

AER Core Research Centre

List of Test Types Approved for Material Sampling

October 2014

_			Sampling		Residual material	Destructive/
lest	Includes	Description	category	Sample allowance	to be returned	contaminated
Absolute permeability		A measurement of the	REPS	1"–1.5" drill plugs.	Yes	No
		capacity for flow of a single				
		fluid (water, gas, or oil)				
		through a rock formation				
		when the formation is				
		completely saturated with				
		that fluid.				
Acid compatibility	 acid sensitivity 	Testing to determine	GOS	1"–1.5" drill plugs.	No	Destructive
	 acid solubility 	appropriate acid use in a				
	 acid stimulation 	reservoir with the intention of				
		improving production by				
		enhanced recovery				
		techniques.				
Acoustic velocity		Ultrasonic waves are passed	GOS	1"–1.5" plugs or full	Yes	No
		through core sample to		diameter.		
		determine compression and				
		shear wave velocity to				
		calibrate sonic logs.				

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Test Angle neutron scattering	 Includes Qem scan analysis small/ultra/quasi angle neutron scattering (referred to as SANS, USANS, QENS) 	DescriptionTechnique used to investigate the structure, connectivity, and other physical-chemical properties for the pore network in porous media using a neutron beam.Data outputs for these studies include quantitative bulk mineralogical abundance data, mean mineral size, grain density, lithotype variation between samples, Macro Porosity estimations, and porosity	category REPS	Sample allowance	Yes	No
Capillary pressure measurements	 capillary pressure capillary pressure by porous plate capillary pressure by automated ultra- centrifuge capillary pressure using air-mercury capillary pressure using air-water mercury injection capillary pressure (MICP) mercury injection porosimetry study mercury porosimetry pore size distribution 	distribution data Mercury injection porosimetry data are used to determine pore size distributions of core samples. Cap pressure is used to calculate fluid distributions in a reservoir. Includes mercury injection (MICP), centrifugal (heated high speed), porous plate (at confining pressure) etc.	REPS	1 cubic inch for MICP. 1"–1.5" drill plugs for porous plate or ultracentrifuge analysis.	No for MICP analysis Yes for porous plate or ultracentrifuge methods	MICP contaminated
Carbon isotope chemistry	 bulk carbon isotopes carbon isotope chemistry isotope analysis 	Ratio of carbon isotopes found in tested material. Includes isotope geochemistry etc.	GOS	1 cubic inch.	No	Destructive

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Chromatography	 aromatic/saturate GC-MS biomarkers gas chromatography gas composition GC histogram liquid chromatography B10 mass chromatograms thermal extraction chromatography whole oil GC 	Analytical chromatography is used to determine the identity and concentration of molecules in a mixture	GOS	1 cubic inch.	No	Yes
CO₂ injection	C02 EOR study C02 flow study	An enhanced oil recovery method in which carbon dioxide (CO ₂) is injected into a reservoir to increase production by reducing oil viscosity and providing miscible or partially miscible displacement of the oil.	REPS	1"–1.5" drill plugs.	No	Destructive
Coalbed methane	 ash analysis coal chemistry coal seams analysis density versus ash gas in place moisture analysis proximate analysis ultimate analysis (coalbed methane) 	Laboratory tests conducted to evaluate these resources. Properties measured are on actual reservoir samples, either core or drill cuttings, with the most common analysis being proximate, ultimate, vitrinite reflectance.	REPS	Core: 2 cubic inches. Drill cuttings: Cover bottom of vial with random sample.	No	Destructive
Computed tomography (CT) scan	 tomographic spectral imaging CT scan 	Generates a 3D image that assists in showing the internal detail of a core, plug, or sample of material. It can show the contrast in mineralogy and density.	GOS	Whole or slabbed core, full diameter or small plug samples.	Yes	No

