conservation Act, Section 1(1)(m)).                                                                                                                             |
| Gas<br>(Marketable<br>at 101.325 kPa<br>and 15°C) | The equivalent volume of marketable gas at standard conditions.                                                                                                                                                                                                                                                                                                                                        |
| Gas<br>(Nonassociated)                            | Gas that is not in communication in a reservoir with an accumulation liquid hydrocarbons at initial reservoir conditions.                                                                                                                                                                                                                                                                              |
| Gas<br>(Raw)                                      | A mixture containing methane, other paraffinic hydrocarbons,<br>nitrogen, carbon dioxide, hydrogen sulphide, helium, and minor<br>impurities, or some of these components, that is recovered or is<br>recoverable at a well from an underground reservoir and is gaseous at<br>the conditions under which its volume is measured or estimated (Oil<br>and Gas Conservation Act, Section $1(1)(s.1)$ ). |
| Gas<br>(Solution )                                | Gas that is dissolved in crude oil under reservoir conditions and<br>evolves as a result of pressure and temperature changes.                                                                                                                                                                                                                                                                          |
| Gas-Oil Ratio<br>(Initial Solution)               | The volume of gas (in cubic metres, measured under standard conditions) contained in one stock-tank cubic metre of oil under initial reservoir conditions.                                                                                                                                                                                                                                             |

| Good Production<br>Practice<br>(GPP)   | <ul> <li>Production from oil pools at a rate</li> <li>(i) not governed by a base allowable, but</li> <li>(ii) limited to what can be produced without adversely and significantly affecting conservation, the prevention of waste, or the opportunity of each owner in the pool to obtain its share of the production (Oil and Gas Conservation Regulation 1.020(2)9).</li> </ul>                                                                                                             |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | This practice is authorized by the EUB either to improve the<br>economics of production from a pool and thus defer its abandonment<br>or to avoid unnecessary administrative expense associated with<br>regulation or production restrictions where this serves little or no<br>purpose.                                                                                                                                                                                                      |
| Gross Heating<br>Value (of<br>Dry Gas) | The heat liberated by burning moisture-free gas at standard conditions and condensing the water vapour to a liquid state.                                                                                                                                                                                                                                                                                                                                                                     |
| Initial<br>Established<br>Reserves     | Established reserves prior to the deduction of any production.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Initial Volume<br>in-Place             | The volume of crude oil, crude bitumen, raw natural gas, or coal calculated or interpreted to exist in a reservoir before any volume has been produced.                                                                                                                                                                                                                                                                                                                                       |
| Maximum Day<br>Rate                    | The operating day rate for gas wells when they are first placed<br>on production. The estimation of the maximum day rate requires the<br>average hourly production rate. For each well, the annual production<br>is divided by the hours that the well produced in that year to obtain<br>the average hourly production for the year. This hourly rate is then<br>multiplied by 24 hours to yield an estimate of a full-day operation of a<br>well, which is referred to as maximum day rate. |
| Maximum<br>Recoverable<br>Thickness    | The assumed maximum operational reach of underground coal mining equipment in a single seam.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mean Formation                         | The approximate average depth below kelly bushing of the midpoint of                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Depth                                  | an oil or gas productive zone for the wells in a pool.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Methane                                | In addition to its normal scientific meaning, a mixture mainly of methane that ordinarily may contain some ethane, nitrogen, helium, or carbon dioxide (Oil and Gas Conservation Act, Section 1(1)(m.1)).                                                                                                                                                                                                                                                                                     |
| Natural Gas<br>Liquids                 | Ethane, propane, butanes, pentanes plus, or a combination of these obtained from the processing of raw gas or condensate.                                                                                                                                                                                                                                                                                                                                                                     |
| Off-gas                                | Natural gas that is produced from the bitumen production in the oil sands. This gas is typically rich in natural gas liquids and olefins.                                                                                                                                                                                                                                                                                                                                                     |

| Oil                    | Condensate, crude oil, or a constituent of raw gas, condensate, or crude oil that is recovered in processing and is liquid at the conditions under which its volume is measured or estimated (Oil and Gas Conservation Act, Section $1(1)(n.1)$ ).                                                                                                                                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oil Sands              | <ul> <li>(i) sands and other rock materials containing crude bitumen,</li> <li>(ii) the crude bitumen contained in those sands and other rock materials, and</li> <li>(iii) any other mineral substances other than natural gas in association with that crude bitumen or those sands and other rock materials referred to in subclauses (i) and (ii) (Oil Sands Conservation Act, Section l(l)(o)).</li> </ul>                                      |
| Oil Sands<br>Deposit   | A natural reservoir containing or appearing to contain an accumulation of oil sands separated or appearing to be separated from any other such accumulation (Oil and Gas Conservation Act, Section $1(1)(0.1)$ ).                                                                                                                                                                                                                                    |
| Overburden             | In this report overburden is a mining term related to the thickness of material above a mineable occurrence of coal or bitumen.                                                                                                                                                                                                                                                                                                                      |
| Pay Thickness          | The bulk rock volume of a reservoir of oil, oil sands, or gas divided by                                                                                                                                                                                                                                                                                                                                                                             |
| (Average)              | its area.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pentanes Plus          | A mixture mainly of pentanes and heavier hydrocarbons that<br>ordinarily may contain some butanes and is obtained from the<br>processing of raw gas, condensate, or crude oil (Oil and Gas<br>Conservation Act, Section 1(1)(p)).                                                                                                                                                                                                                    |
| Pool                   | A natural underground reservoir containing or appearing to contain an accumulation of oil or gas or both separated or appearing to be separated from any other such accumulation (Oil and Gas Conservation Act, Section $1(1)(q)$ ).                                                                                                                                                                                                                 |
| Porosity               | The effective pore space of the rock volume determined from core<br>analysis and well log data measured as a fraction of rock volume.                                                                                                                                                                                                                                                                                                                |
| Pressure<br>(Initial)  | The reservoir pressure at the reference elevation of a pool upon discovery.                                                                                                                                                                                                                                                                                                                                                                          |
| Propane                | In addition to its normal scientific meaning, a mixture mainly of propane that ordinarily may contain some ethane or butanes (Oil and Gas Conservation Act, Section $1(1)(s)$ ).                                                                                                                                                                                                                                                                     |
| Recovery<br>(Enhanced) | The increased recovery from a pool achieved by artificial means or by<br>the application of energy extrinsic to the pool. The artificial means or<br>application includes pressuring, cycling, pressure maintenance, or<br>injection to the pool of a substance or form of energy but does not<br>include the injection in a well of a substance or form of energy for the<br>sole purpose of<br>(i) aiding in the lifting of fluids in the well, or |

|                                      | <ul> <li>(ii) stimulation of the reservoir at or near the well by mechanical,<br/>chemical, thermal or explosive means (Oil and Gas Conservation<br/>Act, Section 1(1)(h)).</li> </ul>                                                                                                               |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recovery<br>(Pool)                   | In gas pools, the fraction of the in-place reserves of gas expected to be<br>recovered under the subsisting recovery mechanism.                                                                                                                                                                      |
| Recovery<br>(Primary)                | Recovery of oil by natural depletion processes only measured as a volume thus recovered or as a fraction of the in-place oil.                                                                                                                                                                        |
| Refined<br>Petroleum<br>Products     | End products in the refining process.                                                                                                                                                                                                                                                                |
| Refinery<br>Light Ends               | Light oil products produced at a refinery; includes gasoline and aviation fuel.                                                                                                                                                                                                                      |
| Remaining<br>Established<br>Reserves | Initial established reserves less cumulative production.                                                                                                                                                                                                                                             |
| Reprocessing<br>Facilities           | A gas processing plant used to extract ethane and natural gas<br>liquids from marketable natural gas. Such facilities, also referred to as<br>straddle plants, are located on major natural gas transmission lines.                                                                                  |
| Retrograde<br>Condensate<br>Pools    | Gas pools that have a dew point such that natural gas liquids<br>will condense out of solution with a drop in reservoir pressure.<br>To limit liquid dropout in the reservoir, dry gas is reinjected to<br>maintain reservoir pressure.                                                              |
| Rich Gas                             | Natural gas that contains a relatively high concentration of natural gas liquids.                                                                                                                                                                                                                    |
| Sales Gas                            | A volume of gas transacted in a time period. This gas may be<br>augmented with gas from storage.                                                                                                                                                                                                     |
| Saturation<br>(Gas)                  | The fraction of pore space in the reservoir rock occupied by gas upon discovery.                                                                                                                                                                                                                     |
| Saturation<br>(Water)                | The fraction of pore space in the reservoir rock occupied by water upon discovery.                                                                                                                                                                                                                   |
| Shrinkage Factor<br>(Initial)        | The volume occupied by one cubic metre of oil from a pool measured<br>at standard conditions after flash gas liberation consistent with the<br>surface separation process and divided by the volume occupied by the<br>same oil and gas at the pressure and temperature of a pool upon<br>discovery. |
| Solvent                              | A suitable mixture of hydrocarbons ranging from methane to pentanes<br>plus but consisting largely of methane, ethane, propane, and butanes<br>for use in enhanced-recovery operations.                                                                                                              |

| Specification<br>Product | A crude oil or refined petroleum product with defined properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sterilization            | The rendering of otherwise definable economic ore as unrecoverable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Surface Loss             | A summation of the fractions of recoverable gas that is removed as<br>acid gas and liquid hydrocarbons and is used as lease or plant fuel or<br>is flared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Temperature              | The initial reservoir temperature upon discovery at the reference elevation of a pool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ultimate<br>Potential    | An estimate of the initial established reserves that will have been developed in an area by the time all exploratory and development activity has ceased, having regard for the geological prospects of that area and anticipated technology and economic conditions. Ultimate potential includes cumulative production, remaining established reserves, and future additions through extensions and revisions to existing pools and the discovery of new pools. Ultimate potential can be expressed by the following simple equation: Ultimate potential = initial established reserves + additions to existing pools + future discoveries. |
| Upgrading                | The process that converts bitumen and heavy crude oil into a product<br>with a density and viscosity similar to light crude oil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Zone                     | Any stratum or sequence of strata that is designated by the EUB as a zone (Oil and Gas Conservation Act, Section $1(1)(z)$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## 1.2 Abbreviations

|                | -h                                |
|----------------|-----------------------------------|
| ABAND          | abandoned                         |
| ADMIN 2        | Administrative Area No. 2         |
| ASSOC          | associated gas                    |
| DISC YEAR      | discovery year                    |
| EOR            | enhanced oil recovery             |
| FRAC           | fraction                          |
| GC             | gas cycling                       |
| GIP            | gas in place                      |
| GOR            | gas-oil ratio                     |
| GPP            | good production practice          |
| ha             | hectare                           |
| INJ            | injected                          |
| I.S.           | integrated scheme                 |
| KB             | kelly bushing                     |
| LF             | load factor                       |
| LOC EX PROJECT | local experimental project        |
| LOC U          | local utility                     |
| MB             | material balance                  |
| MFD            | mean formation depth              |
| MOP            | maximum operating pressure        |
| MU             | commingling order                 |
| NGL            | natural gas liquids               |
| NO             | number                            |
| NON-ASSOC      | nonassociated gas                 |
| PE             | performance estimate              |
| PD             | production decline                |
| RF             | recovery factor                   |
| RGE            | range                             |
| RPP            | refined petroleum production      |
| SA             | strike area                       |
| SATN           | saturation                        |
| SCO            | synthetic crude oil               |
| SF             | solvent flood                     |
| SG             | gas saturation                    |
| SL             | surface loss                      |
| SOLN           | solution gas                      |
| STP            | standard temperature and pressure |
| SUSP           | suspended                         |
| SW             | water saturation                  |
| TEMP           | temperature                       |
| TOT            | total                             |
| TR             | total record                      |
| TVD            | true vertical depth               |
| TWP            | township                          |
| VO             | volumetric reserve determination  |
| VOL            | volume                            |
| WF             | waterflood                        |
| WM             | west of [a certain] meridian      |
| WTR DISP       | water disposal                    |
| WTR INJ        | water injection                   |
|                |                                   |

## 1.3 Symbols

#### International System of Units (SI)

| °C  | degree Celsius | М   | mega      |
|-----|----------------|-----|-----------|
| d   | day            | m   | metre     |
| EJ  | exajoule       | MJ  | megajoule |
| ha  | hectare        | mol | mole      |
| J   | joule          | Т   | tera      |
| kg  | kilogram       | t   | tonne     |
| kPa | kilopascal     | TJ  | terajoule |
|     |                |     |           |

