IDENTIFICATION OF ENHANCED OIL RECOVERY

POTENTIAL IN ALBERTA

PHASE 2 FINAL REPORT

FOR

ENERGY RESOURCES CONSERVATION BOARD

(March 31, 2012)

Worldwide Petroleum Consultants

- Copies: Energy Resources Conservation Board (2 copies) Sproule Associates Limited (1 copy) Electronic (2 copies)
- Project No.: 4208.18158
- Prepared For: Energy Resources Conservation Board
- Authors: Chris Galas, Ph.D., P.Eng., Project Leader Adela Clements, P.Eng. Elden Jaafar, Ph.D., P.Eng. Oluyemisi Jeje, P.Eng. Derek Holst, P.Eng. Richard Holst, P.Eng.
- Exclusivity: This report has been prepared for the use of the Energy Resources Conservation Board. It may not be reproduced, distributed, or made available to any other company or person, regulatory body, or organization without acknowledgement of Sproule Associates Limited.

Table of Contents

Introduction

Project Objectives 1.0 Phase 1 2.0 Phase 2 Exclusivity Certification Report Preparation Sproule Executive Endorsement Permit to Practice Certificates

Summary

Discussion

- 1.0 Overview
- 2.0 Database
- 3.0 EOR Screening
 - 3.1 Review of Process Solvent Floods
 - 3.2 Review of Process Chemical Floods
 - 3.3 Review of Process Thermal Recovery
 - 3.4 Review of Process Other EOR
 - 3.5 Alberta EOR Screening Criteria
- 4.0 Alberta EOR Projects
 - 4.1 Solvent Floods
 - 4.2 Chemical Floods
 - 4.3 Thermal Recovery
- 5.0 Summary of Findings: Success/Fail Criteria
 - 5.1 Solvent Floods
 - 5.2 Chemical Floods
 - 5.3 Thermal Recovery
- 6.0 Screening of Alberta Oil Pools for EOR Potential
 - 6.1 Waterflood
 - 6.2 Solvent Floods

- 6.3 Chemical Floods
- 6.4 Thermal Recovery
- 7.0 Estimation of Incremental Recoverable Oil by EOR in Alberta
 - 7.1 Waterflood
 - 7.2 Solvent Floods
 - 7.3 Chemical Floods
- 8.0 Conclusions
- 9.0 Recommendations

Tables

Table 1	EOR Project Assessment - Acheson D-3 A
Table 2	EOR Project Assessment - Ante Creek Beaverhill Lake
Table 3	EOR Project Assessment - Bigoray Nisku B
Table 4	EOR Project Assessment - Bigoray Nisku F
Table 5	EOR Project Assessment - Brazeau River Nisku A
Table 6	EOR Project Assessment - Brazeau River Nisku D
Table 7	EOR Project Assessment - Brazeau River Nisku E
Table 8	EOR Project Assessment - Caroline Cardium E
Table 9	EOR Project Assessment - Chigwell Viking E
Table 10	EOR Project Assessment - Chigwell Viking I
Table 11	EOR Project Assessment - Enchant Commingled 005
Table 12	EOR Project Assessment - Enchant Commingled 017
Table 13	EOR Project Assessment - Fenn-Big Valley Commingled 009
Table 14	EOR Project Assessment - Golden Spike D-3 A
Table 15	EOR Project Assessment - Goose River Beaverhill Lake A
Table 16	EOR Project Assessment - Joffre D-3 B
Table 17	EOR Project Assessment - Joffre Viking
Table 18	EOR Project Assessment - Judy Creek Beaverhill Lake A
Table 19	EOR Project Assessment - Judy Creek Beaverhill Lake B
Table 20	EOR Project Assessment - Kaybob Beaverhill Lake A
Table 21	EOR Project Assessment - Kaybob South Triassic A
Table 22	EOR Project Assessment - Leduc D-2A
Table 23	EOR Project Assessment - Mitsue Gilwood A
Table 24	EOR Project Assessment - Nipisi Gilwood A
Table 25	EOR Project Assessment - Pembina Cardium A
Table 26	EOR Project Assessment - Pembina Nisku A
Table 27	EOR Project Assessment - Pembina Nisku D

Sproule

4208.18158.CMFG.smr

Table 28	EOR Project Assessment - Pembina Nisku F
Table 29	EOR Project Assessment - Pembina Nisku G
Table 30	EOR Project Assessment - Pembina Nisku G2G
Table 31	EOR Project Assessment - Pembina Nisku H2H
Table 32	EOR Project Assessment - Pembina Nisku K
Table 33	EOR Project Assessment - Pembina Nisku L
Table 34	EOR Project Assessment - Pembina Nisku M
Table 35	EOR Project Assessment - Pembina Nisku O
Table 36	EOR Project Assessment - Pembina Nisku P
Table 37	EOR Project Assessment - Pembina Nisku P2P
Table 38	EOR Project Assessment - Pembina Nisku Q
Table 39	EOR Project Assessment - Provost Cummings I
Table 40	EOR Project Assessment - Rainbow Keg River A
Table 41	EOR Project Assessment - Rainbow Keg River AA
Table 42	EOR Project Assessment - Rainbow Keg River B
Table 43	EOR Project Assessment - Rainbow Keg River D
Table 44	EOR Project Assessment - Rainbow Keg River E
Table 45	EOR Project Assessment - Rainbow Keg River EEE
Table 46	EOR Project Assessment - Rainbow Keg River F
Table 47	EOR Project Assessment - Rainbow Keg River FF
Table 48	EOR Project Assessment - Rainbow Keg River G
Table 49	EOR Project Assessment - Rainbow Keg River H
Table 50	EOR Project Assessment - Rainbow Keg River II
Table 51	EOR Project Assessment - Rainbow Keg River O
Table 52	EOR Project Assessment - Rainbow Keg River Z
Table 53	EOR Project Assessment - Rainbow South Keg River B
Table 54	EOR Project Assessment - Rainbow South Keg River E
Table 55	EOR Project Assessment - Rainbow South Keg River G
Table 56	EOR Project Assessment - Redwater D-3
Table 57	EOR Project Assessment - Rich D-3A
Table 58	EOR Project Assessment - Simonette D-3
Table 59	EOR Project Assessment - Suffield Lower Mannville J
Table 60	EOR Project Assessment - Suffield Upper Mannville N
Table 61	EOR Project Assessment - Swan Hills Commingled 001
Table 62	EOR Project Assessment - Swan Hills South Commingled 001
Table 63	EOR Project Assessment - Turner Valley Rundle
Table 64	EOR Project Assessment - Virginia Hills Beaverhill Lake
Table 65	EOR Project Assessment - Westpem Nisku D
Table 66	EOR Project Assessment - Wizard Lake D-3A
Table 67	EOR Project Assessment - Zama Keg River F

Sproule

Table 68	EOR Project Assessment - Zama Keg River G2G
Table 69	EOR Project Assessment - Zama Keg River NNN
Table 70	EOR Project Assessment - Zama Keg River RRR
Table 71	EOR Project Assessment - Zama Keg River X2X
Table 72	EOR Project Assessment - Zama Muskeg L
Table 73	EOR Project Assessment - Brintnell Field Horsetail Upper
	Wabiskaw Sand
Table 74	EOR Project Assessment - Cessford Basal Colorado A
Table 75	EOR Project Assessment - Chauvin South Sparky E
Table 76	EOR Project Assessment - Countess Upper Mannville H
Table 77	EOR Project Assessment - Countess Upper Mannville H
	(Experimental ASP)
Table 78	EOR Project Assessment - Edgerton Woodbend A
Table 79	EOR Project Assessment - Entice Lower Mannville B
Table 80	EOR Project Assessment - Horsefly Lake Lower Mannville
Table 81	EOR Project Assessment - Mooney Bluesky A
Table 82	EOR Project Assessment - Provost Upper Mannville A
Table 83	EOR Project Assessment - David Lloydminster A
Table 84	EOR Project Assessment - Provost Cummings I (Experimental
	Polymer)
Table 85	EOR Project Assessment - Suffield Upper Mannville UU
Table 86	EOR Project Assessment - Suffield Upper Mannville U
Table 87	EOR Project Assessment - Taber Glauconitic K
Table 88	EOR Project Assessment - East Taber Mannville D
Table 89	EOR Project Assessment - Taber South Mannville B
Table 90	EOR Project Assessment - Viking-Kinsella Wainwright B Sparky
Table 91	EOR Project Assessment - Viking-Kinsella Wainwright B
	Sparky B
Table 92	EOR Project Assessment - Wildmere Commingled 003
Table 93	EOR Project Assessment - Wrentham Lower Mannville B
Table 94	EOR Project Assessment - Wrentham Lower Mannville C
Table 95	Solvent Floods in Alberta
Table 96	Experimental Solvent Floods in Alberta
Table 97	Ranges of Reservoir Data for Solvent Floods in Alberta
Table 98	Chemical Floods in Alberta
Table 99	Experimental Chemical Floods in Alberta
Table 100	Ranges of Reservoir Data for Chemical Floods in Alberta
Table 101	Experimental Thermal Recovery Projects in Alberta (Non
	Oilsands Designation)

Sproule

Table 102	Oilsands Experimental Projects in "Conventional Oil" Areas of
	Alberta
Table 103	Screening Parameters for Solvent Floods in Alberta
Table 104	Pools with Potential for Solvent Flooding
Table 105	Five Largest Pools with Vertical Solvent Flood Potential
Table 106	Five Largest Pools with Horizontal Solvent Flood Potential
Table 107	Five Largest Pools with Sandstone Solvent Flood Potential
Table 108	Pembina Nisku Reefs with No Miscible Flood
Table 109	Rainbow Keg River Reefs with No Miscible Flood
Table 110	Screening Parameters for Chemical Floods in Alberta
Table 111	Pools with Potential for Chemical Flooding
Table 112	Five Largest Pools with ASP Potential
Table 113	Five Largest Pools with Polymer Flood Potential
Table 114	Pools with Potential for Thermal Recovery

Figures

Figure 1	ASTM Correlation for Four Alberta Oil Samples
Figure 2	Oil Viscosity at 15°C vs Oil Density
Figure 3	Acheson D-3A - Well Locations
Figure 4	Acheson D-3A - Production/Injection History
Figure 5	Acheson D-3A - Approval 10003 Area
Figure 6	Acheson D-3A - Area 2 Production History
Figure 7	Acheson D-3A - Area 2 Injection History
Figure 8	Acheson D-3A - Reservoir Pressure Map at January 2011
Figure 9	Ante Creek Beaverhill Lake - Well Locations
Figure 10	Ante Creek Beaverhill Lake Production/Injection History
Figure 11	Bigoray Nisku B - Well Locations
Figure 12	Bigoray Nisku B - Production/Injection History
Figure 13	Bigoray Nisku F - Well Locations
Figure 14	Bigoray Nisku F - Production/Injection History
Figure 15	Brazeau River Nisku A (aka Nisku X2X) - Well Locations
Figure 16	Brazeau River Nisku A (aka Nisku X2X) - Production/Injection
	History
Figure 17	Brazeau River Nisku D - Well Locations
Figure 18	Brazeau River Nisku D - Production/Injection History
Figure 19	Brazeau River Nisku E - Well Locations
Figure 20	Brazeau River Nisku E - Production/Injection History
Figure 21	Caroline Cardium E - Well Locations

Sproule

4208.18158.CMFG.smr

Figure 22	Caroline Cardium E - Production/Injection History
Figure 23	Chigwell Viking E - Well Locations
Figure 24	Chigwell Viking E - Production/Injection History
Figure 25	Chigwell Viking I - Well Locations
Figure 26	Chigwell Viking I - Production/Injection History
Figure 27	Chigwell Viking I CO ₂ Flood Cum Oil Recovery (m ³)
Figure 28	Chigwell Viking I CO ₂ Flood Historical Production
Figure 29	Chigwell Viking I ER Scheme Historical Production
Figure 30	Chigwell Viking I Ethane and CO_2 Flood Pressure History
Figure 31	Chigwell Viking I Pool (Nelson Unit) Daily Production
	Performance
Figure 32	6-33 WAG Injection History
Figure 33	Chigwell Viking I Pool Net CO ₂ Volumes Injected
Figure 34	Enchant Arc A & B - Well Locations
Figure 35	Enchant Arcs A & B - Production/Injection History
Figure 36	Enchant Arcs F & G - Well Locations
Figure 37	Enchant Arcs F & G - Production/Injection History
Figure 38	Fenn-Big Valley Nisku A - Well Locations
Figure 39	Fenn-Big Valley Nisku A - Production/Injection History
Figure 40	Golden Spike D-3A - Well Locations
Figure 41	Golden Spike D-3A - Production/Injection History
Figure 42	Goose River Beaverhill Lake A - Well Locations
Figure 43	Goose River Beaverhill Lake A - Production/Injection History
Figure 44	Joffre D-3B - Well Locations
Figure 45	Joffre D-3B - Production/Injection History
Figure 46	Joffre Viking - Well Locations
Figure 47	Joffre Viking - Production/Injection History
Figure 48	Joffre Viking - CO_2 Miscible Area
Figure 49	Joffre Viking - CO ₂ Miscible Area Production History
Figure 50	Joffre Viking - CO ₂ Miscible Area Voidage Replacement Ratio
Figure 51	Judy Creek Beaverhill Lake A - Well Locations
Figure 52	Judy Creek Beaverhill Lake A - Production/Injection History
Figure 53	"A" Pool Rate Versus Cumulative Plot - Judy Creek BHL Unit
	Gross Production
Figure 54	Judy Creek "A" Pool CO ₂ EOR Pilot
Figure 55	Judy Creek CO ₂ Pilot: Description
Figure 56	Regulatory Compliance Highlights
Figure 57	"A" Pool Solvent Banksize & Performance
Figure 58	CO_2 Pilot Performance to Date (Dec. 31-10)
Figure 59	Voidage Replacement Ratio Averages 0.99

Figure 60	Pattern Injection & Recovery Data
Figure 61	Judy Creek Beaverhill Lake B - Well Locations
Figure 62	Judy Creek Beaverhill Lake B - Production/Injection History
Figure 63	Kaybob Beaverhill Lake A - Well Locations
Figure 64	Kaybob Beaverhill Lake A - Production/Injection History
Figure 65	Kaybob South Triassic A - Well Locations
Figure 66	Kaybob South Triassic A - Production/Injection History
Figure 67	Leduc D-2A - Well Locations
Figure 68	Leduc D-2A - Production/Injection History
Figure 69	Mitsue Gilwood A - Well Locations
Figure 70	Mitsue Gilwood A - Production/Injection History
Figure 71	Nipisi Gilwood A - Well Locations
Figure 72	Nipisi Gilwood A - Production/Injection History
Figure 73	Pembina Cardium A Pool - Location
Figure 74	Location: Pembina 'A' Lease CO ₂ Pilot
Figure 75	Performance - 02/12-11-048-09W5 2010 Response: Pembina
	'A' Lease CO ₂ Pilot
Figure 76	Performance Comparison: Pembina 'A' Lease CO_2 Pilot
Figure 77	Performance Comparison: Pembina 'A' Lease CO_2 Pilot
Figure 78	Pembina Nisku A - Well Locations
Figure 79	Pembina Nisku A - Production/Injection History
Figure 80	Pembina Nisku D - Well Locations
Figure 81	Pembina Nisku D - Production/Injection History
Figure 82	Pembina Nisku F - Well Locations
Figure 83	Pembina Nisku F - Production/Injection History
Figure 84	Pembina Nisku G - Well Locations
Figure 85	Pembina Nisku G - Production/Injection History
Figure 86	Pembina Nisku G2G - Well Locations
Figure 87	Pembina Nisku G2G - Production/Injection History
Figure 88	Pembina Nisku H2H - Well Locations
Figure 89	Pembina Nisku H2H - Production/Injection History
Figure 90	Pembina Nisku K - Well Locations
Figure 91	Pembina Nisku K - Production/Injection History
Figure 92	Pembina Nisku L - Well Locations
Figure 93	Pembina Nisku L - Production/Injection History
Figure 94	Pembina Nisku M - Well Locations
Figure 95	Pembina Nisku M - Production/Injection History
Figure 96	Pembina Nisku O - Well Locations
Figure 97	Pembina Nisku O - Production/Injection History
Figure 98	Pembina Nisku P - Well Locations