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Core flood	C02 core flood	Assists with determining	REPS	1"–1.5" drill plugs;	No	Contaminated
	 alkali surfactant 	enhanced oil recovery by		may also use full		
	polymer flood	pumping fluids, gas, or steam		diameter wafers		
	 alkaline polymer 	into wells to mobilize oil left		about the size of a		
	flood	behind during primary		hockey puck.		
	 chemical core flood 	recovery. Types include				
	 core flood 	chemical, H2O, steam,				
	 enhanced oil 	surfactants, polymers,				
	recovery (EOR)	solvent, radial, linear, etc.				
	 gas flood 					
	 gas flood 					
	susceptibility					
	 immiscible floods 					
	 improved oil 					
	recovery (IOR)					
	• linear core flood					
	• miscible floods					
	• polymer flooding					
	radial core flood					
	 solvent flood 					
	 stacked core flow 					
	test					
	• steam flood					
	• thermal floods					
	• water flood					
	• water flood					
	susceptibility					

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Core gamma	bulk density index	Core Gamma measures the	GOS	Continuous	yes	no
	density neutron log	natural radioactivity of the		sections of core		
	• gamma-ray log	core, which comes		greater than 1		
	• spectral gamma	essentially from the		metre in length.		
	• BISIOtal gamma	therium period. Uranium		Can be slabbed		
		Inonum series, oranium-				
		radioactive instance K40 of		whole core.		
		Potossium Total and				
		Spectral core damma helps				
		define lost core and denth				
		correction of core with				
		downhole logs. The log can				
		be of the total gamma ray				
		response in API units, in				
		elemental contributions of				
		thorium (ppm), uranium				
		(ppm), and potassium (%)				
		and calibrated bulk density				
		values (kg/m3).				
Drilling mud leak-off		Evaluation of drilling fluid	REPS	1 cubic inch or 1.5"	No	Destructive
_		systems for horizontal and		drill plugs.		
		vertical applications in order				
		to counteract fluid loss and				
		wall collapse and to				
		determine the appropriate				
		use of drilling fluids.				
Effective permeability	 brine permeability 	The ability to preferentially	REPS	1"–1.5" drill plugs.	Yes	No
	effective	flow or transmit a particular				
	permeability to air	fluid when other immiscible				
	• effective	fluids are present in the				
	permeability to gas	reservoir (e.g., effective				
	• effective	permeability of gas in a gas-				
	permeability to oil	water reservoir).				
	permeability to					
	water		1			

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Effective porosity	 stressed brine porosity 	Measurement of pore volume that contributes to fluid flow or permeability. Excludes isolated pores and pore volume occupied by water adsorbed on clay minerals or other grains.	REPS	1"–1.5" drill plugs or 2 cubic inches.	Yes if drill plugs	No
Electrical properties	 anion exchange capacity cation exchange capacity (CEC) excess conductivity formation factor formation resistivity factor (FRF) porosity exponent "m" resistance factor ratio resistivity index (saturation exponent) saturation exponent "n" formation resistivity index (FRI) saturation 	Through application of basic electrical relationships, formation resistivity parameters are obtained: porosity exponent "m," and saturation exponent "n."	REPS	1"–1.5" drill plugs.	Yes	No
Fluid inclusion stratigraphy	• FIT analysis	Analysis of entrained organic and inorganic volatiles in fluid inclusions via quadrupole mass spectrometer (QMS)	GOS	Core: 1 cubic inch. Drill cuttings: Cover bottom of vial with random sampling	No	Yes

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Fluid saturation	 bitumen content 	Measurement of fluid	REPS	1"–1.5" drill plugs	Dean stark method:	No
	 bulk mass fraction 	saturation in a core sample		or 80 g.	- No if oil sands core	
	 connate water 	by distillation extraction,		-	- Yes if conventional	
	saturation	retort analysis, etc. Includes			core	
	 dean stark analysis 	dean stark, retort analysis				
	gas saturation	(summation of fluids),			Retort analysis - No	
	 initial water 	saturation of water (SW) etc.			-	
	saturation					
	 liquid saturation 					
	 oil saturation 					
	 residual gas content 					
	 residual gas 					
	saturation					
	 residual oil 					
	saturation					
	 residual water 					
	saturation					
	 tritium tracer 					
	invasion analysis					
	 tritium tracer 					
	invasion analysis					
	 water saturation 					