## Imperial

| bbl | barrel               | °F   | degree Fahrenheit               |
|-----|----------------------|------|---------------------------------|
| Btu | British thermal unit | psia | pounds per square inch absolute |
| cf  | cubic foot           | psig | pounds per square inch gauge    |
| d   | day                  | stb  | stock-tank barrel               |

## 1.4 Conversion Factors

## Metric and Imperial Equivalent Units<sup>(a)</sup>

| Metric                                               | Imperial                                                                                                           |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1 m³ of gas <sup>(b)</sup><br>(101.325 kPa and 15°C) | <ul> <li>35.49373 cubic feet of gas<br/>(14.65 psia and 60°F)</li> </ul>                                           |
| 1 m³ of ethane<br>(equilibrium pressure and 15°C)    | <ul> <li>6.33 Canadian barrels of ethane<br/>(equilibrium pressure and 60°F)</li> </ul>                            |
| 1 m <sup>3</sup> of propane pressure and 15°C)       | <ul> <li>6.3000 Canadian barrels of propane (equilibrium (equilibrium pressure and 60°F)</li> </ul>                |
| 1 m³ of butanes pressure and 15°C)                   | <ul> <li>6.2968 Canadian barrels of butanes (equilibrium<br/>(equilibrium pressure and 60°F)</li> </ul>            |
| 1 m³ of oil or pentanes plus<br>pressure and 15°C)   | <ul> <li>6.2929 Canadian barrels of oil or pentanes (equilibring plus (equilibrium pressure and 60°F)</li> </ul>   |
| 1 m³ of water<br>and 15°C)                           | <ul> <li>6.2901 Canadian barrels of water (equilibrium press<br/>(equilibrium pressure and 60°F)</li> </ul>        |
| 1 tonne                                              | = 0.9842064 (U.K.) long tons (2240 pounds)                                                                         |
| 1 tonne                                              | = 1.102311 short tons (2000 pounds)                                                                                |
| 1 kilojoule                                          | <ul> <li>0.9482133 British thermal units (Btu<br/>as defined in the federal Gas Inspection Act (60-61°)</li> </ul> |

<sup>a</sup> Reserves data in this report are presented in the International System of Units (SI). The provincial totals and a few other major totals are shown in both SI units and the imperial equivalents in the various tables.

Volumes of gas are given as at a standard pressure and temperature of 101.325 kPa and 15°C respectively.

| Term | Value            | Scientific notation |
|------|------------------|---------------------|
| kilo | thousand         | 10 <sup>3</sup>     |
| mega | million          | 106                 |
| giga | billion          | 10 <sup>9</sup>     |
| tera | thousand billion | 10 <sup>12</sup>    |
| peta | million billion  | 10 <sup>15</sup>    |
| exa  | billion billion  | 10 <sup>18</sup>    |

#### Value and Scientific Notation

# Energy Content Factors Energy resource

| Energy resource                                   | Gigajoules |  |
|---------------------------------------------------|------------|--|
|                                                   | 07.48      |  |
| Natural gas (per thousand cubic metres)           | 37.4*      |  |
| Ethane (per cubic metre)                          | 18.5       |  |
| Propane (per cubic metre)                         | 25.4       |  |
| Butanes (per cubic metre)                         | 28.2       |  |
| Oil (per cubic metre)                             |            |  |
| Light and medium crude oil                        | 38.5       |  |
| Heavy crude oil                                   | 41.4       |  |
| Bitumen                                           | 42.8       |  |
| Synthetic crude oil                               | 39.4       |  |
| Pentanes plus                                     | 33.1       |  |
| Refined petroleum products (per cubic metre)      |            |  |
| Motor gasoline                                    | 34.7       |  |
| Diesel                                            | 38.7       |  |
| Aviation turbo fuel                               | 35.9       |  |
| Aviation gasoline                                 | 33.5       |  |
| Kerosene                                          | 37.7       |  |
| Light fuel oil                                    | 38.7       |  |
| Heavy fuel oil                                    | 41.7       |  |
| Naphthas                                          | 35.2       |  |
| Lubricating oils and greases                      | 39.2       |  |
| Petrochemical feedstock                           | 35.2       |  |
| Asphalt                                           | 44.5       |  |
| Coke                                              | 28.8       |  |
| Other products (from refinery)                    | 39.8       |  |
| Coal (per tonne)                                  |            |  |
| Subbituminous                                     | 18.5       |  |
| Bituminous                                        | 25.0       |  |
| Hydroelectricity (per megawatt-hour of output)    | 10.5**     |  |
| Nuclear electricity (per megawatt-hour of output) | 10.5**     |  |
| * Based on the heating value at 1000 Btu/cf       |            |  |

\* Based on the heating value at 1000 Btu/cf. \*\*Based on the thermal efficiency of coal generation.

## Appendix 2 Pools and Natural Gas Liquids

| Pool                              | Raw gas<br>initial<br>volume in-<br>place<br>(10 <sup>6</sup> m <sup>3</sup> ) | Raw gas<br>gross heating<br>value (MJ/m³) | Initial<br>energy<br>in-place<br>(10 <sup>9</sup> MJ) | Recovery<br>factor<br>(fraction) | Fuel and<br>shrinkage<br>(surface loss<br>factor)<br>(fraction) | Initial<br>marketable<br>gas energy<br>(10 <sup>9</sup> MJ) | Marketable<br>gas gross<br>heating<br>value<br>(MJ/m <sup>3</sup> ) | Initial<br>established<br>reserves of<br>marketable<br>gas<br>(10 <sup>6</sup> m <sup>3</sup> ) |
|-----------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|----------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Brazeau River<br>Nisku J          | 557                                                                            | 74.44                                     | 41                                                    | 0.75                             | 0.50                                                            | 15                                                          | 41.01                                                               | 380                                                                                             |
| Brazeau River<br>Nisku K          | 1 129                                                                          | 74.17                                     | 83                                                    | 0.75                             | 0.60                                                            | 25                                                          | 42.15                                                               | 596                                                                                             |
| Brazeau River<br>Nisku M          | 1 832                                                                          | 76.22                                     | 140                                                   | 0.75                             | 0.60                                                            | 42                                                          | 41.36                                                               | 1 013                                                                                           |
| Brazeau River<br>Nisku P          | 8 663                                                                          | 61.23                                     | 530                                                   | 0.74                             | 0.65                                                            | 137                                                         | 40.00                                                               | 3 435                                                                                           |
| Brazeau River<br>Nisku S          | 1 665                                                                          | 54.64                                     | 90                                                    | 0.80                             | 0.57                                                            | 31                                                          | 41.38                                                               | 756                                                                                             |
| Brazeau River<br>Nisku W          | 1 895                                                                          | 55.65                                     | 105                                                   | 0.72                             | 0.35                                                            | 49                                                          | 41.13                                                               | 1 200                                                                                           |
| Caroline<br>Beaverhill Lake A     | 64 707                                                                         | 49.95                                     | 3 232                                                 | 0.77                             | 0.76                                                            | 597                                                         | 36.51                                                               | 16 360                                                                                          |
| Carson Creek<br>Beaverhill Lake B | 10 941                                                                         | 55.68                                     | 609                                                   | 0.90                             | 0.39                                                            | 334                                                         | 41.65                                                               | 8 030                                                                                           |
| Harmattan East<br>Rundle          | 36 252                                                                         | 50.26                                     | 1 822                                                 | 0.85                             | 0.26                                                            | 1 146                                                       | 40.93                                                               | 28 000                                                                                          |
| Harmattan-Elkton<br>Rundle C      | 31 326                                                                         | 46.96                                     | 1 471                                                 | 0.90                             | 0.27                                                            | 966                                                         | 41.48                                                               | 23 300                                                                                          |
| Kakwa<br>A Cardium A              | 1 120                                                                          | 55.40                                     | 62                                                    | 0.85                             | 0.32                                                            | 35                                                          | 42.71                                                               | 840                                                                                             |
| Kaybob South<br>Beaverhill Lake A | 103 728                                                                        | 52.61                                     | 5 457                                                 | 0.77                             | 0.61                                                            | 1 638                                                       | 39.68                                                               | 41 300                                                                                          |
| Ricinus<br>Cardium A              | 8 316                                                                          | 58.59                                     | 487                                                   | 0.85                             | 0.32                                                            | 281                                                         | 40.52                                                               | 6 950                                                                                           |
| Valhalla<br>Halfway B             | 6 331                                                                          | 53.89                                     | 341                                                   | 0.80                             | 0.33                                                            | 182                                                         | 40.00                                                               | 4 572                                                                                           |
| Waterton<br>Rundle-Wabamun A      | 85 254                                                                         | 48.74ª                                    | 4 155                                                 | 0.78                             | 0.35                                                            | 2 107                                                       | 41.09                                                               | 51 271                                                                                          |
| Wembley<br>Halfway B              | 5 740                                                                          | 53.89                                     | 309                                                   | 0.80                             | 0.33                                                            | 165                                                         | 40.12                                                               | 4 133                                                                                           |
| Westerose<br>D-3                  | 5 230                                                                          | 51.55                                     | 270                                                   | 0.90                             | 0.25                                                            | 182                                                         | 41.72                                                               | 4 369                                                                                           |
| Westpem<br>Nisku E                | 1 160                                                                          | 66.05                                     | 76                                                    | 0.90                             | 0.54                                                            | 31                                                          | 44.76                                                               | 709                                                                                             |
| Windfall<br>D-3 A                 | 21 288                                                                         | 53.42                                     | 1 137                                                 | 0.60                             | 0.53                                                            | 320                                                         | 42.42                                                               | 7 560                                                                                           |

## 2-1. Reserves of retrograde pools, 2001

<sup>a</sup> Producible raw gas gross heating value is 40.65 MJ/m<sup>3</sup>.