Sproule

4208.18158.CMFG.smr

Figure 99	Pembina Nisku P - Production/Injection History
Figure 100	Pembina Nisku P2P - Well Locations
Figure 101	Pembina Nisku P2P - Production/Injection History
Figure 102	Pembina Nisku Q - Well Locations
Figure 103	Pembina Nisku Q - Production/Injection History
Figure 104	Provost Cummings I - Well Locations
Figure 105	Provost Cummings I - Production/Injection History
Figure 106	Rainbow Keg River A - Well Locations
Figure 107	Rainbow Keg River A - Production/Injection History
Figure 108	Rainbow Keg River AA - Well Locations
Figure 109	Rainbow Keg River AA - Production/Injection History
Figure 110	Rainbow Keg River B - Well Locations
Figure 111	Rainbow Keg River B - Production/Injection History
Figure 112	Rainbow Keg River D - Well Locations
Figure 113	Rainbow Keg River D - Production/Injection History
Figure 114	Rainbow Keg River E - Well Locations
Figure 115	Rainbow Keg River E - Production/Injection History
Figure 116	Rainbow Keg River EEE - Well Locations
Figure 117	Rainbow Keg River EEE - Production/Injection History
Figure 118	Rainbow Keg River F - Well Locations
Figure 119	Rainbow Keg River F - Production/Injection History
Figure 120	Keg River F Pool - Structure Map
Figure 121	RKRF Pool Production Performance
Figure 122	Rainbow Keg River F Pool - Ultimate Oil
Figure 123	Voidage Replacement Ratio History - Total Pool
Figure 124	Pressure History
Figure 125	Injected Solvent Composition
Figure 126	Injected Solvent Composition
Figure 127	Injected Solvent Composition
Figure 128	Rainbow Keg River FF - Well Locations
Figure 129	Rainbow Keg River FF - Production/Injection History
Figure 130	Rainbow Keg River G - Well Locations
Figure 131	Rainbow Keg River G - Production/Injection History
Figure 132	Rainbow Keg River H - Well Locations
Figure 133	Rainbow Keg River H - Production/Injection History
Figure 134	Rainbow Keg River II - Well Locations
Figure 135	Rainbow Keg River II - Production/Injection History
Figure 136	Rainbow Keg River O - Well Locations
Figure 137	Rainbow Keg River O - Production/Injection History
Figure 138	Rainbow Keg River Z - Well Locations

Sproule

4208.18158.CMFG.smr

Figure 139	Rainbow Keg River Z - Production/Injection History
Figure 140	Rainbow South Keg River B - Well Locations
Figure 141	Rainbow South Keg River B - Production/Injection History
Figure 142	Rainbow South Keg River E - Well Locations
Figure 143	Rainbow South Keg River E - Production/Injection History
Figure 144	Rainbow South Keg River G - Well Locations
Figure 145	Rainbow South Keg River G - Production/Injection History
Figure 146	Redwater D-3 - Well Locations
Figure 147	Redwater D-3 - Production/Injection History
Figure 148	Rich D-3A - Well Locations
Figure 149	Rich D-3A - Production/Injection History
Figure 150	Simonette D3 - Well Locations
Figure 151	Simonette D3 - Production/Injection History
Figure 152	Suffield Lower Mannville J - Well Locations
Figure 153	Suffield Lower Mannville J - Production/Injection History
Figure 154	Suffield Upper Mannville N - Well Locations
Figure 155	Suffield Upper Mannville N - Production/Injection History
Figure 156	Swan Hills Beaverhill Lake A&B - Well Locations
Figure 157	Swan Hills Beaverhill Lake A&B - Production/Injection History
Figure 158	Swan Hills South Beaverhill Lake A - Well Locations
Figure 159	Swan Hills South Beaverhill Lake A - Production/Injection
	History
Figure 160	SSH CO ₂ Pilot Review - Pilot Location
Figure 161	South Swan Hills - CO ₂ Pilot Scheme
Figure 162	SSH CO_2 Pilot Review - Performance - Injection
Figure 163	SSH CO_2 Pilot Review - Performance - Injection
Figure 164	Performance: 04-29-065-10W5
Figure 165	Performance: 02-30-065-10W5
Figure 166	Pilot Performance: Forecast vs Actual
Figure 167	Compliance: Voidage Replacement Ratio
Figure 168	Compliance: Gas Analyses
Figure 169	SSH CO_2 Pilot Review - Performance - Oil Recovery & CO_2
	Injection (Dec. 2010)
Figure 170	Turner Valley Rundle - Well Locations
Figure 171	Turner Valley Rundle - Production/Injection History
Figure 172	Virginia Hills Beaverhill Lake - Well Locations
Figure 173	Virginia Hills Beaverhill Lake - Production/Injection History
Figure 174	Wizard Lake D-3A - Well Locations
Figure 175	Wizard Lake D-3A - Production/Injection History
Figure 176	Zama Keg River F - Well Locations

Sproule

4208.18158.CMFG.smr

Figure 177	Zama Keg River F - Production/Injection History
Figure 178	Zama Keg River G2G - Well Locations
Figure 179	Zama Keg River G2G - Production/Injection History
Figure 180	Zama Keg River NNN - Well Locations
Figure 181	Zama Keg River NNN - Production/Injection History
Figure 182	Zama Keg River RRR - Well Locations
Figure 183	Zama Keg River RRR - Production/Injection History
Figure 184	Zama Keg River X2X - Well Locations
Figure 185	Zama Keg River X2X - Production/Injection History
Figure 186	Zama Acid Gas Disposal - Proposed Pipeline Routes
Figure 187	Keg River "X2X" Cross-Section
Figure 188	NCL Plant Acid Gas Injection History
Figure 189	Pennzoil X2X Pool - Acid Gas Injection Scheme
Figure 190	Pennzoil X2X Pool - Acid Gas Injection Scheme
Figure 191	Acid Gas Properties
Figure 192	Zama Muskeg L - Well Locations
Figure 193	Zama Muskeg L - Production/Injection History
Figure 194	Location of Brintnell Project
Figure 195	CNRL Brint 6-14-81-21W4M Type Log
Figure 196	Brintnell Produced Viscosity Map
Figure 197	Brintnell - Performance of Average Pattern under Polymer Flood
Figure 198	Brintnell - Approval 10147 - First Area Expanded After the Pilot
Figure 199	Brintnell - Approval 10147 - Polymer Flood Performance
Figure 200	Brintnell - Approval 10423 - Polymer Flood
Figure 201	Brintnell - Approval 10423 - Polymer Flood Performance
Figure 202	Brintnell - Approval 10787 - Polymer Flood
Figure 203	Brintnell - Approval 10787 - Polymer Flood Performance
Figure 204	Brintnell - Approval 9467 - Waterflood/Polymer Flood
Figure 205	Brintnell - Approval 9467 - Polymer Flood Performance
Figure 206	Brintnell - Approval 9673 - Waterflood/Polymer Flood
Figure 207	Brintnell - Approval 9673 - Polymer Flood Performance
Figure 208	Brintnell - Entire Flood Performance Results
Figure 209	Brintnell - Major Approval Area Recovery Factors
Figure 210	Cessford Basal Colorado A - Well Locations
Figure 211	Cessford Basal Colorado A - Production/Injection History
Figure 212	Cessford Basal Colorado A Pool - North, Central and South
	Patterns
Figure 213	Cessford Basal Colorado A Pool - Gas Cap (North Patterns)
Figure 214	Cessford Basal Colorado A Pool - Northern Patterns Caustic
	Polymer Flood

Sproule

Figure 215	Cessford Basal Colorado A Pool - All Wells Alkali Polymer Flood Performance (1984–1990)
Figure 216	Cessford Basal Colorado A Pool - All Wells Alkali Polymer Flood
i igulo Ero	Performance (1961–1990)
Figure 217	Cessford Basal Colorado A Pool - North Pattern Performance
5	(1961–1990)
Figure 218	Cessford Basal Colorado A Pool - Centre Pattern Performance
-	(1962–1990)
Figure 219	Cessford Basal Colorado A Pool - South Pattern Performance
	(1962–1990)
Figure 220	Cessford Basal Colorado A Pool - Injection History (7 injectors)
	(1962–1990)
Figure 221	Cessford Basal Colorado A Pool - Injection History (7 injectors)
	(1962–1990)
Figure 222	Chauvin South Sparky E - Well Locations
Figure 223	Chauvin South Sparky E - Production/Injection History
Figure 224	Chauvin South Sparky E - Production/Injection Pool Polymer
	Pilot History
Figure 225	Chauvin South Sparky E Pool - Pilot Area
Figure 226	Chauvin South Sparky E Pool - All Wells, Production
	Performance (1986–1992)
Figure 227	Chauvin South Sparky E Pool - Total Injection Viscosity & HCOH
	Concentration (1988–1991)
Figure 228	Chauvin South Sparky E Pool - Injection Performance to Jan 31,
	1993 00/13-24-042-03W4/0
Figure 229	Chauvin South Sparky E Pool - Injection Performance to Jan 31,
	1993 02/03-25-042-03W4/0
Figure 230	Chauvin South Sparky E Pool - Injection Performance to Jan 31,
F : 0.04	1993 00/15-26-042-03W4/0
Figure 231	Countess Upper Mannville H - Well Locations
Figure 232	Countess Upper Mannville H - Production/Injection History
Figure 233	Edgerton Woodbend A - Well Locations
Figure 234	Edgerton Woodbend A - Production/Injection History
Figure 235	Entice Lower Mannville B - Well Locations
Figure 236	Entice Lower Mannville B - Production/Injection History
Figure 237	Horsefly Lake Mannville - Well Locations
Figure 238	Hersefly Lake Mannyille Production/Injection History
Figure 239	Horsefly Lake - Mannyille Pool - Pliot Area
Figure 240	HOISENY LAKE - MANNYINE POOL - INCREMENTAL ON RECOVERY

Sproule

Figure 241	Horsefly Lake - Mannville Pool - Production Performance Oil Rate vs Cumulative Oil
Figure 242	Horsefly Lake - Mannville Pool - Production Performance (1984– 1988) Oil Rate vs Time
Figure 243	Horsefly Lake - Mannville Pool - Production Performance (1984– 1988) Water and Oil Cut vs Time
Figure 244	Horsefly Lake - Mannville Pool - Injection Performance (1984– 1988)
Figure 245	Horsefly Lake - Mannville Pool - Incremental Oil (1984–1990)
Figure 246	Horsefly Lake - Mannville Pool - Oil Rate vs Cumulative Injected Pore Volume (%)
Figure 247	Horsefly Lake - Mannville Pool - WOR vs Cumulative Oil Produced
Figure 248	Mooney Bluesky A - Well Locations
Figure 249	Mooney Bluesky A - Production/Injection History
Figure 250	Provost Upper Mannville A - Well Locations
Figure 251	Provost Upper Mannville A - Production/Injection History
Figure 252	Provost - Upper Mannville A Pool - Pilot Area
Figure 253	Provost Upper Mannville A - Well Locations
Figure 254	Provost Upper Mannville A - Production Profile of 14-15-37- 01W4M
Figure 255	Provost Lloydminster DD - Well Locations
Figure 256	Provost Lloydminster DD - Production/Injection History
Figure 257	Provost - (David) Lloydminster DD Pool Alkali/Polymer - Project 2 & 11-41-3W4M Net Pay Isopach
Figure 258	Provost - (David) Lloydminster DD Pool Alkali/Polymer - Project 2 & 11-41-3W4M Pattern Configuration
Figure 259	Provost - (David) Lloydminster DD Pool Alkali/Polymer - Summary of Slug Size for the 7 Patterns
Figure 260	Provost - (David) Lloydminster DD Pool Alkali/Polymer - Project 2 & 11-41-3W4M Oil Cut and Oil Production vs Time Primary, Waterflood and Alkaline-Polymer Flood
Figure 261	Provost - (David) Lloydminster DD Pool Alkali/Polymer - Project 2 & 11-41-3W4M Core Flood vs Field Performance % Cumulative Oil Recovery vs Cumulative Produced Fluids
Figure 262	Provost - (David) Lloydminster DD Pool Alkali/Polymer - Project 2 & 11-41-3W4M Oil Cut % vs Cumulative Oil Recovery (%)
Figure 263	Provost Cummings I - Well Locations
Figure 264	Provost Cummings I - Production/Injection History
Figure 265	Suffield Upper Mannville UU - Well Locations

Sproule

Figure 266	Suffield Upper Mannville UU - Production/Injection History
Figure 267	Suffield Upper Mannville UU Pool Pilot
Figure 268	Suffield Upper Mannville UU Type Log
Figure 269	Suffield Upper Mannville UU Produced Water Analysis
Figure 270	Suffield Upper Mannville UU Scale Activity Map
Figure 271	Suffield Upper Mannville UU Group Performance Plot Excluding
	02/14-10 (2010 Horizontal Well)
Figure 272	Suffield Upper Mannville UU Water and Injection Pressure
Figure 273	Suffield Upper Mannville UU Water and Injection Pressure
Figure 274	Future Suffield Chemical Flooding - South Jenner Field - UM YYY
	Pool
Figure 275	South Jenner Upper Mannville YYY Area Geological
	Relationships
Figure 276	South Jenner Upper Mannville YYY Pool WSO #2 Gross Isopach
Figure 277	South Jenner Upper Mannville YYY Pool Waterflood vs ASP
	Prediction
Figure 278	Suffield Upper Mannville U - Well Locations
Figure 279	Suffield Upper Mannville U - Production/Injection History
Figure 280	Taber Glauconite K/Mannville D Unit #1 - Well Locations
Figure 281	Taber Glauconite K/Mannville D Unit #1 - Production/Injection
	History
Figure 282	Taber Mannville D Pool Unit No 1 Project Areas
Figure 283	Taber Mannville D Pool Unit 1 - Pilot Production Summary Plot
Figure 284	Taber Mannville D Pool Unit 1 - Tapered Polymer Slug Design
Figure 285	Taber Mannville D Pool Unit 1 - Polymer Area Recovery Curves
	Actual vs Predicted Performance
Figure 286	Taber South Mannville B - Well Locations
Figure 287	Taber South Mannville B - Production/Injection History
Figure 288	Taber South - Mannville B Pool - Pool Order
Figure 289	Taber South - Mannville B Pool Pilot
Figure 290	Taber South - Mannville B Net Oil Isopach
Figure 291	Taber South - Mannville B Cumulative VRR
Figure 292	Taber South - Mannville B Polymer Concentrations In ppm (By
	Area & Total Approval Area)
Figure 293	Taber South - Mannville B pH of Produced Wells (By Area $\&$
	Total Approval Area)
Figure 294	Taber South - Mannville B Production & Forecast
Figure 295	Taber South - Mannville B Injection Volumes & Pressures
	(Monthly Averages Including Downtime)

Figure 296	Taber South - Mannville B Well Graph Shows Some of the Key
Figure 207	Taker South Mannuille D. Comparison of Draduction to
Figure 297	Waterflood and ASP Production
Figure 298	Taber South - Mannville B Oil Production Based on ASP Volumes
5	Injected
Figure 299	Taber South - Mannville B Oil Production and Oil Cut
Figure 300	Taber South - Mannville B Injection Rates and Average
	Wellhead Pressures
Figure 301	Taber South - Mannville B (Warner) Region Map
Figure 302	Taber South - Mannville B (Warner) VRR by Area
Figure 303	Taber South - Mannville B (Warner) Injection Fluid Chemical
	Concentration
Figure 304	Viking Kinsella Wainwright B - Well Locations
Figure 305	Viking Kinsella Wainwright B - Production/Injection History
Figure 306	Viking-Kinsella - Wainwright B Pool - Pool
Figure 307	Viking-Kinsella - Wainwright B Pool – Cross-Section
Figure 308	Viking-Kinsella - Wainwright B Pool - Type Log
Figure 309	Viking-Kinsella - Wainwright B Pool - Flow Unit
Figure 310	Viking-Kinsella - Wainwright B Pool - Production & Injection
	Performance - Full Field
Figure 311	Viking-Kinsella - Wainwright B Pool - Voidage Replacement
	Ratio - Full Field
Figure 312	Viking-Kinsella - Wainwright B Pool - Polymer Pilot Area
Figure 313	Viking-Kinsella - Wainwright B Pool - Laboratory Test Results
Figure 314	Viking-Kinsella - Wainwright B Pool - Production & Injection
	Performance - Pilot Area
Figure 315	Viking-Kinsella - Wainwright B Pool - Voidage Replacement
	Ratio - Pilot Area
Figure 316	Viking-Kinsella - Wainwright B Pool - Production Performance -
	Pilot Area
Figure 317	Viking-Kinsella - Wainwright B Pool - Polymer Injection
	Performance Factors - Pilot Area
Figure 318	Viking-Kinsella - Wainwright B Pool - Polymer Breakthrough
	Monitoring On Producers
Figure 319	Wildmere Lloyd/Sparky - Well Locations
Figure 320	Wildmere Lloyd/Sparky - Production/Injection History
Figure 321	Wrentham Lower Mannville B - Well Locations
Figure 322	Wrentham Lower Mannville B - Production/Injection History
Figure 323	Wrentham Lower Mannville C - Well Locations

Figure 324	Wrentham Lower Mannville C - Production/Injection History
Figure 325	Wrentham Lower Mannville B & C Pools - Etzikom Creek Facility - Production
Figure 326	Wrentham Lower Mannville B Pool - Etzikom Creek Facility - Production
Figure 327	Wrentham Lower Mannville C Pool - Etzikom Creek Facility - Production
Figure 328	Wrentham Lower Mannville B & C Pools - Etzikom Creek Facility - Injection
Figure 329	Wrentham Lower Mannville B & C Pools - Etzikom Creek Facility - Injection
Figure 330	Wrentham Lower Mannville B & C Pools - Etzikom Creek Facility - Injection
Figure 331	Wrentham Lower Mannville B & C Pools - Performance - Etzikom Creek Facility Breakthrough
Figure 332	Wrentham Lower Mannville B Pool - Performance Well Response and Breakthrough
Figure 333	Wrentham Lower Mannville B Pool - Performance Well Response and Breakthrough
Figure 334	Wrentham Lower Mannville C Pool - Performance Well Response and Breakthrough
Figure 335	Wrentham Lower Mannville C Pool - Performance Well Response and Breakthrough
Figure 336	Wrentham Lower Mannville C Pool - Performance Well Response and Breakthrough
Figure 337	Wrentham Lower Mannville C Pool - Performance Well Response and Breakthrough
Figure 338	Wrentham Lower Mannville C Pool - Performance Well Response and Breakthrough
Figure 339	Wrentham Lower Mannville C Pool - Performance Well Response and Breakthrough
Figure 340	Location of Baytex Cliffdale CSS Project
- Figure 341	Baytex Cliffdale Type Log
Figure 342	Harmon Valley Cyclic Steam Performance
Figure 343	Cliffdale Cyclic Steam Performance

Appendices

Appendix A

Abbreviations, Units and Conversion Factors

4208.18158.CMFG.smr

Introduction

Sproule Associates Limited ("Sproule") has been contracted to conduct a study titled "Identification of Enhanced Oil Recovery Potential in Alberta" at the request of the Energy Resources Conservation Board (ERCB). The study was prepared from March 2011 to March 2012 and was conducted in two phases. This report presents the results of Phase 2.