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Test Fluids analysis	Includes American Petroleum Institute gravity (API) asphaltene precipitation B43 fluid properties bitumen isoreflectance brine composition bubble point pressure chloride content critical salinity crude oil analysis density of gas density of gas density of oil dynamic pore-flow effluent analysis fluid characterization fluid evaluation fluid study gas compressibility gas deviation factor gas viscosity kinematic viscosity kinematic viscosity kinematic viscosity ilquid hydrocarbon analysis methylene blue index nickel and vanadium nickel content oil compositional analysis oil compressibility oil density oil viscosity relative density relative density relative density	Description The acquisition and testing of reservoir fluids to determine the fluid composition, fluid physical properties, and chemistry. It is used in a variety of applications for hydrocarbon recovery models.	GOS	Sample allowance Core: Fluids/gases are typically extracted from core samples or captured at the well site.	to be returned No	contaminated Fluids not stored at the CRC
	 relative viscosity 					

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Test Fluids Analysis continued	Includes	Description	Sampling category GOS	Sample allowance Core: Fluids/gases are typically extracted from core samples or captured at the well site.	Residual material to be returned	Destructive/ contaminated
	 supplie content in oil trace sulphur analysis vanadium content viscosity water analysis water compositional analysis 					
Formation damage	 water content in oil compatibility study critical velocities fines migration fluid sensitivity velocity sensitivity test 	Analysis to assist in determining damage to a formation due to drilling muds and water, which in turn affects porosity and permeability measurements of the reservoir. Includes fluid sensitivity, fine migration, fluid compatibility, liquid permeability recovery, etc.	REPS	1"–1.5" drill plugs.	No	Destructive

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Fracture analysis	 fracture 	Used to determine reservoir	GOS	1"–1.5" drill plugs.	No	Destructive
	conductivity	fracture characteristics that				
	 paleomagnetic 	exist during reservoir				
	fracture analysis	modelling, designing well				
		drainage patterns and well				
		completion/stimulation				
		programs.				
Geochemistry	 geochemistry 	A combination of a number of	GOS	Core: 1 cubic	No	Destructive
	 kerogen facies 	analysis types to define the		inch.Drill cuttings:		
	assemblage	richness, type (oil/gas), and		Cover bottom of		
	kerogen microscopy	thermal maturity of organic		vial with random		
	 pyrolysis 	matter in geological material		sample.		
	 stable isotope 	or potential source rock.				
	analysis	Includes rock eval/pyrolysis,				
		TOC, vitrinite reflectance and				
		kerogen microscopy, etc.				

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Geomechanics	 Brazil tension 	Geomechanics is the	REPS	Full diameter core	Yes for full diameter.	Destructive
properties	 Brinell hardness 	subject/analysis concerned		to 20 cm or 1"-1.5"	No for small plugs.	(return residue
	 brittleness analysis 	with the response of a		drill plugs.	_	from full
	 compressibility of 	rock/sample to applied				diameter)
	reservoir rock	disturbances. It includes the				
	 direct shear test 	property of the sample's				
	 dynamic elastic 	ability to resist deformation,				
	properties	its change in hydrostatic				
	 failure parameter 	pressure in correspondence				
	 fracture azimuth 	to volumetric strain, the				
	 fracture toughness 	ultimate strength of a rock,				
	 geomechanics 	etc.				
	 indentation 					
	hardness test	The mechanical properties of				
	 Mohr-Coulomb 	the subsurface formations is				
	failure analysis	important in connection with				
	 Poisson's ratio 	wellbore stability problems,				
	 rock mechanics 	fracturing operations,				
	 scratch test/tsi 	subsidence problems and				
	 shear modulus axial 	sand production problems.				
	 shear modulus 	Includes mono/uni/triaxial,				
	transverse	sonic/ultrasonic velocity,				
	 shear rate test 	static/elastic properties,				
	 static elastic 	Young's modulus, Poisson's				
	properties	ratio, brazil tensile strength,				
	• triaxial	Brinell hardness, etc.				
	 triaxial compressive 					
	test					
	 triaxial shear 					
	modules					
	 triaxial strength 					
	 ultrasonic velocity 					
	 unconfined 					
	compression					
	 uniaxial analysis 					
	 Young's modulus 					
Grain density		Calculated from the	REPS	1"–1.5" drill plugs	Yes if drill plugs or	No
		measured dry weight divided		or 1 cubic inch.	full diameter.	
		by the grain volume of a core		Can also be		
		sample.		performed on full		
				diameter sample		
				during routine		
				analysis.		