#### 2-2. Reserves of multifield pools, 2001

| Multifield pool<br>Field and pool          | Initial<br>established<br>reserves (10 <sup>6</sup> m³) | Multifield pool<br>Field and pool         | Initial<br>established<br>reserves (10 <sup>6</sup> m <sup>3</sup> ) |
|--------------------------------------------|---------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|
| Edmonton Pool No. 1                        | 1                                                       | Connorsville Milk River, Medicine Hat and |                                                                      |
| Bashaw Edmonton D                          | 228                                                     | Belly River                               | 1 865                                                                |
| Nevis Edmonton D                           | 796                                                     | Countess Milk River, Medicine Hat,        | 1 000                                                                |
| Nevis Editoritor B                         |                                                         | Second White Specks and Belly River       | 15 709                                                               |
| Total                                      | 1 024                                                   | Drumheller Medicine Hat                   | 162                                                                  |
| lotal                                      | 1 024                                                   | Estuary Medicine Hat and Belly River      | 1 539                                                                |
| Belly River Pool No. 1                     |                                                         | Estuary modifier rat and Bony raver       | 1000                                                                 |
| Bashaw Belly River C, H, L, M & Q          | 2 698                                                   | Eyremore Milk River, Medicine Hat and     |                                                                      |
| Nevis Belly River C                        | 1 124                                                   | Second White Specks                       | 1 034                                                                |
| ,                                          |                                                         | Farrow Medicine Hat and Belly River       | 2 046                                                                |
| Total                                      | 3 822                                                   | Gleichen Medicine Hat and Belly River     | 2 694                                                                |
|                                            |                                                         | Hussar Milk River, Medicine Hat and       |                                                                      |
| Belly River Pool No. 2                     |                                                         | Belly River                               | 4 592                                                                |
| Bruce Belly River J                        | 765                                                     | Jenner Milk River, Medicine Hat and       |                                                                      |
| Holmberg Belly River J                     | 124                                                     | Second White Specks                       | 731                                                                  |
| 0,                                         |                                                         | ·                                         |                                                                      |
| Total                                      | 889                                                     | Johnson Milk River, Medicine Hat and      |                                                                      |
|                                            |                                                         | Second White Specks                       | 447                                                                  |
| Belly River Pool No. 3                     |                                                         | Kitsim Milk River, Medicine Hat and       |                                                                      |
| Fenn West Belly River J                    | 23                                                      | Second White Specks                       | 282                                                                  |
| Fenn-Big Valley Edmonton A,                |                                                         | Lathom Milk River and Medicine Hat        | 427                                                                  |
| Belly River J, L, M, N, Z & JJ             | 1 479                                                   | Leckie Milk River, Medicine Hat and       |                                                                      |
| Gadsby Belly River J                       | 1 782                                                   | Second White Specks                       | 386                                                                  |
|                                            |                                                         | Matziwin Milk River, Medicine Hat and     |                                                                      |
| Total                                      | 3 284                                                   | Second White Specks                       | 3 130                                                                |
| Belly River Pool No. 4                     |                                                         | Medicine Hat Milk River, Medicine Hat,    |                                                                      |
| Michichi Belly River B & G                 | 144                                                     | Second White Specks and Colorado          | 125 238                                                              |
| Watts Belly River B & I                    | 77                                                      | Newell Milk River, Medicine Hat and       |                                                                      |
|                                            |                                                         | Second White Specks                       | 1 397                                                                |
| Total                                      | 221                                                     | Princess Milk River, Medicine Hat,        | 1 001                                                                |
| i otai                                     |                                                         | Second White Specks and                   |                                                                      |
| Southeastern Alberta Gas System (MU)       |                                                         | Belly River                               | 24 900                                                               |
| Alderson Milk River, Medicine Hat,         |                                                         | Rainier Milk River, Medicine Hat and      |                                                                      |
| Second White Specks and                    |                                                         | Second White Specks                       | 558                                                                  |
| Colorado                                   | 43 767                                                  | Seiu Lake Medicine Hat                    | 540                                                                  |
| Atlee-Buffalo Milk River, Medicine Hat and |                                                         |                                           |                                                                      |
| Second White Specks                        | 5 000                                                   | Shouldice Medicine Hat and                |                                                                      |
| Bantry Milk River, Medicine Hat and        |                                                         | Belly River                               | 1 429                                                                |
| Second White Specks                        | 24 912                                                  | Suffield Milk River, Medicine Hat,        |                                                                      |
| Bassano Milk River, Medicine Hat and       |                                                         | Second White Specks and Colorado          | 61 927                                                               |
| Second White Specks                        | 614                                                     | Verger Milk River, Medicine Hat,          | 0.01                                                                 |
| Berry Medicine Hat                         | 81                                                      | Belly River and Second White Specks       | 15 354                                                               |
|                                            |                                                         | Wayne-Rosedale Medicine Hat               | 807                                                                  |
| Bindloss Milk River and Medicine Hat       | 497                                                     | Wintering Hills Milk River, Medicine Hat  | 001                                                                  |
| Blackfoot Medicine Hat and Belly River     | 1 003                                                   | and Second White Specks                   | 4 262                                                                |
| Bow Island Milk River and                  | 1000                                                    |                                           |                                                                      |
| Second White Specks                        | 20                                                      | Total                                     | 359 664                                                              |
| Brooks Milk River, Medicine Hat and        | 20                                                      | 10(0)                                     | 000 004                                                              |
| Second White Specks                        | 852                                                     | Second White Specks Pool No. 2            |                                                                      |
| Cavalier Belly River                       | 198                                                     | Garden Plains Second White Specks E       | 1 167                                                                |
|                                            | 100                                                     | Hanna Second White Specks E               | 331                                                                  |
| Cessford Milk River, Medicine Hat,         |                                                         | Provost Second White Specks E             | 289                                                                  |
|                                            | 11 264                                                  | Richdale Second White Specks E & Viking E | 150                                                                  |
| Second White Specks and Belly River        | 11204                                                   |                                           |                                                                      |
|                                            |                                                         | Sullivan Lake Second White Specks E       | <u>    101</u>                                                       |
|                                            |                                                         | Total                                     | 2 038                                                                |

(continued)

#### 2-2. Reserves of multifield pools, 2001 (continued)

| Multifield pool                                                         | Initial<br>established<br>reserves (10 <sup>6</sup> m³) | Multifield pool<br>Field and pool           | Initial<br>established<br>reserves (10 <sup>6</sup> m <sup>3</sup> |
|-------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Second White Specks Pool No. 3                                          |                                                         | Viking Pool No. 4                           |                                                                    |
| Conrad Second White Specks J                                            | 186                                                     | Fenn-Big Valley Viking B                    | 749                                                                |
| Forest Second White Specks J                                            | 130                                                     | Fenn West Viking B                          | 185                                                                |
| Pendant D'Oreille Second White Specks J                                 | 494                                                     | r chin west viking b                        |                                                                    |
| Smith Coulee Second White Specks J                                      | 904                                                     | Total                                       | 934                                                                |
| Total                                                                   | 1 714                                                   | Viking Pool No. 5                           |                                                                    |
| Viking Bool No. 1                                                       |                                                         | Hudson Viking A                             | 854                                                                |
| Viking Pool No. 1                                                       |                                                         | Sedalia Viking A & F,                       |                                                                    |
| Fairydell-Bon Accord Upper Viking A & C,                                | 2 610                                                   | Upper Mannville D, and Lower                | 500                                                                |
| and Middle Viking A & B,                                                | 3 610                                                   | Mannville B                                 | 580                                                                |
| Redwater Upper Viking A, Middle Viking A,                               | 000                                                     | <b>-</b>                                    |                                                                    |
| and Lower Viking A                                                      | 830                                                     | Total                                       | 1 434                                                              |
| Westlock Middle Viking B                                                | 381                                                     |                                             |                                                                    |
|                                                                         |                                                         | Viking Pool No. 6                           |                                                                    |
| Total                                                                   | 4 821                                                   | Hairy Hill Viking A                         | 190                                                                |
|                                                                         |                                                         | Willingdon Viking A & J                     | 228                                                                |
| Viking Pool No. 2                                                       |                                                         |                                             |                                                                    |
| Beaverhill Lake Upper Viking A,                                         |                                                         | Total                                       | 418                                                                |
| Middle Viking A, and                                                    |                                                         |                                             |                                                                    |
| Lower Viking A                                                          | 5083                                                    | Viking Pool No. 7                           |                                                                    |
| Bellshill Lake Upper and Middle Viking A                                | 184                                                     | Inland Upper Viking C & E,                  |                                                                    |
| Birch Upper and Middle Viking A                                         | 83                                                      | Middle Viking F, G, & I, and                |                                                                    |
| Bruce Upper, Middle & Lower Viking A,                                   |                                                         | Upper Mannville A                           | 409                                                                |
| Upper Mannville Z & G4G, and                                            |                                                         | Royal Upper Viking C and                    |                                                                    |
| Ellerslie W, JJJ, KKK, LLL & MMM                                        | 3 463                                                   | Lower Viking A                              | 43                                                                 |
| Dinant Upper and Middle Viking A                                        | 21                                                      |                                             |                                                                    |
|                                                                         |                                                         | Total                                       | 452                                                                |
| Fort Saskatchewan Upper and                                             |                                                         |                                             |                                                                    |
| Middle Viking A                                                         | 8119                                                    | Viking Pool No. 13                          |                                                                    |
| Holmberg Upper and Middle Viking A                                      | 19                                                      | Chigwell Viking G                           | 218                                                                |
| Killam Upper and Middle Viking A, Rex B,                                |                                                         | Nelson Viking G                             | 157                                                                |
| and Glauconitic Q                                                       | 2 289                                                   |                                             |                                                                    |
| Killam North Upper and                                                  |                                                         | Total                                       | 375                                                                |
| Middle Viking A, Upper Mannville T,                                     |                                                         | 1000                                        | 010                                                                |
| Basal Mannville C, L & U, and Nisku A                                   | 1 416                                                   | St. Edouard Pool No. 3                      |                                                                    |
| Mannville Upper and Middle Viking A, and                                | 1410                                                    | Ukalta St. Edouard B                        | 54                                                                 |
| Upper Mannville K                                                       | 380                                                     | Whitford St. Eduard B                       | 80                                                                 |
|                                                                         | 500                                                     |                                             | 0                                                                  |
| Sedgewick Upper and Middle Viking A<br>Viking-Kinsella Upper and Middle | 68                                                      | Total                                       | 134                                                                |
| Viking A, Upper Mannville YY, CCC, LLL,                                 |                                                         | Glauconitic Pool No. 3                      |                                                                    |
| MMM, ZZZ, H2H & M2M, Colony G, G2G & N2N                                |                                                         | Bonnie Glen Glauconitic A and               |                                                                    |
| Glauconitic J, and Wabamun I                                            | ,<br>29 113                                             | Lower Mannville F                           | 1 440                                                              |
| Wainwright Upper and Middle Viking A, and                               | 20110                                                   | Ferrybank Glauconitic A & Lower Mannville W |                                                                    |
| Colony G, R, V, & W                                                     | 1 786                                                   |                                             | 1 100                                                              |
|                                                                         |                                                         | Total                                       | 2 628                                                              |
| Total                                                                   | 52 024                                                  | Total                                       | 2 020                                                              |
| 10(0)                                                                   |                                                         | Glauconitic Pool No. 5                      |                                                                    |
|                                                                         |                                                         | Bigoray Glauconitic I and Ostracod D        | 1 238                                                              |
| Viking Pool No. 3                                                       |                                                         | Pembina Glauconitic I & D and Ostracod C    | 3 348                                                              |
| Carbon Belly River B and                                                | 1 070                                                   | T-4-1                                       | 4 500                                                              |
| Viking D                                                                | 1 872                                                   | Total                                       | 4 586                                                              |
| Ghost Pine Viking D                                                     | 295                                                     |                                             |                                                                    |
| Total                                                                   | 2 167                                                   |                                             | (continued)                                                        |

| Multifield pool                                  | Initial<br>established        | Multifield pool                            | Initial<br>established                   |
|--------------------------------------------------|-------------------------------|--------------------------------------------|------------------------------------------|
| Field and pool                                   | reserves (10 <sup>6</sup> m³) | Field and pool                             | reserves (10 <sup>6</sup> m <sup>3</sup> |
|                                                  |                               |                                            | 50                                       |
| Glauconitic Pool No. 6                           | 400                           | Elmworth Falher A-21                       | 58                                       |
| Bassano Glauconitic III                          | 432                           | Elmworth Falher A-40                       | 30                                       |
| Countess Bow Island MM and Glauconitic III       | 2 023                         | Elmworth Falher A-43                       | 56                                       |
| Hussar Viking L, Glauconitic III, and Ostracod C | 0 1 152                       | Elmworth Falher B-1                        | 2 194                                    |
| Wintering Hills Glauconitic III and              |                               | Elmworth Falher B-2                        | 604                                      |
| Lower Mannville W                                | 17                            |                                            |                                          |
| <b>T</b> ( )                                     | 0.004                         | Elmworth Falher B-3                        | 2 819                                    |
| Total                                            | 3 624                         | Elmworth Falher B-4<br>Elmworth Falher B-9 | 3 037<br>1 041                           |
| Nuesky Deal No.4                                 |                               |                                            |                                          |
| Bluesky Pool No.1                                | 4 000                         | Elmworth Falher B-13                       | 46                                       |
| Rainbow Bluesky C                                | 1 068                         | Elmworth Falher B-14                       | 119                                      |
| Sousa Bluesky C                                  | 886                           |                                            | 040                                      |
| <b>-</b>                                         | 4.054                         | Elmworth Falher B-15                       | 210                                      |
| Total                                            | 1 954                         | Elmworth Falher B-16                       | 126                                      |
|                                                  |                               | Elmworth Falher C-2                        | 36                                       |
| luesky-Detrital-Debolt Pool No. 1                |                               | Elmworth Falher C-3                        | 27                                       |
| Cranberry Bluesky-Detrital-Debolt A              | 2 024                         | Elmworth Falher D-2                        | 652                                      |
| Hotchkiss Bluesky-Detrital-Debolt A              | 4 959                         |                                            |                                          |
| ·                                                |                               | Elmworth Falher D-3                        | 20                                       |
| Total                                            | 6 983                         | Elmworth Falher D-5                        | 25                                       |
|                                                  |                               | Elmworth Falher D-6                        | 43                                       |
| ething Pool No. 1                                |                               |                                            | 104                                      |
| Fox Creek Viking C, Notikewin C                  |                               | Elmworth Bluesky A                         |                                          |
|                                                  | 0.470                         | Elmworth Gething A                         | 22                                       |
| and Gething D & H                                | 2 470                         |                                            |                                          |
| Kaybob South Gething H                           | 632                           | Elmworth Cadomin A                         | 4 926                                    |
|                                                  |                               | Sinclair Notikewin A, B, & C, Falher A     |                                          |
| Total                                            | 3 102                         | and Cadomin A                              | 7 055                                    |
| Ilerslie Pool No. 1                              |                               | Total                                      | 43 425                                   |
| Connorsville Glauconitic A, B, C, E & I          |                               | Iotai                                      | 45 425                                   |
| and Ellerslie A                                  | 3 240                         | Halfman Davi Na 4                          |                                          |
|                                                  | 5 240                         | Halfway Pool No. 1                         |                                          |
| Wintering Hills Upper Mannville A                |                               | Valhalla Halfway B                         | 4 572                                    |
| and Ellerslie A                                  | 2 016                         | Wembley Halfway B                          | 4 133                                    |
| Total                                            | 5 256                         | Total                                      | 8 705                                    |
|                                                  |                               |                                            |                                          |
| Cadomin Pool No. 1                               | 000                           | Halfway Pool No. 2                         |                                          |
| Elmworth Dunvegan A                              | 366                           | Knopcik Halfway N                          | 638                                      |
| Elmworth Dunvegan I                              | 62                            | Valhalla Halfway N                         | 115                                      |
| Elmworth Dunvegan T                              | 20                            |                                            |                                          |
| Elmworth Cadotte A                               | 2 817                         | Total                                      | 753                                      |
| Elmworth Cadotte D                               | 525                           |                                            |                                          |
|                                                  |                               | Banff Pool No. 1                           |                                          |
| Elmworth Cadotte F                               | 60                            | Haro Banff E                               | 87                                       |
| Elmworth Cadotte G                               | 37                            | Rainbow South Banff E                      | 78                                       |
| Elmworth Cadotte I                               | 57                            |                                            |                                          |
| Elmworth Cadotte J                               | 229                           | Total                                      | 405                                      |
|                                                  |                               | Total                                      | 165                                      |
| Elmworth Cadotte K                               | 22                            |                                            |                                          |
| Elmworth Cadotte M                               | 17                            |                                            |                                          |
| Elmworth Cadotte N                               | 44                            |                                            |                                          |
| Elmworth Cadotte T                               | 176                           |                                            |                                          |
| Elmworth Falher A-1                              | 6 996                         |                                            |                                          |
| Elmworth Falher A-2                              | 1 729                         |                                            |                                          |
|                                                  |                               |                                            |                                          |
| Elmworth Falher A-4                              | 218                           |                                            |                                          |
| Elmworth Falher A-5                              | 222                           |                                            |                                          |
| Elmworth Falher A-7                              | 132                           |                                            |                                          |
| Elmworth Falher A-10                             | 6 360                         |                                            |                                          |
| Elmworth Falher A-16                             | 86                            |                                            |                                          |