Project Objectives

The primary objectives of the study "Identification of Enhanced Oil Recovery Potential in Alberta" are as follows:

1.0 Phase 1

- Retrieve information on all EOR schemes in Alberta from the ERCB's Reserves Report and other ERCB and public databases/files;
- Create an inventory of EOR scheme information organized by pertinent characteristics such as geographic area, pool, formation, reservoir properties, scheme type (e.g., CO₂, alkali surfactant polymer [ASP]), and recoveries;
- Analyze the inventory of EOR scheme information, focusing on successful EOR operations, existing and emerging trends, and likely short-term EOR prospects;
- Assess the associated potential success factors;
- Write preliminary report on EOR in Alberta oil pools, containing lessons learned and preliminary findings;
- Create an inventory of existing EOR schemes in Alberta organized by pertinent characteristics;
- Initially assess potential success factors.

2.0 Phase 2

- Apply knowledge gained from Phase 1, along with information from literature searches and possible industry interviews, to fully develop criteria for the screening of potential future EOR prospects, with consideration for the various types of possible EOR schemes and technologies;
- Apply screening criteria to all oil pools in Alberta;
- Assess and compile potential incremental recoverable volumes for all oil pools under various EOR technologies;

Sproule

- Provide a progress update on preliminary findings and adjust the study as necessary;
- Prepare a report on the total findings on existing and future potential EOR in Alberta in written, tabular, and graphical formats. The report will include, but is not limited to, the following information:
 - a. Field and pool name,
 - b. Formation,
 - c. EOR type,
 - d. Fluid properties,
 - e. Reservoir parameters,
 - f. Geographic location,
 - g. Primary recovery,
 - h. Current incremental recovery.

This study considers only the technical factors associated with EOR. For any individual project, the economics are important, however, since the economic factors are variable and highly dependent on the current oil price (and the expectation of future oil prices), these factors are not addressed in this study.

Exclusivity

This report has been prepared for the use of the Energy Resources Conservation Board (ERCB). It may not be reproduced, distributed, or made available to any other company or person, regulatory body, or organization without acknowledging Sproule Associates Limited. Any copy made available must also contain the disclaimer which Sproule has placed on the document as to reliance on its content by anyone other than the Energy Resources Conservation Board.

Certification

Report Preparation

The report entitled "Identification of Enhanced Oil Recovery Potential in Alberta Phase 2 Final Report for Energy Resources Conservation Board (March 31, 2012)" was prepared by the following Sproule personnel:

Original Signed by Chris M.F. Galas, Ph.D., P.Eng.

Chris M.F. Galas, Ph.D., P.Eng. Project Leader; Manager, Reservoir Studies and Partner <u>27 / 04 /2012</u> dd/mm/yr

Original Signed by Oluyemisi Jeje, P.Eng.

Oluyemisi Jeje, P.Eng. Petroleum Engineer <u>27 / 04 /2012</u> dd/mm/yr

Original Signed by Elden Jaafar, Ph.D., P.Eng.

Elden Jaafar, Ph.D., P.Eng. Senior Petroleum Engineer <u>27 / 04 /2012</u> dd/mm/yr

Original Signed by Chris M.F. Galas, P.Eng. on behalf of Adela Clements, P.Eng.

Adela Clements, P.Eng. Senior Petroleum Engineer <u>27 / 04 /2012</u> dd/mm/yr

Original Signed by Derek Holst, P.Eng.

Derek Holst, P.Eng. Senior Petroleum Engineer <u>27 / 04 /2012</u> dd/mm/yr

Original Signed by Richard Holst, P.Eng.

Richard Holst, P.Eng. Senior Petroleum Engineer <u>27 / 04 /2012</u> dd/mm/yr

Sproule Executive Endorsement

This report has been reviewed and endorsed by the following Executive of Sproule:

Original Signed by Harry J. Helwerda, P.Eng., FEC

Harry J. Helwerda, P.Eng., FEC Executive Vice-President and Director <u>27 / 04 /2012</u> dd/mm/yr

Permit to Practice

Sproule International Limited is a member of the Association of Professional Engineers and Geoscientists of Alberta and our permit number is P6151.

4208.18158.CMFG.smr

Chris M.F. Galas, Ph.D., P.Eng.

I, Chris Galas, Manager, Reservoir Studies, and Partner of Sproule, 900, 140 Fourth Ave. SW, Calgary, Alberta, declare the following:

- 1. I hold the following degrees:
 - a. B.A. Natural Sciences (1971), Cambridge University, United Kingdom
 - b. M.A. Natural Sciences (1975), Cambridge University, United Kingdom
 - c. M.Sc. Nuclear and Elementary Particle Physics (1975), London University, United Kingdom
 - d. Ph.D. X-Ray Astronomy (1980), University of Calgary, Calgary, Alberta, Canada
- 2. I am a registered professional:
 - a. Professional Engineer (P.Eng.) Province of Alberta, Canada
- 3. I am a member of the following professional organizations:
 - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 - b. Society of Petroleum Engineers (SPE)
- 4. My contribution to the report entitled "Identification of Enhanced Oil Recovery Potential in Alberta Phase 2 Final Report for Energy Resources Conservation Board (March 31, 2012)" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. I did not undertake a field inspection of the properties.
- 5. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of the Energy Resources Conservation Board.

Original Signed by Chris M.F. Galas, P.Eng.

Chris M.F. Galas, P.Eng.

A Sproule

Oluyemisi O. Jeje, P.Eng.

I, Oluyemisi O. Jeje, Petroleum Engineer of Sproule, 900, 140 Fourth Ave SW, Calgary, Alberta, declare the following:

- 1. I hold the following degree:
 - a. B.Sc. Petroleum Engineering (2000), University of Calgary, Calgary, AB, Canada
- 2. I am a registered Professional:
 - a. Professional Engineer (P.Eng.), Province of Alberta, Canada
- 3. I am a member of the following professional organizations:
 - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 - b. Society of Petroleum Engineers (SPE)
- 4. My contribution to the report entitled "Identification of Enhanced Oil Recovery Potential in Alberta Phase 2 Final Report for Energy Resources Conservation Board (March 31, 2012)" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. I did not undertake a field inspection of the properties.
- 5. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of the Energy Resources Conservation Board.

Original Signed by Oluyemisi O. Jeje, P.Eng.

Oluyemisi O. Jeje, P.Eng.

Sproule

Elden Jaafar, Ph.D., P.Eng.

I, Elden Jaafar, Senior Petroleum Engineer of Sproule International Limited, 900, 140 Fourth Ave SW, Calgary, Alberta, declare the following:

- 1. I hold the following degree:
 - a. Ph.D. Petroleum Engineering (1989), Heriot-Watt University, Edinburgh, United Kingdom
- 2. I am a registered professional:a. Professional Engineer (P.Eng.) Province of Alberta, Canada
- 3. I am a member of the following professional organizations:
 - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 - b. Society of Petroleum Engineers (SPE)
- 4. I am a qualified reserves evaluator and reserves auditor as defined in National Instrument 51-101.
- 5. My contribution to the report entitled "Identification of Enhanced Oil Recovery Potential in Alberta Phase 2 Final Report for Energy Resources Conservation Board (March 31, 2012)" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. I did not undertake a field inspection of the properties.
- 6. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of the Energy Resources Conservation Board.

Original Signed by Elden Jaafar, P.Eng.

Elden Jaafar, P.Eng.

Sproule

Adela M. Clements, B.Sc., P.Eng.

I, Adela A. Clements, Senior Petroleum Engineer, of Sproule, 900, 140 Fourth Ave SW, Calgary, Alberta, declare the following:

- 1. I hold the following degree:
 - a. B.Sc., Civil Engineering (1983), University of Manitoba, Winnipeg, Manitoba
- 2. I am a registered professional:
 - a. Professional Engineer (P.Eng.) Province of Alberta, Canada
- 3. I am a member of the following professional organizations:
 - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 - b. Society of Petroleum Engineers (SPE)
 - c. Canadian Heavy Oil Association (CHOA)
- 4. My contribution to the report entitled "Identification of Enhanced Oil Recovery Potential in Alberta Phase 2 Final Report for Energy Resources Conservation Board (March 31, 2012)" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. I did not undertake a field inspection of the properties.
- 5. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of the Energy Resources Conservation Board.

Original Signed by Adela M. Clements, P.Eng.

Adela M. Clements, P.Eng.

A Sproule

Derek A. Holst, P.Eng.

I, Derek Holst, Senior Petroleum Engineer, of Sproule, 900, 140 Fourth Ave SW, Calgary, Alberta, declare the following:

- 1. I hold the following degree:
 - a. B.Sc., Chemical Engineering (1991); University of Calgary
- 2. I am a registered professional:
 - a. Professional Engineer (P.Eng.) Province of Alberta, Canada
- 3. I am a member of the following professional organizations:
 - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 - b. Society of Petroleum Engineers (SPE)
- 4.
- 4. My contribution to the report entitled "Identification of Enhanced Oil Recovery Potential in Alberta Phase 2 Final Report for Energy Resources Conservation Board (March 31, 2012)" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. I did not undertake a field inspection of the properties.
- 5. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of the Energy Resources Conservation Board.

Original Signed by Derek A. Holst, P.Eng.

Derek A. Holst, P.Eng.

Sproule

Richard P. Holst, P.Eng.

I, Richard P. Holst, Senior Petroleum Engineer, of Sproule, 900, 140 Fourth Ave SW, Calgary, Alberta, declare the following:

- 1. I hold the following degree:
 - a. B.Sc. Chemical Engineering (1994), University of Calgary, Calgary Alberta
- 2. I am a registered professional:a. Professional Engineer (P.Eng.) Province of Alberta, Canada
- 3. I am a member of the following professional organizations:
 - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 - b. Society of Petroleum Engineers (SPE)
- 4. My contribution to the report entitled "Identification of Enhanced Oil Recovery Potential in Alberta Phase 2 Final Report for Energy Resources Conservation Board (March 31, 2012)" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. I did not undertake a field inspection of the properties.
- 5. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of the Energy Resources Conservation Board.

Original Signed by Richard P. Holst, P.Eng.

Richard P. Holst, P.Eng.

Sproule

Harry J. Helwerda, B.Sc., P.Eng., FEC

I, Harry J. Helwerda, Executive Vice-President, and Director of Sproule, 900, 140 Fourth Ave SW, Calgary, Alberta, declare the following:

- 1. I hold the following degree:
 - a. B.Sc. Civil Engineering (1978) University of Calgary, Calgary AB, Canada
- 2. I am a registered professional:a. Professional Engineer (P.Eng.) Province of Alberta, Canada
- 3. I have been bestowed with the designation Fellow Engineers Canada (FEC)
- 4. I am a member of the following professional organizations:
 - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 - b. Society of Petroleum Engineers (SPE)
 - c. Society of Petroleum Evaluation Engineers (SPEE)
- 5. I am a qualified reserves evaluator and reserves auditor as defined in National Instrument 51-101.
- 6. My contribution to the report entitled "Identification of Enhanced Oil Recovery Potential in Alberta Phase 2 Final Report for Energy Resources Conservation Board (March 31, 2012)" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. I did not undertake a field inspection of the properties.
- 7. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of the Energy Resources Conservation Board.

Original Signed by Harry J. Helwerda, P.Eng., FEC

Harry J. Helwerda, P.Eng., FEC

Sproule

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

Summary

This report is a summary of Phase 2 of the project "Identification of Enhanced Oil Recovery (EOR) Potential in Alberta" (March 31, 2012).

The tasks undertaken for Phase 2 are:

- Discuss screening for EOR, including reviewing the principal EOR methods and selecting EOR screening criteria, taking into account the technical issues and the availability of data;
- Review 72 solvent and 22 chemical floods in Alberta, along with some thermal recovery projects;
- Summarize the findings and discuss success/fail criteria for each method;
- Screen all of the oil pools in Alberta for their potential for EOR. This screening showed that the number of pools with potential for each process is
 - 200 pools for vertical solvent floods,
 - 734 pools for horizontal solvent floods,
 - 382 pools for combination solvent floods,
 - 1,701 pools for sandstone solvent floods,
 - 1,396 pools for ASP floods,
 - 935 pools for polymer floods,
 - 196 pools for cyclic steam,
 - 214 pools for steam floods,
 - 196 pools for SAGD,
 - 1,434 pools for in-situ combustion;
- Estimate the incremental recoverable oil for each process. The total oil recoverable by solvent and chemical floods is between 100 and $300 \times 10^6 \text{ m}^3$.

Three principal sources of data were used:

- ERCB Oil Reserves Report (2010),
- ERCB Oil and Gas Experimental Projects Report,
- ERCB Oilsands Schemes Report.

In addition, a set of binary screening criteria was put into the database.

Discussion

1.0 Overview

This report summarizes the results of the work carried out for Phase 2 of the study.

The tasks undertaken for Phase 2 that will be described in the following sections are:

- Developing a set of screening parameters compatible with available data on Alberta oil pools;
- Reviewing individual EOR projects in Alberta;
- Summarizing findings from Alberta EOR projects;
- Establishing success/fail criteria;
- Performing a binary screening of all Alberta oil pools for EOR processes;
- Estimating incremental recoverable oil by EOR in Alberta.

This report is focused on EOR projects in the "conventional" oil areas of Alberta and excludes the "oilsands" areas. However, since there is information from the oilsands that is relevant (or potentially relevant) to conventional oil, some data on oilsands pilot schemes is included. Conventional oil includes light, medium and heavy oil. Bitumen is defined as oil with an in-situ viscosity greater than 10,000 mPa.s. The oilsands areas contain both bitumen and heavy oil and some of the developments for heavy oil in the oilsands areas can be applied to heavy oil in the conventional oil areas.

In addition, waterflooding, which is not normally classed as enhanced oil recovery, is considered in terms of incremental potential recovery. In many cases, waterflooding is a competing process to EOR processes and its inclusion allows for a comparison with the EOR processes.

For completeness, some of the sections from the Phase 1 report have been repeated in this report, with some additions.

2.0 Database

4208.18158.CMFG.smr

The database is the location where all the information gathered over the course of the project is stored. The responsibility of the database development team is to efficiently store large quantities of data in an easy-to-access system. This requires careful design, large amounts of data validation and the creation of an intuitive software interface.

The assignment of the data sources for the database is critical to the database development.

3.0 EOR Screening

3.1 Review of Process - Solvent Floods

The key to solvent floods is achieving miscibility between the solvent and the reservoir oil, through either a first or multiple contact miscible system. Multiple contact floods can be either vaporizing or condensing gas drives. In a miscible flood, the reservoir oil becomes increasingly solvent rich, so the residual oil phase has a lower oil component (i.e., more of the reservoir oil can be displaced). The solvent also increases the reservoir pressure, swells the oil phase and reduces the oil viscosity—all of which aid in increasing the oil recovery.

A major difficulty with most solvent floods is early solvent breakthrough due to the unfavourable mobility ratio of any gas flood. This leads to the solvent being re-cycled through the reservoir. The most common method of mitigating early solvent breakthrough is to inject water and gas in alternating slugs, which is called water-alternating-gas (WAG) flooding.

The solvent can be of several types:

- Ethane, propane or butane (or mixtures of these),
- Enriched hydrocarbon gas,
- Lean natural gas,
- High pressure lean gas,
- Nitrogen,
- Carbon dioxide.