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Interfacial tension	 liquid–liquid 	Analysis method to measure	GOS	Core: 1 cubic inch.	Yes	No
(IFT)	interfacial tension	the surface and interfacial				
	 liquid–rock 	tension of liquids to other				
	interfacial tension	liquids or to rock.				
Leak-off Analysis	 drilling mud leak-off 	A test to ascertain the ability	REPS	1"–1.5" drill plugs.	Yes	No
	 dynamic frac fluid 	of a drilling fluid to seal				
	leak-off	permeable rock under down				
	 dynamic leak-off 	hole conditions to monitor				
	test	and mitigate fluid invasion				
	 leak-off tests 	trends on reservoir rocks.				
	 pressure integrity 					
Mass spectrometry	 coupled plasma 	This is a type of mass	GOS	Core: 1 cubic	No	Yes
	spectrometry	spectrometry that is capable		inch.Drill cuttings:		
	 inductivity coupled 	of detecting metals and		Cover bottom of		
	plasma	several non-metals at		vial with random		
	spectrometry	concentrations as low as one		sampling.		
		part in 10 (part per trillion).				
		This is achieved by ionizing				
		the sample with inductively				
		coupled plasma and then				
		to apparete and quantify				
		these ions				
Microbial onbancod oil		A technology/study using the	DEDO	1" 1 5" plugo or full	Voo	No
		historical activity of the	REFS	diameter	165	NO
		microorganisms to enhance		ulameter.		
		oil recovery through mobility				
		characteristics of the oil				

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Nuclear magnetic resonance (NMR)	nuclear magnetic resonance spectroscopy	Measurement of NMR properties in a formation to assist in the detection of formation hydrogen. Used to find total porosity and bound and free fluids within pore spaces of analyzed samples and to calibrate downhole NMR logs. This is a research technique that exploits the magnetic properties of certain atomic nuclei. It determines the physical and chemical properties of atoms or the molecules in which they are contained. It relies on the phenomenon of nuclear magnetic resonance and can provide detailed information about the structure, dynamics, reaction state, and chemical environment of	REPS	1"–1.5" plugs or full diameter.	Yes	No
Particle size analysis (PSA)	 Coulter analysis laser particle size analysis (LPSA) particle size distribution analysis sieve analysis 	Particle size is a notion introduced for comparing dimensions of solid particles. Particle size analysis will show distributions of particle sizes within a sample (or combined sampled zone). Includes particle size distribution (PSD), laser particle size analysis (LPSA) Coulter analysis, sieve analysis, etc.	GOS	LPSA: >5 g Sieve: >25 g	No	No

Test Includes Description	cotogory			
	category	Sample allowance	to be returned	contaminated
Test initiates bit of the solution Permeability • air permeability The measurement of the ability to transmit a fluid or gas through a rock formation. • Klinkenberg permeability study • liquid permeability as through a rock formation. • Nincode • micro permeability • micro permeability • micro permeability • micro permeameter • permeability • permeability • micro permeameter • permeability • permeability • measured vertically • permeability • permeability • permeability measured at 90 degrees • permeability plugging test • pressure decay porfile permeametry • pulse decay permeability (PDP) • reservoir condition unsteady-state • specific permeability to brine	REPS	Sample allowance 1"–1.5" drill plugs or full diameter samples may be used.	<u>Yes</u>	No

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Petrology/mineralogy	 biodegradation 	Means of evaluating the	GOS	Core: Thin section	No	Destructive
	 bioturbation 	mineralogy and pore system		can be produced		
	 geological report 	of reservoir rock		from 1 cubic inch		
	 lithofacies 	samples. Also includes the		but occasionally		
	 lithology 	study of macroscopic		geologists will		
	 maceral analysis 	features of rocks, such as		request a piece up		
	 micropaleontology 	their occurrence, origin and		to 3 times the size		
	 mineral 	history, structure, texture and		to produce a larger		
	identification	composition. Includes		thin section or		
	 mineralogy 	petrography, palynology,		multiple thin		
	 organic petrology 	organic petrology, etc.		sections.		
	 paleontology 					
	 palynological 	The finished thin section		Drill cuttings: Cover		
	analysis	slide is viewed under a		bottom of vial with		
	• palynology	microscope to examine by		random sample.		
	• petrographic	point counting or image				
	studies	analysis the mineralogy,				
	 petrography 	texture, diagenesis, pore				
	 stratigraphy 	system, reservoir quality, and				
	thin section	macroscopic features of the				
	petrographics	sample.				
	• thin section					
	photomicrography					