## 2-2. Reserves of multi-field pools, 2001 (concluded)

86

Elmworth Falher A-16

|                 | 1                          | 2<br>Remaining<br>reserves of          | 6<br>Remainin<br><u>of natural</u> | 9       |                  |         |         |                  |         |
|-----------------|----------------------------|----------------------------------------|------------------------------------|---------|------------------|---------|---------|------------------|---------|
| Field           | Zone                       | marketable<br>gas (10 <sup>6</sup> m³) | Propane                            | Butanes | Pentanes<br>plus | Propane | Butanes | Pentanes<br>plus | Tota    |
| Ansell          | Belly River                | 170                                    | 59                                 | 24      | 59               | 10      | 4       | 10               | 24      |
| 11301           | Cardium                    | 3 217                                  | 35                                 | 64      | 236              | 113     | 206     | 758              | 1 07    |
|                 | Viking                     | 712                                    | 15                                 | 24      | 96               | 11      | 17      | 68               | 90      |
|                 |                            |                                        |                                    |         |                  | 21      |         |                  |         |
|                 | Mannville<br>Other         | 1 545<br>148                           | 14                                 | 16<br>6 | 76<br>74         | -       | 24<br>1 | 117<br><u>11</u> | 16<br>1 |
|                 | Subtotal                   | 140                                    | -                                  | 0       | 14               | 155     | 252     | 964              | 1 37    |
|                 |                            |                                        |                                    |         |                  |         |         |                  |         |
| Bonnie Glen     | Mannville                  | 324                                    | 83                                 | 52      | 46               | 27      | 17      | 15               | 5       |
|                 | Leduc <sup>a</sup>         | 3 397                                  | -                                  | -       | -                | 547     | 300     | 653              | 1 50    |
|                 | Other                      | 100                                    | 20                                 | 50      | 30               | 2       | 5       | 3                | 1       |
|                 | Subtotal                   |                                        |                                    |         |                  | 576     | 322     | 671              | 1 569   |
| Brazeau River   | Belly River                | 1 834                                  | 111                                | 53      | 70               | 204     | 98      | 129              | 43      |
|                 | Cardium                    | 541                                    | 15                                 | 7       | 142              | 8       | 4       | 77               | 8       |
|                 | Mannville                  | 1 487                                  | 69                                 | 34      | 328              | 102     | 51      | 487              | 64      |
|                 | Jurassic                   | 2 433                                  | 150                                | 80      | 305              | 366     | 194     | 743              | 1 30    |
|                 | Rundle                     | 1 375                                  | 1                                  | 1       | 111              | 2       | 1       | 152              | 15      |
|                 | Winterburn <sup>a</sup>    | 4 422                                  | -                                  | -       | -                | 1 471   | 837     | 2 291            | 4 59    |
|                 | Subtotal                   |                                        |                                    |         |                  | 2 153   | 1 185   | 3 879            | 7 21    |
| Caroline        | Cardium                    | 1 147                                  | 158                                | 78      | 132              | 181     | 89      | 151              | 42      |
|                 | Mannville                  | 3 309                                  | 147                                | 75      | 136              | 488     | 248     | 451              | 1 18    |
|                 | Viking                     | 352                                    | 99                                 | 48      | 37               | 35      | 17      | 13               | 6       |
|                 | Rundle                     | 1 221                                  | 140                                | 71      | 90               | 171     | 87      | 110              | 36      |
|                 | Beaverhill Lake            | 7 637                                  | 583                                | 658     | 1 717            | 4 456   | 5 027   | 13 111           | 22 59   |
|                 | Other                      | 209                                    | 33                                 | 19      | 28               | 7       | 4       | 6                | 1       |
|                 | Subtotal                   |                                        |                                    |         |                  | 5 338   | 5 472   | 13 842           | 24 65   |
| Carrot Creek    | Cardium                    | 176                                    | 148                                | 108     | 722              | 26      | 19      | 127              | 172     |
|                 | Viking                     | 718                                    | 19                                 | 19      | 54               | 14      | 14      | 39               | 6       |
|                 | Mannville                  | 1 575                                  | 75                                 | 64      | 69               | 118     | 101     | 108              | 32      |
|                 | Jurassic                   | 1 904                                  | 64                                 | 49      | 77               | 121     | 94      | 146              | 36      |
|                 | Subtotal                   |                                        |                                    |         |                  | 279     | 228     | 420              | 92      |
| Cranberry       | Beaverhill Lake            | 2 278                                  | 65                                 | 67      | 207              | 149     | 153     | 471              | 773     |
| · · · · · · · J | Middle Devonian            | 153                                    | 13                                 | 20      | 39               | 2       | 3       | 6                | 1       |
|                 | Subtotal                   |                                        |                                    |         |                  | 151     | 156     | 477              | 784     |
| Crossfield      | Viking                     | 118                                    | 93                                 | 76      | 59               | 11      | 9       | 7                | 2       |
|                 | Mannville                  | 1 273                                  | 74                                 | 71      | 140              | 94      | 90      | 178              | 36      |
|                 | Jurassic                   | 115                                    | 52                                 | 113     | 96               | 6       | 13      | 11               | 30      |
|                 | Mississippian <sup>a</sup> | 1 619                                  | -                                  | -       | -                | 50      | 88      | 106              | 24      |
|                 | Wabamun                    | 1 645                                  | 7                                  | 6       | 28               | 11      | 10      | 46               | 6       |
|                 | Subtotal                   |                                        |                                    |         |                  | 172     | 210     | 348              | 73      |

<sup>a</sup> Includes gas cycling pool. Gas reserves calculated on an energy basis. Liquid recovery ratios are not included because of parameters changing with time.

| Dunvegan | Mannville | 692 | 7 | 4 | 4 | 5 | 3 | 3 | 11 |
|----------|-----------|-----|---|---|---|---|---|---|----|
|          |           |     |   |   |   |   |   |   |    |

|            |                         | 2 3 4 5<br>Remaining Liquid recovery ratio<br>reserves of (m <sup>3</sup> /10 <sup>6</sup> m <sup>3</sup> of marketable gas) |               |          | 6<br>Remainin<br><u>of natural</u> | 9                |                |            |                   |
|------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------|----------|------------------------------------|------------------|----------------|------------|-------------------|
| Field      | Zone                    | marketable<br>gas (10 <sup>6</sup> m <sup>3</sup> )                                                                          | Dropana       | Butanes  | Pentanes<br>plus                   | Dronano          | Butanes        | Pentanes   | Tota              |
| rielu      | Triassic                | <b>gas (10° 11°)</b><br>455                                                                                                  | Propane<br>57 | 31       | 31                                 | Propane<br>26    | 14             | plus<br>14 | <u>101a</u><br>54 |
|            | Rundle                  | 8 154                                                                                                                        | 66            | 39       | 85                                 | 537              | 320            | 697        | 1 554             |
|            | Wabamun                 | 157                                                                                                                          | 108           | 70       | 191                                | 17               | 11             | 30         | 58                |
|            |                         |                                                                                                                              |               |          |                                    |                  |                |            |                   |
|            | Subtotal                |                                                                                                                              |               |          |                                    | 585              | 348            | 744        | 1 677             |
| Edson      | Cardium                 | 678                                                                                                                          | 72            | 43       | 114                                | 49               | 29             | 77         | 155               |
|            | Viking                  | 654                                                                                                                          | 18            | 12       | 101                                | 12               | 8              | 66         | 86                |
|            | Mannville               | 2 476                                                                                                                        | 40            | 24       | 136                                | 100              | 60             | 337        | 497               |
|            | Jurassic                | 605                                                                                                                          | 36            | 21       | 112                                | 22               | 13             | 68         | 103               |
|            | Rundle                  | 135                                                                                                                          | -             | -        | 119                                | -                | -              | 16         | 16                |
|            | Upper Devonian          | 354                                                                                                                          | -             | -        | 189                                |                  |                | 67         | 67                |
|            | Subtotal                |                                                                                                                              |               |          |                                    | 183              | 110            | 631        | 924               |
| Elmworth   | Second White Specks     | 1 126                                                                                                                        | 107           | 50       | 52                                 | 120              | 56             | 58         | 234               |
|            | Lower Cretaceous        | 1 673                                                                                                                        | 26            | 12       | 23                                 | 43               | 20             | 39         | 102               |
|            | Mannville               | 10 866                                                                                                                       | 38            | 17       | 48                                 | 411              | 185            | 526        | 1 122             |
|            | Triassic                | 1 204                                                                                                                        | 6             | 4        | 56                                 | 7                | 5              | 68         | 80                |
|            | Other                   | 1 057                                                                                                                        | 5             | 2        | 8                                  | 5                | 2              | 8          | 1                 |
|            | Subtotal                |                                                                                                                              |               |          |                                    | 586              | 268            | 699        | 1 553             |
| errier     | Belly River             | 307                                                                                                                          | 124           | 65       | 107                                | 38               | 20             | 33         | 91                |
|            | Cardium                 | 1 994                                                                                                                        | 146           | 16       | 25                                 | 291              | 32             | 49         | 372               |
|            | Second White Specks     | 113                                                                                                                          | 124           | 62       | 97                                 | 14               | 7              | 11         | 32                |
|            | Viking                  | 355                                                                                                                          | 121           | 51       | 56                                 | 43               | 18             | 20         | 8                 |
|            | Mannville               | 5 221                                                                                                                        | 114           | 54       | 74                                 | 593              | 281            | 387        | 1 26              |
|            | Jurassic                | 1 097                                                                                                                        | 138           | 46       | 44                                 | 151              | 50             | 48         | 249               |
|            | Rundle<br>Mississippian | 2 378<br>210                                                                                                                 | 52<br>24      | 32<br>24 | 86<br>33                           | 123<br>5         | 75<br><u>5</u> | 204<br>7   | 402               |
|            |                         | 210                                                                                                                          | 24            | 24       | 55                                 |                  |                |            |                   |
|            | Subtotal                |                                                                                                                              |               |          |                                    | 1 258            | 488            | 759        | 2 50              |
| Garrington | Viking                  | 280                                                                                                                          | 82            | 50       | 111                                | 23               | 14             | 31         | 68                |
|            | Mannville               | 2 852                                                                                                                        | 145           | 77       | 80                                 | 413              | 219            | 229        | 86                |
|            | Jurassic                | 442                                                                                                                          | 118           | 72       | 179                                | 52               | 32             | 79         | 163               |
|            | Rundle                  | 320                                                                                                                          | 119           | 72       | 50                                 | 38               | 23             | 16         | 200               |
|            | Wabamun<br>Leduc        | 1 448<br>1 335                                                                                                               | 52<br>97      | 80<br>69 | 135<br>172                         | 76<br><u>130</u> | 116<br>92      | 196<br>    | 388<br>452        |
|            | Subtotal                |                                                                                                                              |               |          |                                    | 732              | 496            | 781        | 2 009             |
|            |                         | 00                                                                                                                           | 440           | 440      | 75                                 |                  |                |            |                   |
| Gilby      | Second White Specks     | 93<br>2 778                                                                                                                  | 118           | 140      | 75<br>64                           | 11<br>212        | 13             | 7<br>170   | 3'<br>56(         |
|            | Mannville<br>Jurassic   | 2 778<br>1 253                                                                                                               | 76<br>69      | 61<br>97 | 64<br>68                           | 212<br>86        | 169<br>122     | 179<br>85  | 560<br>293        |
|            | Rundle                  | 1 876                                                                                                                        | 47            | 97<br>67 | 76                                 | 89               | 122            | 142        | 356               |
|            | Wabamun                 | 61                                                                                                                           | 131           | 66       | 49                                 | 8                | 4              | 3          | 1                 |
|            | Leduc                   | 72                                                                                                                           | 111           | 69       | 83                                 | 8                | 5              | 6          | 19                |
|            | Other                   | 178                                                                                                                          | 51            | 56       | 22                                 | 9                | 10             | 4          | 2                 |
|            | Subtotal                |                                                                                                                              |               |          |                                    | 423              | 448            | 426        | 1 297             |
|            |                         |                                                                                                                              |               |          |                                    |                  |                | (c         | ontinued          |
|            |                         |                                                                                                                              |               |          |                                    |                  |                |            |                   |
| Gold Creek | Second White Specks     | 131                                                                                                                          | 53            | 23       | 23                                 | 7                | 3              | 3          | 1                 |