The selection is usually based on miscibility pressure, reservoir pressure and cost. The solvents in the above list are roughly in order of miscibility pressure, with the exception of carbon dioxide.

Carbon dioxide can be multiple contact miscible at fairly low pressures. It is of particular interest since miscible flooding can also serve to sequester carbon dioxide in the reservoir and thereby reduce the amount of carbon dioxide released into the atmosphere.

A principal cost for a solvent flood comprises the cost of the solvent itself, injection facilities, processing facilities and the cost of transportation of the solvent to the EOR site. As a result,

A Sproule

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

there are considerable economies of scale, and larger projects tend to be much more economic than small projects.

3.2 Review of Process - Chemical Floods

The key to chemical floods is to improve the mobility ratio of a waterflood and to reduce the residual oil saturation. Polymer flooding can also improve the vertical conformance of a waterflood. All of these mechanisms can improve the oil recovery factor.

There are a number of different types of chemical floods:

- Polymer,
- Alkali,
- Alkali/polymer,
- Surfactant,
- Alkali/surfactant/polymer (ASP),
- Micellar.

In polymer floods, a polymer, most commonly a polyacrylamide, is added to the injection water to increase its viscosity. This increase in viscosity improves the mobility ratio of the flood. Since the mobility ratio is of most concern in more viscous oil reservoirs, polymer flooding is most often applied to medium and heavy oil pools. The oil-water relative permeability end-points are not changed by the polymer, so, in a sense, there is no incremental oil recovery. However, this is only true if the waterflood is carried out to completion. If there is a maximum water cut limit applied, the polymer flood results in considerable incremental reserves. There is also an acceleration component, meaning that the time to reach a fixed oil recovery factor is greatly decreased. In a heavy oil waterflood, there is usually a long production period (often decades or even centuries) where the water cut is over 95 percent. For reserves purposes, only 50 years of production can be claimed as reserves; therefore, a polymer flood can increase the reserves by producing more oil in 50 years. Fractional flow theory predicts that a polymer flood will have a "plateau" period where water has broken through to a well and the well produces at a constant water cut. Eventually, the waterflood front breaks through to the well, and the well continues to produce as it would under a simple waterflood with viscous water. Plotting the water-oil ratio against cumulative oil production shows a sideways shift of the plot when the polymer is injected into a mature waterflood. The size of this shift can be interpreted as the incremental oil due to the polymer flood.

One of the features of polymer flooding is that the polymer is adsorbed to the rock. This leads to a loss of polymer and determines the amount of polymer solution that is needed to

A Sproule

flood the reservoir (and the cost of the flood). The adsorption also results in a reduction of the permeability of the reservoir. In a heterogeneous reservoir, the injected fluids tend to flow preferentially in the highest permeability reservoir, so the permeability reduction is greatest there. This leads to more of the injected fluids going into the less permeable layers, improving the vertical sweep efficiency of the flood. The very successful polymer floods in the Minnelusa trend in Wyoming use this mechanism to improve the recovery of light oil.

In surfactant and micellar floods, a surfactant is added to the injected water to reduce the interfacial tension between the oil and the water. The reduction of the interfacial tension, if great enough, can reduce the residual oil saturation, thereby increasing the oil displacement efficiency and the oil recovery factor.

Like polymer, surfactants tend to adsorb onto the reservoir rock. In order to adequately flood the reservoir, the concentration of the surfactant must be quite high. Surfactants are relatively expensive, so the cost of a surfactant flood is high.

Alkalis such as sodium hydroxide, sodium carbonate and sodium orthosilicate are used instead of surfactants due to their lower costs. The alkali can react with acids in the oil to create in-situ surfactants, which then act in the same way as surfactants injected directly. However, it is usually difficult to sufficiently lower the interfacial tension with alkalis to significantly reduce the residual oil saturation. Both surfactants and alkalis are often used together with polymers for better mobility control.

Combining alkali, surfactant and polymer together (ASP flood) has the added advantage of a synergy between the alkali and the surfactant, significantly reducing the adsorption of the surfactant and bringing the residual oil saturation to very low levels. In the laboratory, ASP floods can reduce the residual oil saturation to less than 3 percent.

3.3 Review of Process - Thermal Recovery

The key to thermal recovery is the use of heat to lower the viscosity of oil and thereby make it possible to produce (in the case of bitumen) or to increase the productivity and recovery (in the case of medium or heavy oil).

There are several major thermal processes in use today:

- Cyclic steam stimulation (CSS),
- Steam flood,
- Steam-assisted gravity drainage (SAGD),

A Sproule

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

- In-situ combustion (ISC),
- High pressure air injection (HPAI).

Other processes which are not as widely implemented are

- Electrical/electromagnetic heating,
- Hot water flooding.

In cyclic steam stimulation, a pre-determined volume of steam is injected into a well, then the well is allowed to "soak" for a period, and then it is brought on production. Typically, the injection period is one month, the soak lasts for a week or two, and the production lasts for several months. The injection/soak/production cycle is repeated until it becomes uneconomic.

A steam flood is exactly like a waterflood, except that steam replaces water as the injection fluid.

In SAGD, two long horizontal wells are used. The production well is located near the base of the reservoir. A second horizontal well is placed directly above the production well and is used for steam injection. A key to the process is that the injection/production rates are sufficiently low that the process is dominated by gravity forces. In this situation, the steam rises to the top of the formation, forming a steam chamber, and the heated oil drains down to the producer.

In in-situ combustion, air or oxygen is injected into the reservoir and ignited. The heat pyrolyses the oil, resulting in part of the oil being reduced to a solid "coke". The coke is the primary fuel for combustion; the rest of the oil is displaced ahead of the combustion front. Water is often injected as well, to improve the flow of heat ahead of the front. In many cases, the process can be viewed as a steam flood with in-situ steam generation.

3.4 Review of Process – Other EOR

Other EOR schemes that have been proposed in the literature or tested in the field include

- Microbial recovery,
- Foam flooding,
- Fresh water flood,
- Immiscible gas vertical floods,
- VAPEX,
- THAI.

4208.18158.CMFG.smr

 $\label{eq:ent_exp} P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx$

None of these has been extensively tested, so none will be considered here. For more information on the methods, references are provided.

3.5 Alberta EOR Screening Criteria

Several criteria must be considered when developing screening criteria for Alberta oil pools. One is that the data for screening are readily available or can be easily estimated. With over 10,000 separate oil pools in Alberta, it is impossible to perform a detailed evaluation of each pool.

The screening criteria selected had to be

- Important to at least one EOR process,
- Readily available in public databases or able to be calculated from readily available sources,
- Easily definable.

Criteria used in Phase 1 of this study are listed in that section. This section will examine the usefulness and applicability of each potential criterion.

Reservoir Depth

The depth of each reservoir is listed in the ERCB Annual Reserves Report. Each reservoir spans a range of depths, which can have a significant impact on temperatures and pressures, but in Alberta, the reservoirs are relatively thin (compared to, for example, the Orinoco Belt in Venezuela, where the developments must take into account productive zones which can be several thousand metres thick) and depth variations are low, with most reservoirs in the Western Canadian Basin having low dip.

The importance of this parameter is with regards to pressure, which is important for miscible floods and temperature, which can limit the applicability of steam injection and chemical flood processes. Since both temperature and pressure are readily available as separate parameters, depth alone is not a necessary parameter, though it is important in determining the cost of drilling. Drilling cost is a major factor in the cost of the wells and can be critical in the economic feasibility of a project. However, the economics of EOR are outside the scope of this project. The most challenging aspect of the economics of EOR is the price of oil, which is highly variable and very unpredictable. For these reasons, although the depth of the reservoir is listed in the tables, depth will not be used as a screening parameter on its own.

Sproule

4208.18158.CMFG.smr

Net Pay

Chemical floods are relatively insensitive to net pay itself, though oil-in-place, which is often important, is dependent on net pay.

For miscible floods, a high net pay is important if the flood is to be a gravity stable, top down flood (e.g., Brazeau River Nisku D), but if it is to be a horizontal flood (e.g., Chigwell Viking I), it is not relevant.

In thermal processes, the net pay is important in that it controls the ratio of heat in the reservoir versus the heat lost to the over- and under-burden. This affects the efficiency of the process as measured by the steam-oil ratio. For SAGD, the net pay is important in that there has to be enough thickness to allow for separation between the injection and production wells and to allow for the formation of the steam chamber or steam chest.

Net pay is listed in the reserves database, so it can easily be used as a screening parameter.

Net-to-Gross Ratio

The net-to-gross ratio can indicate reservoir stratification and reservoir continuity. For all EOR processes which involve flooding from one well to another, reservoir continuity is essential.

In most Alberta reservoirs, reservoir continuity is not an issue (unlike, for example, waterflood in the Means San Andres Unit carbonate reservoir in West Texas). For this reason, the net-to-gross ratio is not an important parameter. This is fortunate, since the net-to-gross ratio for each reservoir is not readily available.

Reservoir Permeability

Permeability is an important parameter for most EOR processes, because it controls both injection and production rates. Since the rates control revenue, the return on investment is affected. In tight reservoirs, the low rates can be mitigated to some extent by reducing the well spacing, but this may increase the capital requirements to prohibitive levels.

The average reservoir permeability is not immediately accessible. However, core data for each pool can be obtained from public databases. For this study, the permeability of each pool with an EOR project was approximated by extracting the core data from all of the wells

Sproule

4208.18158.CMFG.smr
in the pool, filtering the data by producing formation and dominant producing lithologies. The resulting values were then ordered, cut-offs were applied and an arithmetic average was calculated.

The cut-offs selected were a minimum permeability of 1 mD and a maximum of 30,000 mD. The lower limit is somewhat arbitrary, but most reservoir core analyses show a number of very low values which are not representative of the producing zones. The low permeability reservoir may contribute to production under primary recovery, but under any flooding scheme, the high permeability dominates, and contribution from low permeability streaks may be limited to capillary imbibition.

Very high permeability measurements usually reflect fracturing and/or vuggy porosity—both of which can be very important for an EOR process. Where such values are found, the occurrence is noted under "Natural Fractures".

The use of the arithmetic average rather than the geometric or harmonic average is due to the fact that in waterflood calculations, the usual Stiles technique has layers of constant permeability, and combining them is equivalent to calculating an arithmetic average. In developing screening criteria, the choice of averaging technique is not as important as maintaining a consistent methodology.

Another issue with the permeability of a pool is that it may vary significantly geographically and by geologic layer. A good example is the Pembina Cardium reservoir, where some areas are amenable to waterflooding, some only to primary recovery, and some only to primary recovery with multi-fracked horizontal wells.

Reservoir Pressure

Reservoir pressure is an important parameter for some thermal processes and for miscible floods, but it is not significant for chemical flooding.

For steam injection processes, it is important to have a relatively low pressure to ensure the steam is in the saturated condition so the latent heat can be used effectively.

The initial reservoir pressure is always recorded, but the current reservoir pressure needs to be determined from pressure tests. For screening purposes, the initial pressure is an adequate parameter, since the reservoir can usually be re-pressured to the initial reservoir pressure.

Sproule

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

Reservoir Temperature

The reservoir temperature affects the minimum miscibility pressure for miscible floods.

For chemical floods, some of the chemicals—in particular, polyacrylamide polymers—break down under high temperatures. For polyacrylamides, the effective maximum temperature is about 90°C. For surfactants, the maximum temperature is somewhat lower, at about 80°C.

Oil Density

Oil density is not an important parameter in itself, but it is nearly always available and can be correlated to oil viscosity (see section on oil viscosity).

Oil Viscosity

Oil viscosity is a critical parameter for thermal and chemical floods. Most oils which are suitable for miscible flooding have a low oil viscosity to start with, so they are not sensitive to this parameter.

The oil viscosity is not readily available for most pools. In order to estimate the oil viscosity for each pool, a correlation with oil density and reservoir temperature was developed.

The correlation was created using the following steps:

- Extract assorted oil liquid analyses with three temperature/viscosity readings for a wide variety of Alberta oil;
- Use the ASTM correlation to determine oil viscosity at 15°C for each sample. In this correlation, the log(log(viscosity + 0.8)) is plotted against the log of the absolute temperature. Figure 1 shows the correlation for four Alberta oil samples with different viscosity ranges;
- Plot oil viscosity at 15°C against oil density;
- Develop a correlation that fits the data, with emphasis on high viscosity oil;
- Use the ASTM correlation to calculate oil viscosity at reservoir temperature.

Figure 1 shows the ASTM correlation for several oil samples. The oil viscosity plotted against the oil density is shown in Figure 2. The data come from different parts of the province and different formations. A number of samples do not fit in the general trend, but the vast majority do, suggesting that the ones that do not fit are either contaminated, poorly measured or poorly recorded.

4208.18158.CMFG.smr

Eliminating some of the points off the trend, a polynomial correlation was applied to the data, as shown in Figure 2. The correlation is based on 3,215 oil samples, ranging from 681.5 to 1,012 kg/m³ or 8.3 to 76.1° API gravity. The correlation is given by:

 $y = 1.5654E-09x^4 - 5.1019E-06x^3 + 6.2539E-03x^2 - 3.4053E+00x + 6.9306E+02$

The oil viscosity at reservoir temperature was estimated by applying the ASTM correlation with slope B, estimated by:

$$B = 4.46E-03x - 7.88E+00$$

This procedure gives a good estimate of the dead oil at reservoir temperature. This is, of course, different from the live oil viscosity, but it is adequate for screening purposes.

Water Salinity and Divalent Ion Concentration

Water analysis for many pools is available in the public database. It is a factor for chemical floods since the efficiency of chemicals, in particular polyacrylamides, is adversely affected by high water salinity and by divalent ion concentration.

The usual limit for polyacrylamides is about 25,000 ppm TDS. There are no published criteria for the maximum divalent ion concentration, so this parameter is not used as a screening criterion.

Other polymers, in particular biopolymers such as xanthum gum, are not as sensitive and can be used to much higher water TDS limits.

Remaining Oil Saturation/Mobile Oil Saturation

The remaining oil saturation is a measure of the target for EOR. If the remaining oil saturation is low, there is little oil left to recover. Furthermore, a low remaining oil saturation may indicate a high water saturation (if the pool has been on waterflood or if there is a natural water drive) or a high gas saturation (if the pool has been produced to below the bubble point and there is free gas in the reservoir or a secondary gas cap has been formed).

In any case, any injected EOR fluids will have to displace water and gas as well as oil, so the produced oil per unit volume of injected fluid is lower, meaning the process is less efficient. This can have a severely detrimental effect on the economic viability of the project.

4208.18158.CMFG.smr

The remaining oil saturation can be estimated if more details of the recovery from the pool are known. Since this must be on an individual pool basis, this parameter cannot be used as a general screening criterion.

Even if it is known, the minimum value for a successful project is difficult to determine and can only be found by a detailed study.

These two parameters are related to the question: "what is the incremental recoverable oil by a particular EOR scheme?" An associated question is, "with the current degree of depletion, what is the incremental recoverable oil?" These questions can be approached in two ways, either through saturations or through recovery factors. To maintain some continuity with the previous screening criteria, a saturation-based approach will be used here.

The first thing to determine is the remaining oil saturation. This depends on the following factors:

- Was the pool waterflooded? If yes, and assuming that the waterflood achieved fill-up of any secondary gas, the remaining oil saturation is approximately the initial oil saturation multiplied by the ratio of the remaining OIP to the OOIP.
- If the pool was not waterflooded and only produced under primary, did the pressure fall below the bubble point? Since the bubble point is not available in any accessible database, this question can be answered approximately by comparing the cumulative produced GOR to the solution GOR. Acknowledging that there may have been some gas coming out of solution at the producing wells while the reservoir was above the bubble point on average, the reservoir can be expected to be above the bubble point if the ratio of produced GOR to solution GOR is less than 3. If this is the case, then the remaining oil saturation is equal to the initial gas saturation.
- If, based on the preceding, the reservoir did go below the bubble point, then an estimate of the oil saturation can be calculated by material balance considerations, providing that the current reservoir pressure is known. Since this is rarely the case, it is not possible to do this calculation.

The mobile oil saturation is the difference between the initial or current oil saturation and the residual oil saturation. It is not very useful as a criterion on its own. The residual oil saturation, though, can be important in deciding between different EOR processes, where, based on theoretical considerations, miscible flooding and ASP are more effective at mobilising residual oil than polymer. For the purposes of screening, "typical" values of residual oil saturation for different recovery processes (including primary) can be used, though there is considerable uncertainty in the typical values. The residual oil saturation

A Sproule

4208.18158.CMFG.smr P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx values that should be used are the "effective" residual oil saturations which take into account the fact that flooding processes, especially with heavier oils, are never carried out to completion, but to some limiting water cut which is less than 100 percent. For this reason, polymer flooding results in incremental oil. The review of the existing EOR projects in Alberta plus a review of laboratory studies Sproule has access to will provide the "typical values" and will be discussed in section 6 of this report.

The incremental oil due to the EOR process is the difference in the effective residual oil saturations. The economics of the EOR scheme are more dependent on the total remaining oil production than on the incremental.