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Photography and	conodont	The image acquisition of	GOS	As required.	Yes	No
Imaging	photographs	physical scene such as a thin				
	 diffuse reflectance 	section or core/core sample.				
	infrared					
	 digital imaging 					
	electron microscopy					
	(HRTEM)					
	 fourier transform 					
	 high resolution 					
	transmission					
	 hyperspectral core 					
	scanning					
	 micro paleo 					
	photography					
	 net pay analysis via 					
	digital imaging					
	• Raman micro					
	spectroscopy					
	 scanning electron 					
	microscope					
	SEM photographs					
	• spectroscopy					
	(drifts)					
	• thin section					
	photographs					
	• ultra violet core					
	v-shale analysis					
	white light core					
	photography					
Porosity	helium porosity	The percentage of pore	REPS	1"-1.5" drill pluas	Yes	No
	 in situ porosity 	volume or void space versus	_	or full diameter		-
	pore volume	the bulk volume of the rock.		samples may be		
	fraction	or that volume within rock		used.		
	summation of fluids	that can contain fluids or gas.				
	porosity	3				
	 total porosity 					
	unconfined porosity					

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Pressure decay profile permeametry (PDPK)		Measures permeability promptly, accurately, and repeatably using a point pressure system at regular intervals as requested.	REPS	Flat surface of core (slabbed core).	Yes	No
Pressure volume temperature	 mud-gas composition oil formation volume factor recombined separator sample reservoir pressure & temperature formation volume factor separator test 	The volumetric and phase behaviour analysis of produced hydrocarbons.	REPS	As required.	No	No
Proppant embedment analysis	 proppant embedment 	Used to determine the proppant effectiveness of reservoir rock.	REPS	10″ X 1/2″ slab. Or small drill plugs	No	Destructive
Pyrolysis		Sample subjected to controlled heating in an inert gas to or past the point of generating hydrocarbons. Provides assessment as a source rock, quantity of organic material, thermal maturity, and quality of hydrocarbons.	GOS	Core: 1 cubic inch. Drill cuttings: Cover bottom of vial with random sampling.	No	Destructive
Regain permeability	 fluid injection recovery regain conductivity regain permeability test slick water regain conductivity 	A permeability measurement that ignores the influence of a reservoir fluid and strictly evaluates the test fluid-rock interaction. It provides a comparison between different proposed drilling/completion fluids and predicts what damage mechanisms may occur. Regain permeability is also often used for evaluating acid stimulation fluids.	REPS	1"–1.5" drill plugs.	No	Contaminated

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Relative permeability	 imbibition relative permeability ratio gas to oil relative permeability ratio water to oil relative permeability to gas/oil/water 	Relative permeability is the ratio of effective permeability of a particular fluid at a particular saturation to absolute permeability of that fluid at total saturation.	REPS	1"–1.5" drill plugs.	Yes	No
Rock thermal conductivity	 caprock analysis coefficient of linear thermal expansion heat generation specific heat thermal relaxation thermal conductivity thermal diffusivity volumetric heat capacity 	Thermal conductivity is the property of a material to conduct heat.	GOS	1"–1.5" drill plugs or full diameter to 20 cm.	Yes for full diameter (unless contaminated) No for small plugs	Destructive May be contaminated
Scanning electron microscope (SEM)	• SEM stub	Used to determine and identify the structure of substances and to identify individual clay minerals and their physical locations in the pore system. Ability to measure density differences that can highlight textures and micro-pores in very fine rocks such as shales and siltstones. This data coupled with the XRD data is evaluated to determine engineering precautions in order to avoid adverse effects on the reservoir during the drilling, completion, and production phases of reservoir development.	GOS	Core: 1 cubic inch.Drill cuttings: Cover bottom of vial with random sample.	yes	Destructive