|                       | 1                   | 2<br>Remaining<br>reserves of         |                      | 4<br>overy ratio<br>of market |          |           | 7 8<br>aining established reserves<br>tural gas liquids (10 <sup>3</sup> m <sup>3</sup> ) |              |       |
|-----------------------|---------------------|---------------------------------------|----------------------|-------------------------------|----------|-----------|-------------------------------------------------------------------------------------------|--------------|-------|
|                       |                     | marketable                            | <u>(III / IV III</u> | or market                     | Pentanes | ornatural | gas ilquius                                                                               | Pentanes     |       |
| Field                 | Zone                | gas (10 <sup>6</sup> m <sup>3</sup> ) | Propane              | Butanes                       | plus     | Propane   | Butanes                                                                                   | plus         | Tota  |
|                       | Triassic            | 1 522                                 | 53                   | 28                            | 59       | 81        | 42                                                                                        | 90           | 213   |
|                       | Wabamun             | 3 818                                 | 48                   | 30                            | 86       | 185       | 116                                                                                       | 328          | 629   |
|                       | Subtotal            |                                       |                      |                               |          | 316       | 185                                                                                       | 538          | 1 039 |
| Hamburg               | Beaverhill Lake     | 4 760                                 | 15                   | 17                            | 183      | 70        | 82                                                                                        | 873          | 1 025 |
|                       | Other               | 384                                   | 3                    | 3                             | 26       | 1         | 1                                                                                         | 10           | 12    |
|                       | Subtotal            |                                       |                      |                               |          | 71        | 83                                                                                        | 883          | 1 037 |
| Harmattan East        | Viking              | 81                                    | 86                   | 99                            | 74       | 7         | 8                                                                                         | 6            | 21    |
|                       | Mannville           | 213                                   | 211                  | 131                           | 188      | 45        | 28                                                                                        | 40           | 113   |
|                       | Jurassic            | 110                                   | 127                  | 191                           | 91       | 14        | 21                                                                                        | 10           | 45    |
|                       | Mississippiana      | 5 689                                 | -                    | -                             | -        | 24        | 18                                                                                        | <u> </u>     | 61    |
|                       | Subtotal            |                                       |                      |                               |          | 90        | 75                                                                                        | 75           | 240   |
| Harmattan-Elkton      | Mannville           | 113                                   | 230                  | 62                            | 53       | 26        | 7                                                                                         | 6            | 39    |
|                       | Mississippiana      | 5 126                                 | -                    | -                             | -        | 290       | 24                                                                                        | 99           | 413   |
|                       | Subtotal            |                                       |                      |                               |          | 316       | 31                                                                                        | 105          | 452   |
| Hussar                | Viking              | 471                                   | 19                   | 13                            | 28       | 9         | 6                                                                                         | 13           | 28    |
|                       | Mannville           | 4 088                                 | 73                   | 45                            | 79       | 297       | 185                                                                                       | 321          | 803   |
|                       | Rundle              | 94                                    | 96                   | 53                            | 53       | 9         | 5                                                                                         | 5            | 19    |
|                       | Subtotal            |                                       |                      |                               |          | 315       | 196                                                                                       | 339          | 850   |
| Judy Creek            | Viking              | 499                                   | 36                   | 24                            | 54       | 18        | 12                                                                                        | 27           | 57    |
|                       | Mannville           | 157                                   | 57                   | 25                            | 19       | 9         | 4                                                                                         | 3            | 16    |
|                       | Rundle              | 243                                   | 41                   | 21                            | 21       | 10        | 5                                                                                         | 5            | 20    |
|                       | Beaverhill Lake     | 1 926                                 | 254                  | 137                           | 91       | 490       | 264                                                                                       | 175          | 929   |
|                       | Subtotal            |                                       |                      |                               |          | 527       | 285                                                                                       | 210          | 1 022 |
| Jumping Pound<br>West | Rundle              | 7 674                                 | 76                   | 69                            | 222      | 585       | 529                                                                                       | <u>1 702</u> | 2 816 |
|                       | Subtotal            |                                       |                      |                               |          | 585       | 529                                                                                       | 1 702        | 2 816 |
| Kakwa                 | Cardiumª            | 3 323                                 | -                    | -                             | -        | 201       | 108                                                                                       | 84           | 393   |
|                       | Second White Specks | 101                                   | 69                   | 69                            | 158      | 7         | 7                                                                                         | 16           | 30    |
|                       | Lower Cretaceous    | 116                                   | 95                   | 60                            | 17       | 11        | 7                                                                                         | 2            | 20    |
|                       | Mannville           | 223                                   | 49                   | 31                            | 36       | 11        | 7                                                                                         | 8            | 26    |
|                       | Jurassic            | 94                                    | 96                   | 43                            | 53       | 9         | 4                                                                                         | 5            | 18    |
|                       | Subtotal            |                                       |                      |                               |          | 239       | 133                                                                                       | 115          | 487   |

<sup>a</sup> Includes gas cycling pool. Gas reserves calculated on an energy basis. Liquid recovery ratios are not included because of parameters changing with time.

| Karr | Cardium             | 63    | 127 | 63 | 48  | 8   | 4   | 3   | 15    |
|------|---------------------|-------|-----|----|-----|-----|-----|-----|-------|
|      | Second White Specks | 787   | 123 | 56 | 43  | 97  | 44  | 34  | 175   |
|      | Mannville           | 4 544 | 141 | 79 | 121 | 641 | 360 | 552 | 1 553 |

(continued)

|                | 1                            | 2                                     | 3                | 4                      | 5        | 6                 | 7            | 8           | 9        |
|----------------|------------------------------|---------------------------------------|------------------|------------------------|----------|-------------------|--------------|-------------|----------|
|                |                              | Remaining                             |                  | overy ratio            |          | Remainin          | g establishe | ed reserves |          |
|                |                              | reserves of                           | <u>(m³/106 m</u> | <sup>3</sup> of market |          | <u>of natural</u> | gas liquids  |             |          |
|                | _                            | marketable                            | _                |                        | Pentanes | _                 |              | Pentanes    |          |
| Field          | Zone                         | gas (10 <sup>6</sup> m <sup>3</sup> ) | Propane          | Butanes                | plus     | Propane           | Butanes      | plus        | Total    |
|                | Jurassic                     | 302                                   | 99               | 46                     | 50       | 30                | 14           | 15          | 59       |
|                | Triassic                     | 420                                   | 121              | 33                     | 43       | 51                | 14           | 18          | 83       |
|                | Wabamun                      | 995                                   | 51               | 36                     | 38       | 51                | 36           | 38          | 125      |
|                | Beaverhill Lake              | 36                                    | 167              | 83                     | 83       | 6                 | 3            | 3           | 12       |
|                | Subtotal                     |                                       |                  |                        |          | 884               | 475          | 663         | 2 022    |
| Kaybob         | Viking                       | 431                                   | 9                | 12                     | 65       | 4                 | 5            | 28          | 37       |
| -              | Mannville                    | 2 879                                 | 14               | 13                     | 44       | 41                | 38           | 126         | 205      |
|                | Beaverhill Lake <sup>a</sup> | 795                                   | -                | -                      | -        | 210               | 209          | 350         | 769      |
|                | Other                        | 175                                   |                  | 6                      | 69       |                   | 1            | 12          | 13       |
|                | Subtotal                     |                                       |                  |                        |          | 255               | 253          | 516         | 1 024    |
| Kaybob South   | Second White Specks          | 68                                    | 74               | 44                     | 176      | 5                 | 3            | 12          | 20       |
| -              | Viking                       | 441                                   | 36               | 32                     | 50       | 16                | 14           | 22          | 52       |
|                | Mannville                    | 8 765                                 | 68               | 42                     | 72       | 595               | 365          | 632         | 1 592    |
|                | Jurassic                     | 274                                   | 11               | 7                      | 47       | 3                 | 2            | 13          | 18       |
|                | Triassic                     | 1 127                                 | 24               | 30                     | 59       | 27                | 34           | 66          | 127      |
|                | Wabamun                      | 110                                   | 109              | 50<br>64               | 55       | 12                | 7            | 6           | 25       |
|                |                              |                                       |                  |                        |          |                   |              |             |          |
|                | Upper Devonian               | 357                                   | 70               | 70                     | 569      | 25                | 25           | 203         | 253      |
|                | Nisku                        | 181                                   | 44               | 66                     | 343      | 8                 | 12           | 62          | 82       |
|                | Leduc                        | 151                                   | 13               | 13                     | 99       | 2                 | 2            | 15          | 19       |
|                | Beaverhill Lake <sup>a</sup> | 2 537                                 | -                | -                      | -        | 385               | 348          | 1 401       | 2 134    |
|                | Subtotal                     |                                       |                  |                        |          | 1 078             | 812          | 2 432       | 4 322    |
| Knopcik        | Second White Specks          | 147                                   | 54               | 34                     | 48       | 8                 | 5            | 7           | 20       |
|                | Viking                       | 199                                   | 40               | 35                     | 90       | 8                 | 7            | 18          | 33       |
|                | Mannville                    | 636                                   | 13               | 9                      | 30       | 8                 | 6            | 19          | 33       |
|                | Jurassic                     | 1 083                                 | 63               | 44                     | 99       | 68                | 48           | 107         | 223      |
|                | Triassic                     | 3 974                                 | 13               | 9                      | 159      | 53                | 36           | 632         | 721      |
|                | Subtotal                     |                                       |                  |                        |          | 145               | 102          | 783         | 1 030    |
| VicLeod        | Cardium                      | 1 604                                 | 102              | 60                     | 92       | 164               | 96           | 148         | 408      |
|                | Mannville                    | 3 403                                 | 72               | 47                     | 121      | 245               | 159          | 412         | 816      |
|                | Jurassic                     | 1 116                                 | 52               | 31                     | 141      | 58                | 35           | 157         | 250      |
|                | Subtotal                     |                                       |                  |                        |          | 467               | 290          | 717         | 1 474    |
| Medicine River | Viking                       | 63                                    | 190              | 79                     | 79       | 12                | 5            | 5           | 22       |
|                | Mannville                    | 2 635                                 | 104              | 71                     | 57       | 275               | 187          | 149         | 611      |
|                | Jurassic                     | 1 140                                 | 99               | 64                     | 44       | 113               | 73           | 50          | 236      |
|                | Rundle                       | 2 057                                 | 100              | 67                     | 65       | 206               | 137          | 134         | 477      |
|                | Leduc                        | 326                                   | 71               | 43                     | 25       | 23                | 14           | 8           | 45       |
|                | Subtotal                     |                                       |                  |                        |          | 629               | 416          | 346         | 1 391    |
|                |                              |                                       |                  |                        |          |                   |              | 100         | ontinued |
|                |                              |                                       |                  |                        |          |                   |              | (0.0        | number   |

<sup>a</sup> Includes gas cycling pool. Gas reserves calculated on an energy basis. Liquid recovery ratios are not included because of parameters changing with time.