Oil Content

The oil content, expressed as "oil per unit area" or "oil column" has a bearing on the well spacing and perhaps the time needed for the EOR flood; however, it is not obvious how it can be used as a screening parameter.

Reservoir Transmissivity

Reservoir transmissivity is defined as the ratio of reservoir permeability to oil viscosity. EOR floods can work in high permeability/high viscosity and low permeability/low viscosity systems, but they are much more difficult to carry out in a low permeability/high viscosity situation.

Using this parameter as a criterion is difficult since the statistics are few and there are no theoretical guidelines. It will be examined for the Alberta EOR projects, but it may not yield practical results.

Lithology

The lithology provides a simple criterion. In general, chemical floods are not successful in carbonates, but miscible floods can succeed in either sandstones or carbonates. The most successful miscible floods have been in carbonates, but that is often more a function of the geometry, where the shape of pinnacle reefs allows for a gravity-stable displacement which results in very high recovery.

The lithological limitations of EOR processes are being tested in various parts of the world. For example, most successful thermal projects are in sandstones such as the McMurray in Alberta or the Morichal in Venezuela. However, there have been successful tests of CSS in carbonates in the Middle East as well as in the Grosmont formation in Alberta.

4208.18158.CMFG.smr

Dip Angle

Dip angle is never known without a geological study, so it cannot be utilised as a screening parameter.

Clay Content

This parameter is important for chemical floods, since it controls the adsorption of the injected chemicals. However, it requires laboratory investigation and it is rarely publicly available.

Natural Fractures

This is always important in a flood for two reasons. Firstly, the fractures may connect the injection wells to the production wells, leading to premature breakthrough of the injected fluids and low areal sweep efficiency. Secondly, the natural fractures always enhance the effective permeability of the system and can enable a waterflood or EOR flood in a reservoir that may otherwise be too tight.

If there are natural fractures, the negative impacts can often be avoided by an appropriate well pattern.

Gas Cap

The presence of a gas cap nearly always has a deleterious effect on an EOR flood. In waterbased floods, the gas is the first phase to be displaced, and no production response is seen until "reservoir fill-up" is achieved. In miscible floods, the reservoir gas can dilute the solvent and prevent miscibility from being achieved.

If the gas cap covers a limited area of the pool, the EOR flood can be implemented in areas where there is no gas cap.

As a screening criterion, the gas cap can be identified in pools which have both oil and "associated gas" reserves.

4208.18158.CMFG.smr

Minimum Reservoir Size

For an economically successful EOR project, the pool must be of a sufficient size to pay for both the up-front capital required and the operating costs. It must also support at least two wells.

The last criterion suggests that the minimum size should be at least two drilling spacing units (DSUs) in size (i.e., 32 ha over most of Alberta).

For a waterflood, the minimum capital expenses cover a pumping unit to inject the water. For a miscible flood, a compressor is required. A chemical flood requires not only a pumping unit but also a facility to mix the chemicals into the water. Operating costs to be covered include the cost of chemicals for chemical floods and the cost of solvent for miscible floods. There are considerable economies of scale, but the most severe are for thermal projects like the SAGD projects in the oilsands.

Based on some "back of the envelope" estimates, the minimum pool size for an EOR project is about 100,000 m^3 (629,000 bbl). This cut-off leaves about 6,000 out of the 11,942 oil pools in Alberta.

List of Screening Criteria

The final list of screening criteria that will be used is as follows:

- Net pay;
- Permeability;
- Temperature;
- Oil viscosity;
- Water salinity;
- Previous waterflood;
- If no waterflood: pressure below the bubble point;
- Remaining oil saturation;
- Mobile oil saturation;
- Transmissivity;
- Lithology;
- Fractures;
- Gas cap;
- Minimum reservoir size.

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

4.0 Alberta EOR Projects

Alberta EOR projects are divided into four types:

- Solvent floods,
- Chemical floods,
- Thermal recovery,
- Other.

These are discussed in sections 4.1 to 4.4 on an individual project basis.

4.1 Solvent Floods

The EOR Project Assessment and reservoir properties for each project are summarized in Tables 1 to 72. These are the key parameters to develop the criteria for successful miscible floods.

Acheson D-3A

The Acheson D3A pool is a light-medium oil carbonate reservoir at a depth of 1,547 m. The oil gravity is 37.8°API. The average porosity is 0.1, the average pay thickness is 18.4 m, the average water saturation is 0.12 and the initial reservoir pressure is 11,922 kPa. The average permeability is 2,870 mD, and the OOIP in the pool was 9.692 x 10^6 m³.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 3 and 4. The EOR project assessment is shown in Table 1.

The area for Approval 10003 is in Twp 52-53, Range 26W4; the boundaries are shown in Figure 5. This project consists of 5 active producing oil wells, 2 non-active producing oil wells, 2 water disposal injection wells, 78 abandoned wells and 8 suspended oil wells. The current producing rate from Area 2 in Figure 5 is approximately 20 m³/d oil and 145 m³/d water, with an average water cut of 86.2 percent. In the last two years, the GOR has fluctuated between 100 and 140 m³/m³.

In July 1987, a tertiary hydrocarbon miscible flood scheme was initiated in the northern part of the pool (current Area 2 Township 53 within approval 10003). The miscible flooding was further expanded to the center area of Township 52. The last continuous solvent injection occurred in November 1996. The total solvent injected was $1,034,762 \times 10^3$ m³. Chase gas started in September 1988 in the northern part, which was highly injected (with more than 70 percent of the total gas injected), followed by the southern area in January 1993. The

A Sproule

P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

4208.18158.CMFG.smr

injection of chase gas ended in June 2005. Cumulative gas injection was $1,432,521 \times 10^3 \text{ m}^3$. The production and injection histories of Area 2 are shown in Figures 6 and 7, respectively.

The estimated primary recovery factor for the pool was 54 percent. The incremental EOR recovery factor with the solvent/chase gas injection was 18.5 percent. The remaining OIP is $1.454 \times 10^6 \text{ m}^3$, and possible future incremental recovery is $0.0291 \times 10^6 \text{ m}^3$.

Reservoir Pressure

In terms of pressure maintenance, public records do have historical pressure data on some wells in this approval. Public records list the initial pressure of the Acheson D-3A pool when the pool was discovered in 1950 to be 11,922 kPa. The most recent pressure indicates the reservoir pressure was between 10,000 and 12,000 kPa in 1998.

This leads to the conclusion that water and solvent injection provided reasonable pressure support. In terms of pressure maintenance, GeoSCOUT records the last static reservoir pressure for this area for two wells on February and June 2010. Well 00/03-02-053-26W4/0 had a pressure of 11,101 kPag after 259 hours of shut-in and well 00/14-02-053-26W4/0 had a pressure of 9,844 kPag after 332 hours of shut-in. Figure 8 shows a reservoir pressure distribution map as of January, 2011.

The future depletion strategy is to maintain production as it is until the producing wells are no longer economic.

Voidage Replacement Ratio (Instantaneous and Cumulative)

Calculations were done using PVT data from well 06-23, pressure history, production history, rock properties (porosity and compressibility) and the application of an aquifer function, which Penn West strongly believes is partially supplying energy to the pool (as mentioned in the main application); otherwise, it would be difficult to match the actual data to the simulated data. In the subject area, there are two disposal wells injecting in the D-3A formation which Penn West had considered when balancing the material balance equation regarding fluids injected into the formation. During pressure history matching, some pressure points were below those pressure data in time where the miscible flooding started, and it was quite difficult to get a better match without affecting other variables. As seen in the PVT analysis, the IRP and the bubble point pressure are close enough to deduce that in Part 2 of the pool, some wells could be below the bubble point after production started. The matching in terms of OOIP and production index was adequate.

Sproule

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

In terms of reservoir voidage, InsVRR and CumVRR (as of January 2011) are 4.7 and 0.91, respectively, using an approximation by material balance. The high InsVRR value was expected because of the implementation of the aquifer as a water supply resource.

References

- 1. Application to Terminate the Miscible Flood Approval for Acheson Field, April 30, 2011 Submission to the ERCB, D-3A Pool, Approval No.10003, Part 2, Solvent Flood Area.
- 2. MacLean, D.A. and Edwards, K.A. "Acheson D-3A Pool: Primary to Secondary HCMF-40 Years of Performance". SPE paper# 26616, 1993.

Ante Creek Beaverhill Lake

The Ante Creek Beaverhill Lake pool is a light-medium oil carbonate reservoir at a depth of 3,433.1 m which was discovered in 1962. The oil gravity is 44°API. The average porosity is 0.1, the average permeability is 20 mD, the average water saturation is 0.27 and the initial reservoir pressure is 35,550 kPa. The OOIP in the pool was 6.218×10^6 m³.

Solvent flooding was started in 1968, and gas injection began in 1985. The EOR project assessment is shown in Table 2. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 9 and 10.

The solvent flood resulted in improved oil recovery, as seen in Figure 10. Following injection, the oil rate remained relatively constant at about 250 m³/d, until 1986, at which point the production started to decline. Solvent flooding was completed in 1989, and gas injection ended in 1991.

The estimated primary recovery factor for the pool was 16 percent. The remaining OIP is $3.855 \times 10^6 \text{ m}^3$.

Summary

Miscible flood is working in terms of incremental oil recovery, but early gas breakthrough has led to bypassed oil.

References

1. Griffith, J.D., Baiton, N., and Steffensen, R.J. "Ante Creek - A Miscible Flood Using Separator Gas and Water Injection". SPE paper# 2644, 1970.

4208.18158.CMFG.smr P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

Bigoray Nisku B

The Bigoray Nisku B pool is a light-medium oil carbonate reservoir at a depth of 2,337.2 m, discovered in 1978. The oil gravity is 38.16°API. The average porosity is 0.067, the average permeability is 1,068 mD, the average water saturation is 0.22 and the initial reservoir pressure is 21,024 kPa. The OOIP in the pool was 1.5×10^6 m³.

There are six wells in the pool (Figure 11). Production started in 1978, and in 1980, the well 13-09-52-08W5 was converted to solvent injection with an injection rate of about 300,000 m³/d. Water injection into 08-08-52-08W5 was started in 1998, and solvent injection was terminated in 2002. A total of about 450 x 10^6 sm³ of solvent was injected. The performance of the pool is shown in Figure 12. The oil rate fluctuated between 100 and 200 m³/d until 1994, when it started declining. The GOR had been rising steadily and by 1994 had reached 300 m³/m³ from the original solution GOR of 40 m³/m³. The GOR peaked at 4,000 m³/m³ and then dropped, presumably as a result of the water injection. Figure 12 shows the solvent injection rate and the gas production rate. The two then tracked each other until the injection rate was reduced and then stopped, when the production rate exceeded the injection rate. In 2004, the gas production rate dropped dramatically. Well 13-09-52-08W5 was later converted to gas production.

The EOR project assessment is shown in Table 3.

The estimated primary recovery factor for the pool was 31 percent. The incremental EOR recovery factor with the solvent injection was 18 percent. The remaining OIP is $0.498 \times 10^6 \text{ m}^3$.

The composition of the solvent has not been found. Nevertheless, the long period with a near constant GOR and the high recovery argue for miscible conditions to have been achieved.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

Bigoray Nisku F

The Bigoray Nisku F pool is a light-medium oil carbonate reservoir at a depth of 2,404 m. The oil gravity is 38.1° API. The average porosity is 0.11, the average permeability is 2,418 mD, the average water saturation is 0.07 and the initial reservoir pressure is 20,304 kPa. The OOIP in the pool was 2.8×10^6 m³.

Solvent flooding was started in 1987, and the scheme was followed by gas injection in 1989. The EOR project assessment is shown in Table 4. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 13 and 14.

Following injection, the oil rate increased from about 300 m^3/d in 1987 to about 600 m^3/d in 1993, at which point the production started to decline. This increase in production is likely partially due to the additional well that was brought on during that time period. Solvent flooding was completed in 1989, and gas injection was terminated in 1995.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 23.5 percent.

References

- 1. Bigoray Nisku F Pool, Penn West Petroleum Ltd., Annual Progress Report, 22 January 2011, (2010-10658).
- 2. ERCB Oil Reserves Detailed Report, 31 December 2010.

Brazeau River Nisku A (Nisku X2X)

The Brazeau River Nisku A pool is a light-medium oil carbonate reservoir at a depth of 3,110.3 m. The oil gravity is 44.06°API. The average porosity is 0.11, the average permeability is 769 mD, the average water saturation is 0.10 and the initial reservoir pressure is 45,803 kPa. The OOIP in the pool was 5.3×10^6 m³.

The pool was discovered in 1978 and placed on primary production with three wells. When the reservoir pressure was close to the bubble point of 21,000 kPa in 1980, the pool was converted to a miscible flood. The northernmost and structurally highest well, 05-06-49-12W5M, was converted to injection with perforations close to the top of the formation. The two producing wells, 11-31-48-12W5M and 15-31-48-12W5M, were perforated near the base of the reservoir, about 50 m lower than the perforations in the injector. The gas injection was first used to re-pressure the reservoir to 1,000-1,500 kPa above the minimum

4208.18158.CMFG.smr

Sproule

miscibility pressure of 34,500 kPa, and then the pressure was kept roughly constant. The oil production rate rose to about 1,200 m³/d and was limited mainly by facility constraints. After seven years of injection, gas breakthrough occurred when the gas-oil contact was estimated to be 20 m above the top of the producing perforations. In 1991, a horizontal well was drilled in the reef, and it produced until 2006. Production continued with gas injection until the GOR became excessive in 1994. At that time, gas injection was stopped and the pool was operated in a blow-down mode. By 2012, the oil rate had dropped to about 10 m³/d with a water cut between 10 and 50 percent and a gas-oil ratio between 3,000 and 20,000 m³/m³.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 15 and 16. The EOR project assessment is shown in Table 5.

In order to maintain miscibility, the injected gas had to have a composition with an ethaneplus component of over 10 mole percent. The actual injected gas had an ethane-plus component of 12-15 mole percent.

The estimated primary recovery factor for the pool was 40.5 percent, though the conversion to a miscible flood occurred when the recovery was only 6 percent of OOIP. The incremental EOR recovery factor with the solvent injection was 26.5 percent, for a total recovery factor of 77 percent. By the end of January, the pool had produced 4,321,439 m³ of oil and condensate, implying an actual recovery factor of 81.5 percent of OOIP.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Lee, J.L., E. I. Astete and T. F. Jerhoff, "Performance review of Brazeau River Nisku Dry-Gas Miscible Flood Projects", SPE 22896, 1994.
- 3. Lee, J. I. and T. F. Jerhoff, "Redevelopment of the Brazeau River Nisku A and D Vertical Miscible Floods with Horizontal Wells", JCPT, 356, 60-69, 1996.

Brazeau River Nisku D

The Brazeau River Nisku D pool is a light-medium oil carbonate reservoir at a depth of 3,069 m. The oil gravity is 42.12°API. The average porosity is 0.065, the average permeability is 50 mD, the average water saturation is 0.12 and the initial reservoir pressure is 34,568 kPa. The OOIP in the pool was 2.7×10^6 m³.

The pool was discovered in 1978. It was operated in a very similar manner to the Nisku A pool, except that under primary, the pressure dropped to below the bubble point pressure of

4208.18158.CMFG.smr

20,480 kPa from the initial pressure of 34,500 kPa. The miscible flood was implemented and the pressure raised and then kept above the minimum miscibility pressure of 35,000 kPa. Gas breakthrough was much faster than in the Nisku A pool, occurring about six months after the start of injection, when the gas-oil contact was estimated to be 40 m above the top of the producing perforations. The early breakthrough was attributed to the poorer reservoir quality in this pool by Lee, Astete and Jerhoff (1994). A horizontal well was added to the pool in 1993 and was successful in increasing the oil rate and decreasing the gas-oil ratio.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 17 and 18. The EOR project assessment is shown in Table 6.

The estimated primary recovery factor for the pool was 50 percent. The incremental EOR recovery factor with the solvent injection was 15 percent.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Lee, J.L., E. I. Astete and T. F. Jerhoff, "Performance review of Brazeau River Nisku Dry-Gas Miscible Flood Projects", SPE 22896, 1994.
- 3. Lee, J. I. and T. F. Jerhoff, "Redevelopment of the Brazeau River Nisku A and D Vertical Miscible Floods with Horizontal Wells", JCPT, 356, 60-69, 1996.

Brazeau River Nisku E

The Brazeau River Nisku E pool is a light-medium oil carbonate reservoir at depth of 3,199.9 m. The oil gravity is 45.69°API. The average porosity is 0.10, the average water saturation is 0.12 and the initial reservoir pressure is 46,019 kPa. The OOIP in the pool was $2.45 \times 10^6 \text{ m}^3$.

The pool was also discovered in 1978. It was operated in a very similar manner to the Nisku A pool, except that the production wells were perforated about 10 m above the oil-water contact, since there was a water leg in this pool. The pressure dropped to close to the bubble point pressure of 33,990 kPa from the initial pressure of 46,200 kPa. The miscible flood was implemented and the pressure raised and then kept above the minimum miscibility pressure of 37,700 kPa. Gas breakthrough occurred later than expected, in seven years, when the gas-oil contact was estimated to be only 15 m above the top of the producing perforations.