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Shale analysis	 GRI shale gas analysis shale rock properties tight rock analysis 	Extensive testing of shale reservoirs, including porosity and permeability measurement, saturations from dean stark analysis or retort analysis, grain and bulk density measurements, etc.	REPS	8 to 20 cm of a bulk slab portion depending on the diameter of the core	yes if thermally unaltered	destructive
Shale stability tests	 brine compatibility brine sensitivity test capillary suction time tests (CST) ratio of Kro to Kair (effect of clay swelling) roller oven tests (RO) shale stability stability test 	Analysis that investigates the chemical effects of the drilling fluid on the dispersive properties of shale and active clays.	GOS	Core: 1 cubic inch.	No	Yes
Sorption analysis	 adsorption adsorption adsorption isotherms desorption analysis gas in place langmuir longmuir lost gas calculations methane adsorption isotherm static adsorption 	Sorption isotherm (also adsorption isotherm) describes the equilibrium of the sorption of a material at a surface (more general at a surface boundary) at constant temperature. It represents the amount of material bound at the surface (the sorbate) as a function of the material present in the gas phase and/or in the solution.	REPS	Full diameter core to 20 cm.	Yes	No
Source rock analysis /rock evaluation	 pyrolysis rock evaluation S1 S2 S3 source rock properties T-Max TOC thermal maturity 	A combination of a number of analysis types to define the richness, type (oil/gas), and thermal maturity of organic matter in geological material/potential source rock. Includes rock eval/pyrolysis, TOC, vitrinite reflectance and kerogen microscopy, etc.	GOS	Core: 1 cubic inch. Drill Cuttings: cover bottom of vial with random sampling.	No	Destructive

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
Thin section slides	thin section slides	The laboratory preparation of	GOS	1 cubic inch	yes	no
		a rock sample that is		core/bottom of drill		
		mounted on a glass slide and		cutting vial		
		is thinly ground and polished				
		to be viewed under a				
		polarizing petrographic				
		microscope.				
Total organic carbon	Leco TOC	Amount of organic carbon	GOS	Core: 1 cubic inch.	No	Destructive
(TOC)	• TOC	(wt%) via chemical methods		Drill cuttings: Cover		
		(e.g., Leco TOC) or heating		bottom of vial with		
		(e.g., Rock Eval).		random sampling.		
Vitrinite analysis	• vitrinite reflectance	Measures thermal maturity of	GOS	Core: 1 cubic inch	No	Destructive
	• VRO	organic matter to determine		Drill cuttings: Cover		
		whether hydrocarbons have		bottom of vial with		
		been generated or could be		random sampling.		
		an effective source rock.				
Wettability	Amott wettability	The tendency of one fluid to	GOS	1"-1.5" drill plugs	No	Destructive
		spread over the surface of a		or 2 cubic inches.		
	• U.S. Bureau of	solid rather than another				
	wines wettability	(wetting phase). An				
		absorption test indicates the				
	• Modified USBM	potential of water or oil to				
	wettability	absorb into a rock. The				
		determined by which fluid in				
		more readily absorbed				
X-ray diffraction	• bulk x-ray	Provides identification of	GOS	Core: 1 cubic inch	No	Destructive
X-ray dimaction	diffraction	minerals for petrographic	605	Drill cuttings: Cover	INO	Destructive
	clay analysis	correlations including rock		bottom of vial with		
	elemental manning	composition and analysis of		random sampling		
	x-ray diffraction	clav fraction Can assist in		random damping.		
	• x-ray energy	understanding and				
	spectrometry	evaluating well log data as				
		well as stratigraphic and core				
		logs.				

			Sampling		Residual material	Destructive/
Test	Includes	Description	category	Sample allowance	to be returned	contaminated
X-ray fluorescence	 chemostratigraphy 	Through the emission of low	GOS	XRF scan is done	Yes	No
(XRF)	 chemostrat analysis 	energy (fluorescent		on whole or		
		radiation), this analysis can		slabbed core or		
		detect the bulk abundances		larger geological		
		of major and trace elements		samples (non-		
		in a bulk sample (large		destructively).		
		fraction of geological				
		material).				