| Minehead | Cardium  | 3 441 | 48 | 31 | 198 | 165 | 106 | 680 | 951 |
|----------|----------|-------|----|----|-----|-----|-----|-----|-----|
|          | Subtotal |       |    |    |     | 165 | 106 | 680 | 951 |

|               | 1                              | 2 3 4 5<br>Remaining Liquid recovery ratio<br>reserves of (m <sup>3</sup> /10 <sup>6</sup> m <sup>3</sup> of marketable gas)<br>marketable |           |           |           |            | 6 7 8<br>Remaining established reserves<br>of natural gas liquids (10 <sup>3</sup> m <sup>3</sup> ) |             |              |  |
|---------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|------------|-----------------------------------------------------------------------------------------------------|-------------|--------------|--|
|               | _                              | marketable                                                                                                                                 | _         |           | Pentanes  | _          |                                                                                                     | Pentanes    |              |  |
| Field         | Zone                           | gas (10 <sup>6</sup> m <sup>3</sup> )                                                                                                      | Propane   | Butanes   | plus      | Propane    | Butanes                                                                                             | plus        | Total        |  |
| Moose         | Rundle                         | 2 299                                                                                                                                      | 70        | 55        | 187       | 161        | 126                                                                                                 | 431         | 718          |  |
|               | Wabamun                        | 253                                                                                                                                        | 36        | 28        | 51        | 9          | 7                                                                                                   | 13          | 29           |  |
|               | Subtotal                       |                                                                                                                                            |           |           |           | 170        | 133                                                                                                 | 444         | 747          |  |
| Peco          | Cardium                        | 455                                                                                                                                        | 64        | 37        | 516       | 29         | 17                                                                                                  | 235         | 281          |  |
|               | Mannville                      | 1 218                                                                                                                                      | 96        | 62        | 324       | 117        | 75                                                                                                  | 395         | 587          |  |
|               | Jurassic                       | 41                                                                                                                                         | 122       | 73        | 49        | 5          | 3                                                                                                   | 2           | 10           |  |
|               | Nisku                          | 644                                                                                                                                        | 39        | 30        | 30        | 25         | 19                                                                                                  | 19          | 63           |  |
|               | Subtotal                       |                                                                                                                                            |           |           |           | 176        | 114                                                                                                 | 651         | 941          |  |
| Dombino       | Delly Divor                    | 0.115                                                                                                                                      | 00        | 50        | 07        | 175        | 105                                                                                                 | 205         | 105          |  |
| Pembina       | Belly River                    | 2 115<br>2 752                                                                                                                             | 83        | 50<br>170 | 97<br>160 | 175<br>682 | 105                                                                                                 | 205<br>440  | 485<br>1 591 |  |
|               | Cardium<br>Viking              | 2752                                                                                                                                       | 248<br>84 | 62        | 75        | 26         | 469<br>19                                                                                           | 440<br>23   | 1591         |  |
|               | Mannville                      | 6 864                                                                                                                                      | 04<br>57  | 62<br>34  | 152       | 393        | 230                                                                                                 | 23<br>1 046 | 1 669        |  |
|               | Jurassic                       | 6 864<br>5 960                                                                                                                             | 57        | 34<br>31  | 186       | 393        | 186                                                                                                 | 1 111       | 1 623        |  |
|               | Rundle                         | 5 960<br>391                                                                                                                               | 55<br>41  | 26        | 69        | 326<br>16  | 100                                                                                                 | 27          | 53           |  |
|               | Mississippian                  | 391<br>609                                                                                                                                 | 41<br>97  | 26<br>64  | 103       | 59         | 10<br>39                                                                                            | 63          | 53<br>161    |  |
|               |                                | 44                                                                                                                                         | 295       | 205       | 205       | 13         |                                                                                                     | 9           | 31           |  |
|               | Upper Devonian<br>Nisku        | 4 378                                                                                                                                      | 293       | 112       | 72        | 1 050      | 489                                                                                                 | 317         | 1 856        |  |
|               | Subtotal                       |                                                                                                                                            |           |           |           | 2 740      | 1 556                                                                                               | 3 241       | 7 537        |  |
| Pine Creek    | Cardium                        | 440                                                                                                                                        | 93        | 26        | 20        | 41         | 16                                                                                                  | 0           | 66           |  |
| Pine Creek    |                                | 130                                                                                                                                        |           | 36        | 20<br>154 |            | 16                                                                                                  | 9<br>20     | 20           |  |
|               | Second White Specks            |                                                                                                                                            | -         | -         |           | -          | -                                                                                                   |             |              |  |
|               | Mannville                      | 3 743<br>385                                                                                                                               | 44<br>10  | 24        | 214<br>39 | 165        | 90                                                                                                  | 802<br>15   | 1 057<br>22  |  |
|               | Jurassic<br>Rundle             | 365<br>182                                                                                                                                 | -         | 8         |           | 4          | 3                                                                                                   | 15          | 22<br>19     |  |
|               |                                | 658                                                                                                                                        | - 5       |           | 104<br>21 | - 3        |                                                                                                     | 19          | 20           |  |
|               | Wabamun                        | 711                                                                                                                                        | 5<br>10   | 5<br>13   | 21        | 3<br>7     | 3<br>9                                                                                              | 14          | 20           |  |
|               | Leduc<br>Other                 | 701                                                                                                                                        | 6         | 4         | 21        | 4          | <u> </u>                                                                                            | 20          | 27           |  |
|               | Subtotal                       |                                                                                                                                            |           |           |           | 224        | 124                                                                                                 | 914         | 1 262        |  |
|               |                                |                                                                                                                                            |           |           |           |            |                                                                                                     |             |              |  |
| Rainbow       | Mannville                      | 2 838                                                                                                                                      | 3         | 3         | 15        | 8          | 8                                                                                                   | 42          | 58           |  |
|               | Beaverhill Lake                | 116                                                                                                                                        | 86        | 52        | 69        | 10         | 6                                                                                                   | 8           | 24           |  |
|               | Sulphur Point                  | 390                                                                                                                                        | 82        | 51        | 105       | 32         | 20                                                                                                  | 41          | 93           |  |
|               | Muskeg                         | 400                                                                                                                                        | 193       | 83        | 50        | 77         | 33                                                                                                  | 20          | 130          |  |
|               | Keg River                      | 6 946                                                                                                                                      | 291       | 153       | 121       | 2 021      | 1 063                                                                                               | 841         | 3 925        |  |
|               | Subtotal                       |                                                                                                                                            |           |           |           | 2 148      | 1 130                                                                                               | 952         | 4 230        |  |
| Rainbow South | Sulphur Point                  | 322                                                                                                                                        | 16        | 9         | 71        | 5          | 3                                                                                                   | 23          | 31           |  |
|               | Muskeg                         | 268                                                                                                                                        | 142       | 78        | 78        | 38         | 21                                                                                                  | 21          | 80           |  |
|               | Keg River                      | 2 670                                                                                                                                      | 272       | 138       | 125       | 727        | 368                                                                                                 | 335         | 1 430        |  |
|               | Subtotal                       |                                                                                                                                            |           |           |           | 770        | 392                                                                                                 | 379         | 1 541        |  |
|               |                                |                                                                                                                                            |           |           |           |            |                                                                                                     | (c          | ontinued)    |  |
| Ricinus       | Cardium <sup>a</sup><br>Viking | 8 883<br>5 308                                                                                                                             | -<br>31   | -<br>18   | -<br>35   | 414<br>162 | 254<br>96                                                                                           | 293<br>185  | 961<br>443   |  |
|               | Mannville                      | 193                                                                                                                                        | 62        | 31        | 52        | 12         | <u>6</u>                                                                                            | 10          | 28           |  |
|               | Subtotal                       |                                                                                                                                            |           |           |           | E00        |                                                                                                     |             |              |  |
|               | Subtotal                       |                                                                                                                                            |           |           |           | 588        | 356                                                                                                 | 488         | 1 432        |  |

|                  | 1                        | 2<br>Remaining<br>reserves of         |         | 4<br>overy ratio<br>of market |          |         | 7<br>g establishe<br>gas liquids | 8<br>ed reserves<br>5 (10 <sup>3</sup> m <sup>3</sup> ) | 9     |
|------------------|--------------------------|---------------------------------------|---------|-------------------------------|----------|---------|----------------------------------|---------------------------------------------------------|-------|
|                  |                          | marketable                            | <u></u> |                               | Pentanes |         | 3                                | Pentanes                                                |       |
| Field            | Zone                     | gas (10 <sup>6</sup> m <sup>3</sup> ) | Propane | Butanes                       | plus     | Propane | Butanes                          | plus                                                    | Total |
| Shekelie         | Keg River                | 1 787                                 | 120     | 77                            | 110      | 215     | 137                              | 196                                                     | 548   |
|                  | Other                    | 136                                   | 29      | 7                             | 37       | 4       | 1                                | 5                                                       | 10    |
|                  | Subtotal                 |                                       |         |                               |          | 219     | 138                              | 201                                                     | 558   |
| Simonette        | Second White Specks      | 721                                   | 122     | 55                            | 53       | 88      | 40                               | 38                                                      | 166   |
| omonotic         | Lower Cretaceous         | 190                                   | 21      | 16                            | 26       | 4       | 3                                | 5                                                       | 12    |
|                  | Mannville                | 1 181                                 | 80      | 51                            | 68       | 94      | 60                               | 80                                                      | 234   |
|                  | Wabamun                  | 509                                   | 130     | 90                            | 544      | 66      | 46                               | 277                                                     | 389   |
|                  |                          |                                       |         |                               |          |         |                                  |                                                         |       |
|                  | Leduc<br>Reguerbill Leke | 369                                   | 328     | 255                           | 187      | 121     | 94                               | 69<br>50                                                | 284   |
|                  | Beaverhill Lake          | 656                                   | 183     | 96                            | 90       | 120     | 63                               | 59                                                      | 242   |
|                  | Subtotal                 |                                       |         |                               |          | 493     | 306                              | 528                                                     | 1 327 |
| Swan Hills       | Beaverhill Lake          | 528                                   | 1 771   | 1 083                         | 591      | 935     | 572                              | 312                                                     | 1 819 |
|                  | Subtotal                 |                                       |         |                               |          | 935     | 572                              | 312                                                     | 1 819 |
| Swan Hills South | Beaverhill Lake          | 1 895                                 | 279     | 173                           | 197      | 528     | 328                              | 373                                                     | 1 229 |
|                  | Subtotal                 |                                       |         |                               |          | 528     | 328                              | 373                                                     | 1 229 |
| Sylvan Lake      | Second White Specks      | 51                                    | 98      | 78                            | 39       | 5       | 4                                | 2                                                       | 11    |
| - <b>,</b>       | Viking                   | 110                                   | 127     | 136                           | 91       | 14      | 15                               | 10                                                      | 39    |
|                  | Mannville                | 2 129                                 | 107     | 68                            | 78       | 227     | 145                              | 167                                                     | 539   |
|                  | Jurassic                 | 1 722                                 | 107     | 64                            | 98       | 184     | 111                              | 168                                                     | 463   |
|                  | Rundle                   | 3 005                                 | 107     | 63                            | 50<br>67 | 312     | 188                              | 200                                                     | 700   |
|                  | Leduc                    | 525                                   | 46      | 34                            | 55       | 24      | 18                               | 200                                                     | 71    |
|                  | Subtotal                 |                                       |         |                               |          | 766     | 481                              | 576                                                     | 1 823 |
|                  | Cubicital                |                                       |         |                               |          | 100     | 101                              | 010                                                     |       |
| Turner Valley    | Mannville                | 289                                   | 128     | 55                            | 28       | 37      | 16                               | 8                                                       | 61    |
|                  | Jurassic                 | 112                                   | 134     | 63                            | 36       | 15      | 7                                | 4                                                       | 26    |
|                  | Rundle                   | 967                                   | 300     | 191                           | 392      | 290     | 185                              | 379                                                     | 854   |
|                  | Subtotal                 |                                       |         |                               |          | 342     | 208                              | 391                                                     | 941   |
| Twining          | Viking                   | 412                                   | 12      | 7                             | 68       | 5       | 3                                | 28                                                      | 36    |
| 5                | Mannville                | 493                                   | 34      | 32                            | 99       | 17      | 16                               | 49                                                      | 82    |
|                  | Rundle                   | 4 373                                 | 78      | 72                            | 95       | 340     | 317                              | 417                                                     | 1 074 |
|                  | Subtotal                 |                                       |         |                               |          | 362     | 336                              | 494                                                     | 1 192 |

(continued)

<sup>a</sup> Includes gas cycling pool. Gas reserves calculated on an energy basis. Liquid recovery ratios are not included because of parameters changing time.