Sproule

4208.18158.CMFG.smr

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 19 and 20. The EOR project assessment is shown in Table 7.

The estimated primary recovery factor for the pool was 45.1 percent. The incremental EOR recovery factor with the solvent injection was 35 percent. At the end of 2010, the remaining OIP is $0.390 \times 10^6 \text{ m}^3$.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Lee, J.L., E. I. Astete and T. F. Jerhoff, "Performance review of Brazeau River Nisku Dry-Gas Miscible Flood Projects", SPE 22896, 1994.

Caroline Cardium E

The Caroline Cardium E pool is a light-medium oil sandstone reservoir at depth of 2,413.6 m. The oil gravity is 46.09°API. The average porosity is 0.12, the average permeability is 41.41 mD, the average water saturation is 0.16 and the initial reservoir pressure is 27,614 kPa. The OOIP in the pool was 4.7×10^6 m³.

Gas injection started in 1978, followed by water injection in 1982 and, finally, solvent flooding in 1986. The EOR project assessment is shown in Table 8. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 21 and 22.

The scheme resulted in improved oil recovery, as seen in Figure 22. From the start of gas injection, the oil rate increased from about 200 m^3/d in 1978 to about 500 m^3/d by 1989. This increase in production is likely partially due to additional wells coming on production over that time period. Gas injection was completed in 1986, and solvent flooding was terminated in 1997.

The estimated primary recovery factor for the pool was 9 percent. The incremental EOR recovery factor with the solvent injection was 5 percent. The remaining OIP is $3.29 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

A Sproule

4208.18158.CMFG.smr

 $\label{eq:ent_exp} P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx$

Chigwell Viking E

The Chigwell Viking E pool is a light-medium oil sandstone reservoir at a depth of 1,385.6 m. The oil gravity is 38°API. The average porosity is 0.13, the average permeability is 72.89 mD, the average water saturation is 0.38 and the initial reservoir pressure is 9,916 kPa. The OOIP in the pool was 4.986×10^6 m³.

The Chigwell Viking E pool has been on a CO_2 flooding scheme since 2007. Since the start of injection, the oil production rate has increased from about 10 m³/d to 100 m³/d. It is too early to gauge the full benefits of the CO_2 flooding scheme, but the results are positive thus far.

The EOR Project Assessment of Viking E is summarized in Table 9. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 23 and 24.

The pool pressure is much lower than the expected value for its depth of 1,385.6 m. The normal pressure gradient is about 10 kPa/m. With this gradient, the initial pressure should be about 13,800 kPa. Clearly the reservoir is severely under-pressured. This has important implications. Firstly, the reservoir can be pressured to a much higher pressure. The normal fracture gradient is 18 kPa/m, so the maximum pressure is 25,000 kPa. Secondly, CO_2 may not be miscible with the oil at the original reservoir pressure, but it may become miscible if the reservoir pressure is increased. This seems to be the case in the Chigwell Viking I pool as well.

The estimated primary recovery factor for the pool was 8 percent. The incremental EOR recovery factor with the solvent injection was 3 percent. The remaining OIP is $4.437 \times 10^6 \text{ m}^3$.

References

1. Chigwell Viking I and E, Glencoe Resources Ltd., Annual Presentation, 27 January 2011, (2010-10392).

Chigwell Viking I

The Chigwell Viking I pool is a light-medium oil sandstone reservoir at a depth of 1,411 m. The oil gravity is 38.6° API. The average porosity is 0.13, the average permeability is 43.76 mD, the average water saturation is 0.39 and the initial reservoir pressure is 7,372 kPa. The OOIP in the pool was 2.075×10^6 m³.

4208.18158.CMFG.smr

Sproule

P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

Solvent flooding with Ethane was started in 1999. The scheme was followed with a miscible CO_2 flood started in 2006, which is still in operation at the time of writing. The EOR project assessment is shown in Table 10.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 25 and 26.

The pool pressure is much lower than the expected value for its depth of 1,411 m. The normal pressure gradient is about 10 kPa/m. With this gradient, the initial pressure should be about 14,100 kPa. The reservoir is severely under-pressured, which has important implications. Firstly, the reservoir can be pressured to a much higher pressure. The normal fracture gradient is 18 kPa/m, so the maximum pressure is 25,000 kPa.

The minimum miscibility pressure (MMP) for CO_2 as determined in lab tests is 13,800 kPa. Pressure surveys from 1997 and 2010 indicate a reservoir pressure above the MMP during the solvent injection periods. The maximum pressure reached is about 16,500 kPa.

A bubble map showing cumulative oil recovery in the Chigwell Viking I pool is given in Figure 27.

The solvent-CO₂ floods resulted in improved oil recovery, as indicated in Figures 28 and 29. At the start of ethane injection, the oil rate went from about 20 m³/d to 140 m³/d. After the start of CO₂ injection, the oil rate went from about 20 m³/d to 90 m³/d. In both cases, the peak rate was immediately followed by a sharp decline, with a similar decline rate to the earlier primary production (Figure 28).

The ethane and CO_2 flood pressure history measurements are plotted in Figure 30. A plot showing the daily production performance and well count can be found in Figure 31, while the 6-33 WAG injection history is given in Figure 32. Finally, the net CO_2 volumes injected into the pool are given in Figure 33.

The estimated primary recovery factor for the pool was 8 percent. The incremental EOR recovery factor with the solvent- CO_2 injection was 8 percent. The remaining OIP is $1.66 \times 10^6 \text{ m}^3$. From the production data, the primary recovery was about 240,000 m³, the recovery due to ethane injection was 10,000 m³ and the recovery due to CO_2 flooding to date was 80,000 m³. This implies recovery factors of 7.2 percent for primary, 4.6 percent for ethane and 3.9 percent for CO_2 , for a combined incremental recovery for the miscible floods of 8.5 percent to date. Note that the CO_2 flood is still in operation.

4208.18158.CMFG.smr

Currently, the Viking I pool has been converted from a straight CO_2 injection to a wateralternating-gas scheme (WAG) for further recovery assessment.

Overall Performance

 CO_2 was very effective at mobilizing the oil, and it reduced oil viscosity dramatically. The scheme had a higher-than-anticipated GOR and lower-than-anticipated oil rates and recovery. No containment issues were encountered. All wells had some form of breakthrough. CO_2 mobility in the solvent swept the rock higher than expected; the CO_2 travelled through the reservoir readily and moved across the pattern to the second line offset. WAG injection results were promising.

Short- & Long-Term Opportunities

The greatest potential to increase production rates and recoverable reserves is through WAG injection.

Horizontal drilling recovery can be maximized by shortening the period that CO_2 must remain in a specific area (CO_2 utilization efficiency).

Summary

Miscible flood is working in terms of incremental oil recovery, but early CO_2 breakthrough has led to bypassed oil. A WAG is currently being implemented, but it is too early to tell if it has been successful.

References

1. Chigwell Viking I and E, Glencoe Resources Ltd., Annual Presentation, 27 January 2011, (2010-10392).

Enchant Arcs A & B (Commingled 005)

Miscible Displacement by CO₂ and Water

The Enchant Arcs A & B pool, now called the Commingled 005 pool, is a light-medium oil carbonate reservoir at a depth of 1,355.5 m. The oil gravity is 26.07°API. The average porosity is 0.14, the average water saturation is 0.20 and the initial reservoir pressure is 11,905 kPa. The OOIP in the pool was 1.743×10^6 m³.

4208.18158.CMFG.smr

A Sproule

P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

The Enchant Arcs A & B pool miscible flood commenced injection of CO_2 on September 23, 2004. The pool was switched to water injection on May 9, 2006. Anadarko, the operator at the time of the switch, noticed a reduction in water injection rates, but the production levels were not adjusted. The pool was shut-in after pressure surveys confirmed that the pool pressure was below mandated minimum operating pressure in October. The pool production has remained shut-in, but the injection of water has continued. Ongoing operations are being performed to return the injection rate to initial rates, and the pool pressure is being monitored to determine when the well can be returned to production.

As a result of internal confusion during the time of the sale of Anadarko Canada Corporation to Canadian Natural Resources Limited (CNRL), no samples of gas were taken after the pool was returned to water injection, and no sample can be taken until the pool is returned to production.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 34 and 35. The EOR project assessment is shown in Table 11.

The estimated primary recovery factor for the pool was 22 percent. The incremental EOR recovery factor with the solvent injection was 17 percent.

References

1. Enchant Arcs A&B Pool, Approval No. 9839 for Miscible Displacement by CO₂ and Water Annual Data Submission (IL96-02) for 2006.

Enchant Arcs F & G (Commingled 017)

Miscible Displacement by CO₂ and Water

The Enchant Arcs F & G pool, now called the Commingled 017 pool, is a light-medium oil carbonate reservoir at a depth of 1,320.6 m. The oil gravity is 28.03°API. The average porosity is 0.13, the average water saturation is 0.20 and the initial reservoir pressure is 10,374 kPa. The OOIP in the pool was 0.723×10^6 m³.

The Enchant Arcs F & G pool miscible flood commenced injection of CO_2 on May 19, 2006. Anadarko completed a pressure survey from September 14 to 29, 2006, while the rest of the pool continued to operate. The extrapolated results of this survey showed a pool pressure well above the 10.5 MPa (gauge) minimum operating pressure for the pool. The

A Sproule

4208.18158.CMFG.smr

final stabilized pressure is interpreted to be 12.0 MPa. The VRR were observed to be greater than 1.0; as of January 2007, the injection volumes have been adjusted to be closer to 1.0. The injector well 0017-22-14-16W4 was not initially shut-in due to internal confusion. The well has not been injected into since February 15, 2007.

Canadian Natural Resources Limited (CNRL), the current operator of this pool as a result of its purchase of Anadarko Canada Corporation, planned to convert the former injector 0017-22-14-16W4W4 into a producer in the second quarter of 2007.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 36 and 37. The EOR project assessment is shown in Table 12.

The estimated primary recovery factor for the pool was 25 percent. The incremental EOR recovery factor with the solvent injection was 23 percent.

References

1. Enchant Arcs F&G Pool, Approval No. 10523 for Miscible Displacement by CO₂ and Water Annual Data Submission (IL96-02) for 2006.

Fenn-Big Valley Nisku A (Commingled 009)

The Fenn-Big Valley Nisku A pool, now called the Commingled 009 pool, is a light-medium oil carbonate reservoir at a depth of 1,574.4 m, discovered in 1950. The oil gravity is 32.1°API. The average water saturation is 0.14 and the initial reservoir pressure is 11,417 kPa. The OOIP in the pool was $5.804 \times 10^6 \text{ m}^3$.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 38 and 39. The EOR project assessment is shown in Table 13.

An experimental solvent flood was conducted in the pool from 1987 to 1989 using nitrogen injection.

The estimated primary recovery factor for the pool was 46.8 percent. The incremental EOR recovery factor with the solvent injection was 5.2 percent.

Overall Performance

Enriched gas is very effective at mobilizing oil.

Sproule

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

^{4208.18158.}CMFG.smr

Summary

Miscible flood is working in terms of incremental oil recovery, but early enriched gas breakthrough has led to bypassed oil.

Golden Spike D-3 A

The Golden Spike D-3 A pool is a light-medium oil dolomite reservoir at a depth of 1,725.3 m, discovered in 1949. The oil gravity is 37.09°API. The average porosity is 0.087, the average water saturation is 0.11 and the initial reservoir pressure is 14,400 kPa. The OOIP in the pool was 49.603×10^6 m³.

Gas injection was started prior to 1962 and ended in 2001. The EOR project assessment is shown in Table 14. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 40 and 41.

The estimated primary recovery factor for the pool was 53 percent. The incremental EOR recovery factor with the solvent injection was 5 percent for a combined incremental recovery for the miscible flood of 58 percent.

Overall Performance

Enriched gas is very effective at mobilizing oil.

Summary

Miscible flood is working in terms of incremental oil recovery, but early enriched gas breakthrough has led to bypassed oil.

References

- 1. Larson, V. C., Peterson, R. B., and Lacey, J. W. "Technology's Role in Alberta's Golden Spike Miscible Project". SPE paper# 12253, 1967.
- 2. Reitzel, G.A. and Callow, G.O. "Pool Description and Performance Analysis Leads to Understanding Golden Spike's Miscible Flood". SPE paper# 6140, 1977.

4208.18158.CMFG.smr

Goose River Beaverhill Lake A

The Goose River Beaverhill Lake A pool is a light-medium oil carbonate reservoir at a depth of 2,800 m. The oil gravity is 41.08°API. The average porosity is 0.094, the average permeability is 9.89 mD, the average water saturation is 0.19 and the initial reservoir pressure is 24,805 kPa. The OOIP in the pool was $16.16 \times 10^6 \text{ m}^3$.

Solvent flooding in the pool commenced in 1987. The EOR project assessment is shown in Table 15. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 42 and 43. The scheme resulted in improved oil recovery, as seen in Figure 43. From the start of solvent injection, the oil rate increased from about 500 m³/d in 1987 to about 1800 m³/d by 1994. This increase in production is likely partially due to additional wells coming on production over that time period. The oil rate began declining rapidly after 1994, and solvent injection was terminated in 2003.

The estimated primary recovery factor for the pool was 16 percent. The incremental EOR recovery factor with the solvent injection was 7 percent. The remaining OIP was $8.726 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Joffre D-3 B

The Joffre D-3 B pool is a light-medium oil carbonate reservoir at a depth of 2,113.3 m. The oil gravity is 38.57° API. The average porosity is 0.09, the average permeability is 434.4 mD, the average water saturation is 0.13 and the initial reservoir pressure is 16,550 kPa. The OOIP in the pool was $1.721 \times 10^{6} \text{ m}^{3}$.

Solvent flooding was started in 1989 and was followed by gas injection in 1992. The EOR project assessment is shown in Table 16. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 44 and 45.

The scheme likely improved oil recovery, as seen in Figure 45. The oil rate in 1990 $(300 \text{ m}^3/\text{d})$ was similar to the rate in 1994. Solvent flooding was completed in 1992, and gas injection ended in 2002.

The estimated primary recovery factor for the pool was 33 percent. The incremental EOR recovery factor with the solvent injection was 5 percent. The remaining OIP is 740,000 m³.

A Sproule

 $\label{eq:exponential} {\tt P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}$

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Joffre Viking Tertiary Oil Unit

CO₂ Miscible Flood

The Joffre Viking pool is a light-medium oil sandstone reservoir at a depth of 1,400.4 m. The oil gravity is 38.2°API. The average porosity is 0.13, the average permeability is 349.2 mD, the average water saturation is 0.36 and the initial reservoir pressure is 6,616 kPa. The OOIP in the pool was 8.215×10^6 m³.

Gas injection in the pool commenced in 1988. The EOR project assessment is shown in Table 17. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 46 and 47.

The pool pressure is much lower than the expected value for its depth of 1,400.4 m. The normal pressure gradient is about 10 kPa/m. With this gradient, the initial pressure should be about 14,000 kPa. The reservoir is severely under-pressured. This has important implications. Firstly, the reservoir can be pressured to a much higher pressure. The normal fracture gradient is 18 kPa/m, so the maximum pressure is 25,000 kPa. Secondly, CO_2 may not be miscible with the oil at the original reservoir pressure, but it may become miscible if the reservoir pressure is increased. This seems to be the case in the Chigwell Viking I pool and is probably the case in the Joffre Viking pool as well.

The Joffre Viking CO_2 miscible flood area is shown in Figure 48, and plots showing historical performance are given in Figures 49 and 50.

The estimated primary recovery factor for the pool was 16 percent. The incremental EOR recovery factor with the CO_2 injection was 18 percent. The remaining OIP is 3.286 x 10^6 m³.

References

- 1. Joffre Viking Tertiary Oil Unit, CO₂ Miscible Flood, AEUB Approval No. 9838C, Progress Report No. 15, January1, 2006 January31, 2006.
- 2. Ko, S. C. M., Stanton, P. M., and Stephenson, D. J. "Tertiary Recovery Potential Of CO2 Flooding In Joffre Viking Pool, Alberta". JCPT paper# 85-01-01, 1985.

4208.18158.CMFG.smr

Sproule

- 3. Pyo, K., Damian-Diaz, N., Powell, M., and Van Nieuwkerk, J. "CO2 Flooding in Joffre Viking Pool". Canadian International Petroleum Conference paper# 2003-109, 2003.
- 4. Stephenson, Derril J., Graham, Andrew G., and Luhning, Richard W. "Mobility Control Experience in the Joffre Viking Miscible CO2 Flood". SPE paper# 23598, 1993.

Judy Creek BeaverHill Lake A

The Judy Creek A pool is a light-medium oil carbonate reservoir at a depth of 2,628.6 m. The oil gravity is 41°API. The average porosity is 0.09, the average permeability is 65.3 mD, the average water saturation is 0.16 and the initial reservoir pressure is 22,564 kPa. The OOIP in the pool was 77.950 x 10^6 m³.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 51 and 52. The EOR project assessment is shown in Table 18.

The historical HC solvent injection was started in February 2002 to August 2003. CO_2 injection started in February 2007, and it was supplemented with acid gas injection in April 2007. The Judy Creek CO_2 Pilot was ended in December 2010. WAG scheme started in 2007.

A plot of the Judy Creek A pool oil rate versus cumulative oil production is given in Figure 53. The location of the CO_2 EOR pilot and a cross-section of the pool can be found in Figure 54. An outline of the pilot is shown in Figure 55 along with a type log for well 07-02-064-11W5. The log shows the target reservoir interval for CO_2 injection. Figure 56 shows that the pilot acid gas injection composition did not exceed the maximum H₂S concentration of 7 percent at any time.

The Judy Creek A pool solvent bank size and performance is given in Figure 57, and the CO_2 pilot performance to December 31, 2010 is shown in Figure 58. A plot of the voidage replacement ratio can be seen in Figure 59. Finally, the pattern injection and recovery data are given in Figure 60.

The estimated primary recovery factor was 16 percent. The incremental EOR recovery factor with the solvent-CO₂ injection was 9 percent. The remaining OIP is $38.970 \times 10^6 \text{ m}^3$.

Summary

4208.18158.CMFG.smr

The operation is in compliance with ERCB approval. The voidage replacement ratio averaged 0.99 over the review period, and no wells operated below MOP. Three patterns completed solvent injection during the review period: HZ MFI 01-10-64-11W5 and re-floods at 02-35-

A Sproule

P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

63-11W5 and 12-36-63-11W5. Seventeen WAG cycles were completed during the review period, and 14 WAG ratios exceeded 1.2. Higher WAGs resulted from new operational constraints.

References

- 1. Biberdorf, O.C. "Miscible Flood Forecasting Technique at Judy Creek". SPE paper# 12630, 1986.
- 2. Delaney, R. P., and Fish, A. M., "Judy Creek CO2 Flood Performance Predictions". JCPT paper # 80-31-23, 1980.
- 3. Judy Creek Beaverhill Lake A (2010-10269) Annual Presentation, Pengrowth, Annual Presentation, 27 January 2011.
- 4. Judy Creek CO₂ Flood Performance Predictions, R. P. Delaney, R. M. Fish, Esso Resources Canada Ltd. Petroleum Society of CIM Paper 80-31-23, May 1980.

Judy Creek Beaverhill Lake B

The Judy Creek Beaverhill Lake B pool is a light-medium oil carbonate reservoir at a depth of 2,696.2 m, discovered in 1959. The oil gravity is 42.08°API. The average porosity is 0.099, the average permeability is 92.64 mD, the average water saturation is 0.17 and the initial reservoir pressure is 24,442 kPa. The OOIP in the pool was 28.370 x 10^6 m³.

Solvent flooding was started in 1987 and ended in 2004. The EOR project assessment is shown in Table 19.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 61 and 62.

The solvent flood resulted in improved oil recovery, as indicated in Figure 62. At the start of solvent injection, the oil rate went up from about 700 m^3/d to 900 m^3/d . The peak rate was followed by a shallower decline rate than earlier primary production for the next several years.

The estimated primary recovery factor for the pool was 20 percent, and the incremental EOR recovery factor was 5 percent. The remaining OIP was $14.469 \times 10^6 \text{ m}^3$.

Overall Performance

Enriched gas is very effective at mobilizing oil.

A Sproule

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

Summary

Miscible flood works in terms of incremental oil recovery, but early enriched gas breakthrough has led to bypassed oil.

References

- 1. Biberdorf, O.C. "Miscible Flood Forecasting Technique at Judy Creek". SPE paper# 12630, 1986.
- 2. Judy Creek Beaverhill Lake B (2010-10291) Annual Progress Report, Pengrowth, Annual Progress Report, 2010.

Kaybob Beaverhill Lake A

Kaybob Beaverhill Lake A pool is a light-medium oil carbonate reservoir at a depth of 2,982 m. The oil gravity is 42.98°API. The average porosity is 0.08, the average permeability is 140.31 mD, the average water saturation is 0.21 and the initial reservoir pressure is 31,820 kPa. The OOIP in the pool was 36.830×10^6 m³.

Solvent flooding was started in 1988 and ended in 1994. The EOR project assessment is shown in Table 20. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 63 and 64.

The estimated primary recovery factor for the pool was 16 percent. The incremental EOR recovery factor with the solvent injection was 6.5 percent. The remaining OIP was $19.704 \times 10^6 \text{ m}^3$.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. MacLean, D. A., "Design of a Field-Wide Hydrocarbon Miscible Flood for the Kaybob Beaverhill Lake A Pool", JCPT paper# 89-03-01, 1989.

Kaybob South Triassic A

The Kaybob South Triassic A pool is a light-medium oil carbonate reservoir at a depth of 2,060.4 m. The oil gravity is 39.39°API. The average porosity is 0.13, the average water saturation is 0.17 and the initial reservoir pressure is 16,844 kPa. The OOIP in the pool was $16.880 \times 10^6 \text{ m}^3$.

4208.18158.CMFG.smr

Sproule

 $[\]label{eq:ent_exp} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

The EOR project assessment is shown in Table 21. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 65 and 66.

The estimated primary recovery factor for the pool was 15 percent. The incremental EOR recovery factor with the solvent injection was 5 percent. The remaining OIP was $9.284 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Leduc D-2A

The Leduc D-2A pool is a light-medium oil carbonate reservoir at a depth of 1,486.6 m. The oil gravity is 38.16° API. The average porosity is 0.034, the average permeability is 297.1 mD, the average water saturation is 0.26 and the initial reservoir pressure is 10,441 kPa. The OOIP in the pool was 62.650×10^{6} m³.

The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 67 and 68. The EOR project assessment is shown in Table 22.

The estimated primary recovery factor for the pool was 25 percent. The incremental EOR recovery factor with the solvent injection was 9 percent. The remaining OIP is $23.807 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Mitsue Gilwood A

The Mitsue Gilwood A pool is a light-medium oil sandstone reservoir at a depth of 1,659.1 m. The oil gravity is 43.08°API. The average porosity is 0.144, the average permeability is 234.02 mD, the average water saturation is 0.36 and the initial reservoir pressure is 12,323 kPa. The OOIP in the pool was 63.672×10^6 m³.

Gas injection started in the pool in 1972, and solvent flooding began in 1985. The EOR project assessment is shown in Table 23. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 69 and 70. Solvent flooding ended in 1992. Gas injection was terminated four years later, in 1996.

A Sproule

P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

4208.18158.CMFG.smr

The estimated primary recovery factor for the pool was 25 percent. The incremental EOR recovery factor with the solvent injection was 15 percent. The remaining OIP is $24.832 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Nipisi Gilwood A

The Nipisi Gilwood A pool is a light-medium oil sandstone reservoir at a depth of 1,711 m. The oil gravity is 41.08°API. The average porosity is 0.15, the average permeability is 479.19 mD, the average water saturation is 0.35 and the initial reservoir pressure is 17,948 kPa. The OOIP in the pool was $69.480 \times 10^6 \text{ m}^3$.

Gas injection started in the pool in 1984, and solvent flooding began two years later, in 1986. The EOR project assessment is shown in Table 24. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 71 and 72. Solvent flooding ended in 1994, and gas injection was terminated two years later, in 1996.

The estimated primary recovery factor for the pool was 26 percent. The incremental EOR recovery factor with the solvent injection was 15.9 percent. The remaining OIP was $31.683 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Pembina Cardium A Lease CO₂ Project

The Pembina Cardium A pool is a light-medium oil sandstone reservoir at a depth of 1,600 m. The oil gravity is 38.1° API. The average porosity is 0.121, the average permeability is 30 mD, the average water saturation is 0.15 and the initial reservoir pressure is 33,807 kPa. The OOIP in the pool was 3.000×10^{6} m³.

The main objectives of the pilot were to demonstrate the technical and economical feasibility of CO_2 EOR in Pembina Cardium; improve productivity and sweep by making use of horizontal producers and existing vertical injectors; improve conformance through an off-

A Sproule

4208.18158.CMFG.smr

trend line drive pattern configuration; develop CO_2 flood operational experience using horizontal wells; identify operational challenges (i.e., wax, GOR control, corrosion); and validate and tune the simulation model (response profile, recycle, recovery, etc.).

Pembina Cardium A is located adjacent to Penn West's initial "A" Lease vertical CO_2 pilot. The project was targeting the residual oil in well flooded areas (those with a high water cut). CO_2 injection commenced in September 2008.

The location of the Pembina Cardium A pool is given in Figure 73, and the location of the CO_2 pilot is shown in Figure 74. The response of the wells to CO_2 injection can be seen in Figures 75 to 77.

The following is the horizontal CO₂ pilot summary for June 2010:

- OOIP = 289 Mm^3
- Cumulative CO_2 injection = 0.45 Bcf
- Cumulative CO₂ injection = 8.24% HCPV
- Cumulative oil production (allocated) = 2.45 Mm³
- Cumulative oil production (allocated) = 0.9%
- Ultimate incremental oil production = 31.8 Mm³
- Ultimate incremental oil recovery = 11%

Main Result Indicators

- Higher current oil rates than pre-CO₂ rates in most wells, and increased oil cut;
- Oil production increase at CO₂ breakthrough in most wells;
- Change in oil decline curve;
- Increased CO₂ concentration in produced gas after one month of CO₂ injection (100-12-12-048-09W5);
- Gradual CO₂ breakthrough (GOR and CO₂ content of produced gas) and good CO₂ retention factor;
- Preferential CO₂ breakthrough in a NE-SW direction;
- Decent CO₂ injectivity in injectors;
- Actual and predicted values are very close.

Summary

Target fluid production and injection rates were achieved, but target CO_2 injectivity was not. Injector/producer communication was identified. Pressure was maintained above the MMP, and miscibility was achieved. Pilot operations were safe and successful for 1.5 years. Direct

4208.18158.CMFG.smr

Sproule

oil- CO_2 response was observed in well 12-11-048-09W5, and better sweep efficiency was observed in the NW-SE direction. No significant operational problems were experienced.

Future Plans

- Inject water in both injectors to maintain voidage,
- Continue Geochem and pressure monitoring Pembina A Lease horizontal pilot
- Continue quarterly gas sampling of the pilot and non-pilot wells,
- Design commercial flood around the pilot location.

The vertical well pilot has been under water injection since April 2009 and has ongoing Geochem and pressure monitoring. There is also ongoing quarterly gas sampling of the pilot and non-pilot wells.

The EOR project assessment is shown in Table 25.

The estimated primary recovery factor for the pool was 40.5 percent. The incremental EOR recovery factor with the solvent injection was 30 percent. The remaining OIP is $0.525 \times 10^6 \text{ m}^3$.

References

1. Pembina Cardium 'A' Lease CO₂ Project, Penn West Energy, Approval 9780H, Energy Resources Conservation Board Update, (5 October 2010).

Pembina Nisku A

The Pembina Nisku A pool is a light-medium oil carbonate reservoir at a depth of 3,005.7 m. The oil gravity is 44.08°API. The average porosity is 0.08, the average permeability is 954.26 mD, the average water saturation is 0.2 and the initial reservoir pressure is 33,807 kPa. The OOIP in the pool was $3.000 \times 10^6 \text{ m}^3$.

Solvent flooding was started in 1986. The scheme was followed by chase gas injection in 1993, which was terminated in 1994. The EOR project assessment is shown in Table 26. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 78 and 79.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Sproule

The estimated primary recovery factor for the pool was 40.5 percent. The incremental EOR recovery factor with the solvent injection was 42 percent. The remaining OIP was $0.525 \times 10^6 \text{ m}^3$.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Pembina Nisku A Pool, Penn West Petroleum Ltd., Annual Progress Report, 22 January 2011, (2010-10658).

Pembina Nisku D

The Pembina Nisku D pool is a light-medium oil carbonate reservoir at a depth of 2,576.6 m. The oil gravity is 36.75°API. The average porosity is 0.12, the average permeability is 1,331.6 mD, the average water saturation is 0.1 and the initial reservoir pressure is 25,808 kPa. The OOIP in the pool was $6.503 \times 10^6 \text{ m}^3$.

Solvent flooding was started in 1985. The scheme was followed by chase gas injection in 1989, which was terminated in 1997. The EOR project assessment is shown in Table 27. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 80 and 81.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

The estimated primary recovery factor for the pool was 35 percent. The incremental EOR recovery factor with the solvent injection was 35 percent. The remaining OIP is $1.951 \times 10^6 \text{ m}^3$.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Pembina Nisku D Pool, Penn West Petroleum Ltd., Annual Progress Report, 22 January 2011, (2010-10658).

Pembina Nisku F

The Pembina Nisku F pool is a light-medium oil carbonate reservoir at a depth of 2,549.1 m. The oil gravity is 34.58°API. The average porosity is 0.119, the average permeability is

Sproule

4208.18158.CMFG.smr

1,587.86 mD, the average water saturation is 0.28 and the initial reservoir pressure is 21,736 kPa. The OOIP in the pool was 2.201 x 10^6 m³.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Solvent flooding was started in 1987. The scheme was followed by chase gas injection in 1993, which was terminated in 2008. The EOR project assessment is shown in Table 28. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 82 and 83.

The estimated primary recovery factor for the pool was 35 percent. The incremental EOR recovery factor with the solvent injection was 45 percent. The remaining OIP is $0.440 \times 10^6 \text{ m}^3$.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Pembina Nisku F Pool, Penn West Petroleum Ltd., Annual Progress Report, 22 January 2011, (2010-10658).

Pembina Nisku G

The Pembina Nisku G pool is a light-medium oil carbonate reservoir at a depth of 2,906.3 m. The oil gravity is 43.19°API. The average porosity is 0.08, the average permeability is 2,603.57 mD, the average water saturation is 0.2 and the initial reservoir pressure is 27,547 kPa. The OOIP in the pool was $2.650 \times 10^6 \text{ m}^3$.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Gas injection was started in 1982. The EOR project assessment is shown in Table 29. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 84 and 85. Gas injection was terminated in 2005.

The estimated primary recovery factor for the pool was 40.8 percent. The incremental EOR recovery factor with the solvent injection was 50 percent. The remaining OIP is $0.244 \times 10^6 \text{ m}^3$.

Sproule

4208.18158.CMFG.smr

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Pembina Nisku G2G

The Pembina Nisku G2G pool is a light-medium oil carbonate reservoir at a depth of 3,081.6 m. The oil gravity is 41.99°API. The average porosity is 0.08, the average permeability is 390.39 mD, the average water saturation is 0.12 and the initial reservoir pressure is 32,090 kPa. The OOIP in the pool was 2.406 x 10^6 m³.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Solvent flooding was started in 1984. The scheme was followed by chase gas injection in 1989, which was terminated in 1994. The EOR project assessment is shown in Table 30. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 86 and 87.

The estimated primary recovery factor for the pool was 35 percent. The incremental EOR recovery factor with the solvent injection was 28 percent. The remaining OIP is $0.890 \times 10^6 \text{ m}^3$.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Pembina Nisku G2G Pool, Penn West Petroleum Ltd., Annual Progress Report, 22 January 2011, (2010-10658).

Pembina Nisku H2H

The Pembina Nisku H2H pool is a light-medium oil carbonate reservoir at a depth of 3,033.3 m. The oil gravity is 40.22°API. The average porosity is 0.11, the average water saturation is 0.14 and the initial reservoir pressure is 31,373 kPa. The OOIP in the pool was $4.000 \times 10^6 \text{ m}^3$.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

4208.18158.CMFG.smr

Sproule

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

Solvent flooding was started in 1984. The scheme was followed by chase gas injection in 1990, which was terminated in 1994. The EOR project assessment is shown in Table 31. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 88 and 89.

The solvent flood resulted in improved oil recovery, as seen in Figure 89. Following injection, the oil rate increased from about 700 m^3/d in 1984 to about 1,000 m^3/d in 1990, at which point the production started to decline. Solvent flooding was completed in 1991, and chase gas injection was terminated in 1994.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 47 percent. The remaining OIP was $0.520 \times 10^6 \text{ m}^3$.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Pembina Nisku H2H Pool, Penn West Petroleum Ltd., Annual Progress Report, 22 January 2011, (2010-10658).

Pembina Nisku K

The Pembina Nisku K pool is a light-medium oil carbonate reservoir at a depth of 2,892.9 m. The oil gravity is 43.62°API. The average porosity is 0.127, the average permeability is 1,784.6 mD, the average water saturation is 0.18 and the initial reservoir pressure is 28,706 kPa. The OOIP in the pool was $2.753 \times 10^6 \text{ m}^3$.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Gas injection started in 1981, and solvent flooding commenced five years later, in 1986. The EOR project assessment is shown in Table 32. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 90 and 91.