| Valhalla | Second White Specks<br>Mannville<br>Triassic <sup>a</sup> | 555<br>1 508<br>10 148 | 7<br>4 | 4<br>3 | 47<br>25 | 4<br>6<br>956 | 2<br>4<br>462 | 26<br>37<br>2 135 | 32<br>47<br>3 553 |
|----------|-----------------------------------------------------------|------------------------|--------|--------|----------|---------------|---------------|-------------------|-------------------|
|          | Granite Wash                                              | 516                    | -      | -      | 39       | 900<br>       | 402<br>       | 2 135             | <u> </u>          |
|          | Subtotal                                                  |                        |        |        |          | 966           | 468           | 2 218             | 3 652             |

|                | 1                     | 2<br>Remaining<br>reserves of         |         | 4<br>overy ratio<br>of market |          | 6<br>Remainin<br>of natural | 7<br>g establishe<br>gas liquids | 8<br>ed reserves<br>(10 <sup>3</sup> m <sup>3</sup> ) | _     |
|----------------|-----------------------|---------------------------------------|---------|-------------------------------|----------|-----------------------------|----------------------------------|-------------------------------------------------------|-------|
|                |                       | marketable                            | <u></u> | <u>er market</u>              | Pentanes | ornatara                    | guo inquiae                      | Pentanes                                              |       |
| Field          | Zone                  | gas (10 <sup>6</sup> m <sup>3</sup> ) | Propane | Butanes                       | plus     | Propane                     | Butanes                          | plus                                                  | Total |
| Virginia Hills | Mannville             | 288                                   | 87      | 42                            | 35       | 25                          | 12                               | 10                                                    | 47    |
|                | Belloy                | 272                                   | 110     | 63                            | 74       | 30                          | 17                               | 20                                                    | 67    |
|                | Beaverhill Lake       | 941                                   | 617     | 247                           | 159      | 581                         | 232                              | 150                                                   | 963   |
|                | Subtotal              |                                       |         |                               |          | 636                         | 261                              | 180                                                   | 1 077 |
| Wapiti         | Belly River           | 869                                   | 67      | 30                            | 25       | 58                          | 26                               | 22                                                    | 106   |
|                | Cardium               | 881                                   | 35      | 15                            | 17       | 31                          | 13                               | 15                                                    | 59    |
|                | Second White Specks   | 124                                   | 145     | 56                            | 40       | 18                          | 7                                | 5                                                     | 30    |
|                | Lower Cretaceous      | 3 775                                 | 8       | 5                             | 21       | 32                          | 18                               | 81                                                    | 131   |
|                | Mannville             | 10 885                                | 10      | 5                             | 32       | 105                         | 57                               | 344                                                   | 506   |
| <b>、</b>       | Jurassic              | 1 125                                 | 10      | 5                             | 50       | 11                          | 6                                | 56                                                    | 73    |
|                | Other                 | 433                                   |         |                               | 23       |                             | <u> </u>                         | 10                                                    | 10    |
|                | Subtotal              |                                       |         |                               |          | 255                         | 127                              | 533                                                   | 915   |
| Waterton       | Mississippiana        | 3 593                                 | -       | -                             | -        | 85                          | 71                               | 328                                                   | 484   |
|                | Wabamun               | 313                                   | 6       | 6                             | 38       | 2                           | 2                                | 12                                                    | 16    |
|                | Subtotal              |                                       |         |                               |          | 87                          | 73                               | 340                                                   | 500   |
| Wayne-Rosedale | Belly River           | 696                                   | 3       | 3                             | 14       | 2                           | 2                                | 10                                                    | 14    |
|                | Viking                | 890                                   | 37      | 22                            | 43       | 33                          | 20                               | 38                                                    | 91    |
|                | Mannville             | 2 617                                 | 69      | 44                            | 75       | 181                         | 115                              | 197                                                   | 493   |
|                | Nisku                 | 197                                   | -       | -                             | 949      | -                           | -                                | 187                                                   | 187   |
|                | Other                 | 1 118                                 | 4       | 4                             | 4        | 4                           | 4                                | 4                                                     | 11    |
|                | Subtotal              |                                       |         |                               |          | 220                         | 141                              | 436                                                   | 796   |
| Wembley        | Second White Specks   | 178                                   | 6       | 6                             | 51       | 1                           | 1                                | 9                                                     | 11    |
|                | Triassic <sup>a</sup> | 5 679                                 | -       | -                             | -        | 884                         | 416                              | 1 859                                                 | 3 159 |
|                | Other                 | 229                                   | 4       | 4                             | 44       | 1                           | 1                                | 10                                                    | 12    |
|                | Subtotal              |                                       |         |                               |          | 886                         | 418                              | 1 878                                                 | 3 182 |
| Westerose      | Mannville             | 1 001                                 | 122     | 63                            | 68       | 122                         | 63                               | 68                                                    | 253   |
|                | Wabamun               | 203                                   | -       | -                             | 69       | -                           | -                                | 14                                                    | 14    |
|                | Nisku                 | 86                                    | -       | -                             | 128      | -                           | -                                | 11                                                    | 11    |
|                | Other                 | 533                                   | 8       | 6                             | 6        | 4                           | 3                                | 3                                                     | 1(    |
|                | Subtotal              |                                       |         |                               |          | 126                         | 66                               | 96                                                    | 288   |

<sup>a</sup> Includes gas cycling pool. Gas reserves calculated on an energy basis. Liquid recovery ratios are not included because of parameters changing with time.

| Westerose South | Mannville     | 1 227 | 133 | 68 | 95 | 163       | 84        | 116       | 363 |
|-----------------|---------------|-------|-----|----|----|-----------|-----------|-----------|-----|
|                 | Rundle        | 51    | 137 | 59 | 98 | 7         | 3         | 5         | 15  |
|                 | Mississippian | 455   | 185 | 86 | 48 | 84        | 39        | 22        | 145 |
|                 | Wabamun       | 291   | 55  | 65 | 65 | <u>16</u> | <u>19</u> | <u>19</u> | 54  |
|                 | Subtotal      |       |     |    |    | 27        | 145       | 162       | 577 |

|                                                        | 1                   | 2<br>Remaining                                      | 3 4 5<br>Liquid recovery ratio<br>(m³/10 <sup>6</sup> m³ of marketable gas) |           |          | 6 7 8<br>Remaining established reserves<br>of natural gas liquids (10 <sup>3</sup> m <sup>3</sup> ) |                                |                    |                    |
|--------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|-----------|----------|-----------------------------------------------------------------------------------------------------|--------------------------------|--------------------|--------------------|
|                                                        |                     | reserves of                                         | <u>(m³/10° m</u>                                                            | of market | Pentanes | of natural                                                                                          | gas liquids                    | Pentanes           |                    |
| Field                                                  | Zone                | marketable<br>gas (10 <sup>6</sup> m <sup>3</sup> ) | Propane                                                                     | Butanes   | plus     | Propane                                                                                             | Butanes                        | plus               | Total              |
| Willesden Green                                        | Belly River         | <u>947</u>                                          | 97                                                                          | 71        | 58       | 91                                                                                                  | 67                             | 55                 | 213                |
|                                                        | Cardium             | 3 088                                               | 25                                                                          | 20        | 97       | 76                                                                                                  | 63                             | 298                | 437                |
|                                                        | Second White Specks | 251                                                 | 96                                                                          | 84        | 80       | 24                                                                                                  | 21                             | 200                | 65                 |
|                                                        | Viking              | 605                                                 | 137                                                                         | 93        | 84       | 83                                                                                                  | 56                             | 51                 | 190                |
|                                                        | Mannville           | 5 440                                               | 119                                                                         | 67        | 131      | 645                                                                                                 | 362                            | 711                | 1 718              |
|                                                        | Jurassic            | 1 385                                               | 94                                                                          | 61        | 83       | 130                                                                                                 | 85                             | 115                | 330                |
|                                                        | Rundle              | 127                                                 | 94                                                                          | 55        | 94       | 12                                                                                                  | 7                              | 12                 | 31                 |
|                                                        | Mississippian       | 815                                                 | 40                                                                          | 33        | 79       | 33                                                                                                  | 27                             | 64                 | 124                |
|                                                        | Mississippian       | 015                                                 | 40                                                                          | 55        | 15       |                                                                                                     |                                |                    | 124                |
|                                                        | Subtotal            |                                                     |                                                                             |           |          | 1 094                                                                                               | 688                            | 1 326              | 3 108              |
| Wilson Creek                                           | Belly River         | 874                                                 | 157                                                                         | 98        | 277      | 137                                                                                                 | 86                             | 242                | 465                |
|                                                        | Mannville           | 1 011                                               | 81                                                                          | 63        | 89       | 82                                                                                                  | 64                             | 90                 | 236                |
|                                                        | Jurassic            | 450                                                 | 87                                                                          | 60        | 58       | 39                                                                                                  | 27                             | 26                 | 92                 |
|                                                        | Rundle              | 422                                                 | 78                                                                          | 45        | 121      | 33                                                                                                  | 19                             | 51                 | 103                |
|                                                        | Mississippian       | 395                                                 | 132                                                                         | 73        | 144      | 52                                                                                                  | 29                             | 57                 | 138                |
|                                                        | Other               | 54                                                  | 130                                                                         | 74        | 92       | 7                                                                                                   | 4                              | 5                  | 16                 |
|                                                        | Subtotal            |                                                     |                                                                             |           |          | 350                                                                                                 | 229                            | 471                | 1 050              |
| Windfall                                               | Mannville           | 1 156                                               | 45                                                                          | 27        | 58       | 52                                                                                                  | 31                             | 67                 | 150                |
|                                                        | Rundle              | 87                                                  | 46                                                                          | 46        | 138      | 4                                                                                                   | 4                              | 12                 | 20                 |
|                                                        | Mississippian       | 54                                                  | 111                                                                         | 56        | 56       | 6                                                                                                   | 3                              | 3                  | 12                 |
|                                                        | Upper Devonian      | 1 066                                               | 17                                                                          | 29        | 90       | 18                                                                                                  | 31                             | 96                 | 145                |
|                                                        | Nisku               | 144                                                 | 35                                                                          | 49        | 410      | 5                                                                                                   | 7                              | 59                 | 71                 |
|                                                        | Leduc <sup>a</sup>  | 1 865                                               | -                                                                           | -         | -        | 20                                                                                                  | 22                             | 60                 | 102                |
|                                                        | Other               | 357                                                 | 11                                                                          | 8         | 31       | 4                                                                                                   | 3                              | <u>11</u>          | 18                 |
|                                                        | Subtotal            |                                                     |                                                                             |           |          | 109                                                                                                 | 101                            | 308                | 518                |
| Wizard Lake                                            | Mannville           | 476                                                 | 42                                                                          | 21        | 103      | 20                                                                                                  | 10                             | 49                 | 79                 |
|                                                        | Leduc               | 5 650                                               | 362                                                                         | 208       | 63       | 2 043                                                                                               | <u>1 175</u>                   | 355                | 3 573              |
|                                                        | Subtotal            |                                                     |                                                                             |           |          | 2 063                                                                                               | 1 185                          | 404                | 3 652              |
| Subtotal                                               |                     |                                                     |                                                                             |           |          | 36 196                                                                                              | 24 030                         | 53 041             | 113 267            |
| Confidential reserve                                   | es                  |                                                     |                                                                             |           |          | 20                                                                                                  | 10                             | 31                 | 61                 |
| Other small reserve                                    | es                  |                                                     |                                                                             |           |          | 12 957                                                                                              | 8 429                          | 16 164             | 37 550             |
| Subtotal                                               |                     |                                                     |                                                                             |           |          | 49 173                                                                                              | 32 469                         | 69 236             | 150 878            |
| Recoverable at stra<br>Recoverable at sol <sup>v</sup> |                     |                                                     |                                                                             |           |          | 34 500<br>400                                                                                       | 16 300<br>1 115                | 7 700<br>601       | 58 500<br>2 116    |
| Total reserves                                         |                     |                                                     |                                                                             |           |          | 84 073<br>(529.8) <sup>b</sup>                                                                      | 49 884<br>(314.1) <sup>b</sup> | 77 537<br>(487.6)⁵ | 211 494<br>(1331.5 |

 Includes gas cycling pool. Gas reserves calculated on an energy basis. Liquid recovery ratios are not included because of parameters changing with time.

<sup>b</sup> Imperial equivalent in millions of barrels.

## Appendix 3 CD—Basic Data Tables

EUB staff developed the databases used to prepare this reserves report and CD. Input was also obtained from the National Energy Board (NEB) through an ongoing process of crude oil, natural gas, and crude bitumen studies. The crude oil and natural gas reserves data tables and the crude bitumen resources data table present the official reserve estimates of both the EUB and NEB for the province of Alberta.

## **Basic Data Tables**

The conventional oil, crude bitumen, and natural gas reserves and their respective basic data tables are included as Microsoft Excel 2001 spreadsheets on the CD that accompanies this report. The individual oil and gas pools and crude bitumen deposit/pool values are presented on the first worksheet of each spreadsheet. Oilfield, crude bitumen deposit, and gas field/strike totals are on the second worksheet. Provincial totals for crude oil and natural gas are on the third worksheet. Crude bitumen provincial totals are included with the deposit information. The pool names on the left side and the column headings at the top of the spreadsheets are locked into place to allow for easy scrolling. All crude oil and natural gas pools are listed first alphabetically by field/strike name and then stratigraphically within the field, with the pools occurring in the youngest reservoir rock listed first.

#### **Crude Bitumen Reserves and Basic Data**

The crude bitumen reserves and basic data spreadsheet is similar to the data tables in last year's report. The oil sands area, oil sands deposit, overburden/zone, oil sands sector/pool, and reserve determination method are listed in separate columns.

## **Crude Oil Reserves and Basic Data**

The crude oil reserves and basic data spreadsheet is similar to the data table in last year's report and contains all nonconfidential pools in Alberta.

Reserves data for single- and multi-mechanism pools are presented in separate columns. The total record contains the summation of the multi-mechanism pool reserves data. These data appear in the pool column, which can be used for determining field and provincial totals. The mechanism type is displayed with the names.

Provincial totals for light-medium and heavy oil pools are presented separately on the provincial total worksheet.

#### Natural Gas Reserves and Basic Data

The natural gas reserves and basic data spreadsheet in this report is similar to last year's report and contains all nonconfidential pools in Alberta.

Basic reserves data are split into two columns: pools (individual, undefined, and total records) and member pools (separate gas pools overlying a single oil pool or individual gas pools that have been commingled). The total record contains a summation of the reserves data for all of the related members. Individual pools have a sequence code of 000; undefined pools have a pool code ending in 98 and a unique pool sequence code other than 000; and the total records have a sequence code of 999. Member pools and the

total record have the same pool code, with each member pool having a unique pool sequence code and the total record having a sequence code of 999.

## Abbreviations Used in the Reserves and Basic Data Files

The abbreviations are divided into two groups (General Abbreviations and Abbreviations of Company Names) for easy reference.

| General Abbreviations |                                                 |
|-----------------------|-------------------------------------------------|
|                       | abandoned                                       |
| ABAND                 |                                                 |
| ADMIN 2               | Administrative Area No. 2                       |
| ASSOC                 | associated gas                                  |
| BDY                   | boundary                                        |
| BELL                  | Belloy                                          |
| BER                   | beyond economic reach                           |
| BLAIR                 | Blairmore                                       |
| BLSKY OR BLSK         | Bluesky                                         |
| BLUE                  | Blueridge                                       |
| BNFF                  | Banff                                           |
| BOW ISL or BI         | Bow Island                                      |
| BR                    | Belly River                                     |
| BSL COLO              | Basal Colorado                                  |
| BSL MANN, BMNV or BMN | Basal Mannville                                 |
| BSL QTZ               | Basal Quartz                                    |
| CADM or CDN           | Cadomin                                         |
| CARD                  | Cardium                                         |
| CDOT                  | Cadotte                                         |
| CH LK                 | Charlie Lake                                    |
| CLWTR                 | Clearwater                                      |
| CLY or COL            | Colony                                          |
| CMRS                  | Camrose                                         |
| COMP                  | compressibility                                 |
| DBLT                  | Debolt                                          |
| DETR                  | Detrital                                        |
| DISC YEAR             | discovery year                                  |
| ELRSL, ELERS or ELRS  | Ellerslie                                       |
| ELTN or ELK           | Elkton                                          |
| ERSO                  | enhanced-recovery scheme is in operation but no |
|                       | additional established reserves are attributed  |
| FALH                  | Falher                                          |
| FRAC                  | fraction                                        |
| GEN PETE or GEN PET   | General Petroleum                               |
| GETH or GET           | Gething                                         |
| GLAUC or GLC          | Glauconitic                                     |
| GLWD                  | Gilwood                                         |
| GOR                   | gas-oil ratio                                   |
| GRD RAP or GRD RP     | Grand Rapids                                    |
| GROSS HEAT VALUE      | gross heating value                             |
| GSMT                  | Grosmont                                        |
| ha                    | hectare                                         |
| HFWY                  | Halfway                                         |
| INJ                   | injected                                        |
|                       |                                                 |

|                      | · , , 1 1                                    |
|----------------------|----------------------------------------------|
| I.S.                 | integrated scheme                            |
| JUR or J             | Jurassic                                     |
| KB                   | kelly bushing                                |
| KISK                 | Kiskatinaw                                   |
| KR                   | Keg River                                    |
| LED                  | Leduc                                        |
| LF                   | load factor                                  |
| LIV                  | Livingston                                   |
| LLOYD                | Lloydminster                                 |
| LMNV, LMN or LM      | Lower Mannville                              |
| LOC EX PROJECT       | local experimental project                   |
| LOC U                | local utility                                |
| LOW or L             | lower                                        |
| LUSC                 | Luscar                                       |
| MANN or MN           | Mannville                                    |
| MCM                  | McMurray                                     |
| MED HAT              | Medicine Hat                                 |
| MID or M             | middle                                       |
| MILK RIV             | Milk River                                   |
| MOP                  | maximum operating pressure                   |
| MSKG                 | Muskeg                                       |
| MSL                  | mean sea level                               |
| NGL                  | natural gas liquids                          |
| NIKA                 | Nikanassin                                   |
| NIS                  | Nisku                                        |
| NO.                  | number                                       |
| NON-ASSOC            | nonassociated gas                            |
| NORD                 | Nordegg                                      |
| NOTIK, NOTI or NOT   | Notikewin                                    |
| OST                  | Ostracod                                     |
| PALL                 | Palliser                                     |
| РЕК                  | Pekisko                                      |
| PM-PN SYS            | Permo-Penn System                            |
| RF                   | recovery factor                              |
| RK CK                | Rock Creek                                   |
| RUND or RUN          | Rundle                                       |
| SA                   | strike area                                  |
| SATN                 | saturation                                   |
| SD                   | sandstone                                    |
| SE ALTA GAS SYS (MU) | Southeastern Alberta Gas System - commingled |
| SG                   | gas saturation                               |
| SHUN                 | Shunda                                       |
| SL                   | surface loss                                 |
| SL PT                | Slave Point                                  |
| SOLN                 | solution gas                                 |
| SPKY                 | Sparky                                       |
| ST. ED               | St. Edouard                                  |
| SULPT                | Sulphur Point                                |
| SUSP                 | suspended                                    |
| SW                   | water saturation                             |
| SW HL                | Swan Hills                                   |
| TEMP                 | temperature                                  |
|                      | . r                                          |

| TOT                         | total                                      |
|-----------------------------|--------------------------------------------|
| TV                          | Turner Valley                              |
| TVD                         | true vertical depth                        |
| UIRE                        | Upper Ireton                               |
| UMNV, UMN or UM             | Upper Mannville                            |
| UP or U                     | upper                                      |
| VIK or VK                   | Viking                                     |
| VOL                         | volume                                     |
| WAB                         | Wabamun                                    |
| WBSK                        | Wabiskaw                                   |
| WINT                        | Winterburn                                 |
| WTR DISP                    | water disposal                             |
| WTR INJ                     | water injection                            |
| 1ST WHITE SPKS OR 1WS       | First White Specks                         |
| 2WS                         | Second White Specks                        |
|                             |                                            |
| Abbreviations of Company Na | ames                                       |
| AEC                         | Alberta Energy Company Ltd.                |
| AEL                         | Anderson Exploration Ltd.                  |
| ALTAGAS                     | AltaGas Marketing Inc.                     |
| ALTROAN                     | Altana Exploration Company/Roan Resources  |
|                             | Ltd.                                       |
| AMOCO                       | Amoco Canada Petroleum Company Ltd.        |
| APACHE                      | Apache Canada Ltd.                         |
| BARRING                     | Barrington Petroleum Ltd.                  |
| BEAU                        | Beau Canada Exploration Ltd.               |
| BLUERGE                     | Blue Range Resource Corporation            |
| CAN88                       | Canadian 88 Energy Corp.                   |
| CANOR                       | Canor Energy Ltd.                          |
| CANOXY                      | Canadian Occidental Petroleum Ltd.         |
| CANST                       | Canstates Gas Marketing                    |
| CDNFRST                     | Canadian Forest Oil Ltd.                   |
| CENTRA                      | Centra Gas Alberta Inc.                    |
| CGGS                        | Canadian Gas Gathering Systems Inc.        |
| CHEL                        | Canadian Hunter Exploration Ltd.           |
| CHEVRON                     | Chevron Canada Resources                   |
| CMG                         | Canadian-Montana Gas Company Limited       |
| CNRL                        | Canadian Natural Resources Limited         |
| CNWE                        | Canada Northwest Energy Limited            |
| CONOCO                      | Conoco Canada Limited                      |
| CRESTAR                     | Crestar Energy Inc.                        |
| CTYMEDH                     | City of Medicine Hat                       |
| CWNG                        | Canadian Western Natural Gas Company       |
|                             | Limited and Northwestern Utilities Limited |
| DART                        | Dartmouth Power Associates Limited         |
| DIDECT                      | Partnership                                |
| DIRECT                      | Direct Energy Marketing Limited            |
| DUKE                        | Duke Energy Marketing Limited Partnership  |
| DYNALTA                     | Dynalta Energy Corporation                 |
| ENCAL                       | Encal Energy Ltd.                          |
| ENGAGE                      | Engage Energy Canada, L.P.                 |
| ENRMARK                     | EnerMark Inc.                              |

| GARDNER<br>GULF<br>HUSKY | Gardiner Oil and Gas Limited<br>Gulf Canada Resources Limited<br>Husky Oil Ltd. |
|--------------------------|---------------------------------------------------------------------------------|
| IOL                      | 5                                                                               |
| 102                      | Imperial Oil Resources Limited                                                  |
| LOMALTA<br>MARTHON       | Lomalta Petroleums Ltd.                                                         |
|                          | Marathon International Petroleum Canada, Ltd.                                   |
| METGAZ                   | Metro Gaz Marketing                                                             |
| MOBIL                    | Mobil Oil Canada                                                                |
| NOVERGZ                  | Novergaz                                                                        |
| NRTHSTR                  | Northstar Energy Corporation                                                    |
| PANALTA                  | Pan-Alberta Gas Ltd.                                                            |
| PANCDN                   | PanCanadian Petroleum Limited                                                   |
| PARAMNT                  | Paramount Resources Ltd.                                                        |
| PAWTUCK                  | Pawtucket Power Associates Limited                                              |
| D.C.O.C.                 | Partnership                                                                     |
| PCOG                     | Petro-Canada Oil and Gas                                                        |
| PENWEST                  | Penn West Petroleum Ltd.                                                        |
| PETRMET                  | Petromet                                                                        |
| PIONEER                  | Pioneer Natural Resources Canada Ltd.                                           |
| POCO                     | Poco Petroleums Ltd.                                                            |
| PROGAS                   | ProGas Limited                                                                  |
| QUEBEC                   | 3091-9070 Quebec                                                                |
| RANGER                   | Ranger Oil Limited                                                              |
| RENENER                  | Renaissance Energy Ltd.                                                         |
| RIFE                     | Rife Resources Ltd.                                                             |
| RIOALTO                  | Rio Alta Exploration Ltd.                                                       |
| SASKEN                   | SaskEnergy Incorporated                                                         |
| SHELL                    | Shell Canada Limited                                                            |
| SHERRIT                  | Sherritt Inc.                                                                   |
| SIMPLOT                  | Simplot Canada Limited                                                          |
| SUMMIT                   | Summit Resources Limited                                                        |
| SUNCOR                   | Suncor Energy Inc. (Oil Sands Group)                                            |
| SYNCRUDE                 | Syncrude Canada Ltd.                                                            |
| TALISMA                  | Talisman Energy Inc.                                                            |
| TCPL                     | TransCanada PipeLines Limited                                                   |
| ULSTER                   | Ulster Petroleums Ltd.                                                          |
| UNPACF                   | Union Pacific Resources Inc.                                                    |
| WAINOCO                  | Wainoco Oil Corporation                                                         |
| WASCANA                  | Wascana Energy Inc.                                                             |
|                          |                                                                                 |