The injection scheme resulted in improved oil recovery, as seen in Figure 91. Following injection, the oil rate slowly increased from about $300 \text{ m}^3/\text{d}$ in 1982 to about $600 \text{ m}^3/\text{d}$ in 1991, at which point the production started to decline. The oil rate increase can likely be partially attributed to an additional well coming on stream. Solvent flooding was completed in 1987, and gas injection was terminated in 2005.

4208.18158.CMFG.smr

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 48 percent. The remaining OIP was $0.330 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Pembina Nisku L

The Pembina Nisku L pool is a light-medium oil carbonate reservoir at a depth of 2,880.6 m. The oil gravity is 40.85°API. The average porosity is 0.105, the average permeability is 2,427.51 mD, the average water saturation is 0.12 and the initial reservoir pressure is 28,222 kPa. The OOIP in the pool was $5.000 \times 10^6 \text{ m}^3$.

Solvent flooding was started in 1985. The scheme was followed by gas injection in 1989, which was terminated in 2009. The EOR project assessment is shown in Table 33. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 92 and 93.

The injection scheme resulted in improved oil recovery, as seen in Figure 93. Following injection, the oil rate slowly increased from about 900 m^3/d in 1985 to about 1,200 m^3/d in 1989, at which point the production started to decline. Solvent flooding was completed in 1989, and gas injection was terminated in 2009.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

The estimated primary recovery factor for the pool was 25 percent. The incremental EOR recovery factor with the solvent injection was 63 percent. The remaining OIP was $0.600 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Pembina Nisku M

The Pembina Nisku M pool is a light-medium oil carbonate reservoir at a depth of 2,850.1 m. The oil gravity is 41.06°API. The average porosity is 0.09, the average

4208.18158.CMFG.smr

permeability is 1,551.53 mD, the average water saturation is 0.09 and the initial reservoir pressure is 27,909 kPa. The OOIP in the pool was $3.120 \times 10^6 \text{ m}^3$.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Gas injection in the pool began in 1983 and ended in 2009. The EOR project assessment is shown in Table 34. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 94 and 95.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 45 percent. The remaining OIP was $468,000 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Pembina Nisku O

The Pembina Nisku O pool is a light-medium oil carbonate reservoir at a depth of 2,844 m. The oil gravity is 43.41°API. The average porosity is 0.118, the average permeability is 3,941.39 mD, the average water saturation is 0.16 and the initial reservoir pressure is 26,949 kPa. The OOIP in the pool was $1.900 \times 10^6 \text{ m}^3$.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Gas injection started in 1983, and solvent flooding began three years later, in 1986. The EOR project assessment is shown in Table 35. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 96 and 97.

The injection scheme resulted in improved oil recovery, as seen in Figure 97. Following injection, the oil rate slowly increased from about 300 m^3/d in 1983 to about 380 m^3/d in 1992, at which point the production started to decline. Solvent flooding was completed in 1990, and gas injection was terminated in 2004.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 40 percent. The remaining OIP is $0.380 \times 10^6 \text{ m}^3$.

Sproule

4208.18158.CMFG.smr

 $\label{eq:ent_exp} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$
1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Pembina Nisku P

The Pembina Nisku P pool is a light-medium oil carbonate reservoir at a depth of 2,909.4 m. The oil gravity is 45.49°API. The average porosity is 0.11, the average permeability is 1,477.58 mD, the average water saturation is 0.1 and the initial reservoir pressure is 28,226 kPa. The OOIP in the pool was $4.740 \times 10^6 \text{ m}^3$.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Gas injection started in 1983, and solvent flooding commenced three years later, in 1986. The EOR project assessment is shown in Table 36. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 98 and 99.

The injection scheme resulted in improved oil recovery, as seen in Figure 99. Following injection, the oil rate slowly increased from about 700 m^3/d in 1983 to about 1,000 m^3/d in 1991, at which point the production started to decline. Solvent flooding was completed in 1989, and gas injection was terminated in 2007.

The estimated primary recovery factor for the pool was 35 percent. The incremental EOR recovery factor with the solvent injection was 45 percent. The remaining OIP was $0.948 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Pembina Nisku P2P

The Pembina Nisku P2P pool is a light-medium oil carbonate reservoir at a depth of 2,932.7 m. The oil gravity is 42.08°API. The average porosity is 0.1, the average permeability is 703.36 mD, the average water saturation is 0.12 and the initial reservoir pressure is 38,036 kPa. The OOIP in the pool was $2.850 \times 10^6 \text{ m}^3$.

A Sproule

4208.18158.CMFG.smr

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Solvent flooding began in 1982, and it was followed by gas injection in 1991. The EOR project assessment is shown in Table 37. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 100 and 101.

The injection scheme resulted in improved oil recovery, as seen in Figure 101. Following injection, the oil rate slowly increased from about 600 m^3/d in 1987 to about 700 m^3/d in 1991, at which point the production started to decline. Solvent flooding was completed in 1993, and gas injection was terminated in 1994.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 45 percent. The remaining OIP was $0.428 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Pembina Nisku Q

The Pembina Nisku Q pool is a light-medium oil carbonate reservoir at a depth of 2,880.5 m. The oil gravity is 41.27°API. The average porosity is 0.098, the average permeability is 1,024.24 mD, the average water saturation is 0.09 and the initial reservoir pressure is 28,560 kPa. The OOIP in the pool was $2.800 \times 10^6 \text{ m}^3$.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

Solvent flooding began in 1986 and was followed by gas injection in 1987. The EOR project assessment is shown in Table 38. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 102 and 103.

The injection scheme resulted in improved oil recovery, as seen in Figure 103. Following injection, the oil rate slowly increased from about 600 m^3/d in 1987 to about 700 m^3/d in 1990, at which point the production started to decline. Solvent flooding was completed in 1988, and gas injection was terminated in 2005.

4208.18158.CMFG.smr

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 29 percent. The remaining OIP was $0.868 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Provost Cummings I

The Provost Cummings I pool is a heavy oil sandstone reservoir at a depth of 763.3 m. The oil gravity is 23.99°API. The average porosity is 0.28, the average permeability is 384.82 mD, the average water saturation is 0.23 and the initial reservoir pressure is 5,430 kPa.

An experimental solvent flood was conducted in the pool from 1989 to 1991 using gas injection.

The EOR project assessment is shown in Table 39. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 104 and 105.

The estimated primary recovery factor for the pool was 35 percent.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow Keg River A

The Rainbow Keg River A pool is a light-medium oil carbonate reservoir at a depth of 1,833.6 m. The oil gravity is 43.08°API. The average porosity is 0.101, the average permeability is 2007.68 mD, the average water saturation is 0.1 and the initial reservoir pressure is 17,662 kPa. The OOIP in the pool was 14.320×10^6 m³.

Gas injection began in 1966, followed by water injection in 1994. The EOR project assessment is shown in Table 40. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 106 and 107.

The injection scheme resulted in improved oil recovery, as seen in Figure 107. Following gas injection, the oil rate remained fairly stable between 1,200 and 1,500 m^3/d , until 1983, at

4208.18158.CMFG.smr

Sproule

which point the production started to decline. Gas injection was completed by 2002, and water injection was terminated in 2005.

The estimated primary recovery factor for the pool was 50 percent. The incremental EOR recovery factor with the solvent injection was 25 percent. The remaining OIP was $3.580 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow Keg River AA

The Rainbow Keg River AA pool is a light-medium oil carbonate reservoir at a depth of 1,682.4 m. It has an oil gravity of 39.11°API, an average porosity of 0.086, an average permeability of 1,485.43 mD, an average water saturation of 0.11 and an initial reservoir pressure of 18,104 kPa. The OOIP in the pool was 14.320×10^6 m³.

Gas injection began in 1969. The EOR project assessment is shown in Table 41. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 108 and 109.

The estimated primary recovery factor for the pool was 45 percent. The incremental EOR recovery factor with the solvent injection was 22.3 percent. The remaining OIP was $4.683 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow Keg River B

The Rainbow Keg River B pool is a light-medium oil carbonate reservoir at a depth of 1,819.7 m. The oil gravity is 38.1° API. The average porosity is 0.09, the average permeability is 1,960.7 mD, the average water saturation is 0.14 and the initial reservoir pressure is 17,173 kPa. The OOIP in the pool was 46.820×10^{6} m³.

Gas injection started in 1982, and solvent flooding began five years later, in 1987. The EOR project assessment is shown in Table 42. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 110 and 111.

A Sproule

Water-alternating-gas (WAG) was also tried, but it was discontinued in one part of the approval area at the end of 2009 due to lack of evidence of its benefit in terms of reducing producing gas-oil ratios (GORs) in that part of the approval area. Husky Energy, the Operator, also decided not to re-institute WAG operations in any part of the pool in the future.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 25 percent. The remaining OIP was $16.387 \times 10^6 \text{ m}^3$.

References

- 1. Amendments to Approval No. 8967E for Rainbow Keg River B Pool, January 21, 2011.
- 2. Betiu, M., Ramler, L., and Barden, I. "Rainbow Keg River B" Pool Hydrocarbon Miscible Flood Project". Annual Technical Meeting paper# 82-33-29, 1982.
- 3. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 4. Fong, D. K., Wong, F. Y., Nagel, R. G., and Peggs, J. K. "Combining A Volumetric Model With A Pseudo-Miscible Field Simulation To Achieve Uniform Fluid Levelling In The Rainbow Keg River B" Pool"". JCPT paper# 91-01-05, 1991.

Rainbow Keg River D

The Rainbow Keg River D pool is a light-medium oil carbonate reservoir at a depth of 1,905.3 m. The oil gravity is 40.1°API. The average porosity is 0.1, the average permeability is 675.97 mD, the average water saturation is 0.08 and the initial reservoir pressure is 17,710 kPa. The OOIP in the pool was $1.130 \times 10^6 \text{ m}^3$.

Gas injection started in 1976 and ended in 1999. The EOR project assessment is shown in Table 43. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 112 and 113.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 28 percent. The remaining OIP is $0.362 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

A Sproule

4208.18158.CMFG.smr

Rainbow Keg River E

The Rainbow Keg River E pool is a light-medium oil carbonate reservoir at a depth of 1,840.6 m. The oil gravity is 39.11°API. The average porosity is 0.117, the average permeability is 194.92 mD, the average water saturation is 0.08 and the initial reservoir pressure is 18,126 kPa. The OOIP in the pool was 5.541×10^6 m³.

Gas injection began in 1972 and was completed by 2007. The EOR project assessment is shown in Table 44. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 114 and 115.

The estimated primary recovery factor for the pool was 29.1 percent. The incremental EOR recovery factor with the solvent injection was 20 percent. The remaining OIP is $2.820 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow Keg River EEE

The Rainbow Keg River EEE pool is a light-medium oil carbonate reservoir at a depth of 1,847.4 m. The oil gravity is 37.09°API. The average porosity is 0.147, the average permeability is 261.27 mD, the average water saturation is 0.07 and the initial reservoir pressure is 14,253 kPa. The OOIP in the pool was $1.580 \times 10^6 \text{ m}^3$.

Gas injection began in 1970 and was completed by 2009. The EOR project assessment is shown in Table 45. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 116 and 117.

The estimated primary recovery factor for the pool was 39.9 percent. The incremental EOR recovery factor with the solvent injection was 9.8 percent. The remaining OIP was $0.795 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Sproule

4208.18158.CMFG.smr

Rainbow Keg River F

Rainbow Keg River F pool is a light-medium oil reef carbonate reservoir at a depth of 1,785.5 m. The oil gravity is 40°API. The average porosity is 0.08, the average permeability is 771 mD, the average water saturation is 0.19 and the initial reservoir pressure is 13,673 kPa. The OOIP in the pool was 37.640 x 10^6 m³ (Husky reported an OOIP of 39 x 10^6 m³).

Primary production began in April 1966, and it was followed by gas injection in August 1968 and waterflood in December 1972. Tertiary immiscible gas flood was started in April 1993, and Tertiary hydrocarbon miscible floods were started in the NW lobe and in the whole pool in April 1996 and April 2000, respectively.

Geologic Description

The pool is an extensively dolomitized carbonate build-up with four major lobes and a heterogeneous pore system characterized by ten different pore types. Overall, it has excellent horizontal and vertical permeability. The original gas-oil contact was at \sim 1,310 mSS in all lobes, and the original oil-water contact was at 1,408 mSS, giving \sim 98 m of oil bank.

The EOR project assessment is shown in Table 46. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 118 and 119.

A structure map of the Keg River F pool is shown in Figure 120. The production performance of the pool is given in Figure 121 and a prediction of the ultimate oil can be found in Figure 122. A graph of the historical voidage replacement ratio of the pool is given in Figure 123, and the reservoir pressure history of the pool is shown in Figure 124. Finally, plots showing the injected solvent composition can be seen in Figures 125 to 127.

The estimated primary recovery factor for the pool was 38 percent. The incremental EOR recovery factor with the solvent injection was 15 percent. The remaining OIP was $17.691 \times 10^6 \text{ m}^3$.

Current and Future Plans

Work-overs were conducted as required, to follow the oil bank down-reef either through deepening or re-completing lower, and to maintain mechanical integrity. The 2008 Work-over were on wells 02/14-28-108-07W6, 00/04-33-108-07W6, and 00/03-05-109-07W6. In

Sproule

2009, they were conducted on wells 00/14-28-108-07W6 and 00/09-28-108-07W6, and 2010 on wells 00/15-05-109-07W6 and 02/14-28-108-07W6.

Temperature from the logs of 8 injection wells was recorded in 2009. Infill drilling was continued. The simulation model was to be updated, and development should continue.

Conclusions

Husky Oil Operations Limited is in compliance with the requirements and conditions stated in Approval No. 10376B for the enhanced recovery of oil by miscible displacement using solvent and chase gas injection in the Rainbow Keg River F pool.

Husky Oil Operations Limited has no plans to stop the scheme in the foreseeable future, since it makes good economic use of available gas and NGL products.

The ultimate recoverable oil currently assigned by the ERCB for the tertiary scheme $(19,946 \times 10^3 \text{ m}^3)$ is preliminary and attainable.

References

1. 2010 Energy Resources Conservation Board (ERCB), Performance Review, Rainbow Keg River F Pool, Tertiary Miscible Flood Scheme, Annual Presentation, Husky Oil Operations, January 25, 2011.

Rainbow Keg River FF

The Rainbow Keg River FF pool is a light-medium oil carbonate reservoir at a depth of 1,718.7 m. The oil gravity is 37.09°API. The average porosity is 0.11, the average permeability is 1,195.13 mD, the average water saturation is 0.1 and the initial reservoir pressure is 15,797 kPa. The OOIP in the pool was 4.177×10^6 m³.

Gas injection began in 1972. The EOR project assessment is shown in Table 47. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 128 and 129.

The injection scheme resulted in improved oil recovery, as seen in Figure 129. Following gas injection, the oil rate increased from $150 \text{ m}^3/\text{d}$ in 1974 to about 200 m3/d in 1985. The rate peaked in 1987 at 500 m3/d after an additional well was brought on stream. The oil rate then began to decline rapidly in 1988, which is also when gas injection was terminated.

Sproule

4208.18158.CMFG.smr

The estimated primary recovery factor for the pool was 21 percent. The incremental EOR recovery factor with the solvent injection was 15 percent. The remaining OIP was $2.673 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow Keg River G

The Rainbow Keg River G pool is a light-medium oil carbonate reservoir at a depth of 1,909 m. The oil gravity is 39.11°API. The average porosity is 0.08, the average permeability is 218.79 mD, the average water saturation is 0.08 and the initial reservoir pressure is 17,120 kPa. The OOIP in the pool was $2.479 \times 10^6 \text{ m}^3$.

Gas injection began in 1973 and was completed by 2001. The EOR project assessment is shown in Table 48. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 130 and 131.

The estimated primary recovery factor for the pool was 43.4 percent. The incremental EOR recovery factor with the solvent injection was 41.8 percent. The remaining OIP was $0.367 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow Keg River H

The Rainbow Keg River H pool is a light-medium oil carbonate reservoir at a depth of 1,913.9 m. The oil gravity is 39.11°API. The average porosity is 0.094, the average permeability is 353.64 mD, the average water saturation is 0.1 and the initial reservoir pressure is 19,805 kPa. The OOIP in the pool was 2.833×10^6 m³.

Gas injection began in 1974. The EOR project assessment is shown in Table 49. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 132 and 133.

The injection scheme resulted in improved oil recovery, as seen in Figure 133. Following gas injection, the oil rate remained fairly constant at 300 m^3/d from 1974 until 1982, at which

Sproule

point another well came on stream. The oil rate began to decline in 1985, three years later. Gas injection was terminated in 1997.

The estimated primary recovery factor for the pool was 39.2 percent. The incremental EOR recovery factor with the solvent injection was 20 percent. The remaining OIP was $1.156 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow Keg River II

The Rainbow Keg River II pool is a light-medium oil carbonate reservoir at a depth of 1,832.9 m. The oil gravity is 41.08°API. The average porosity is 0.1, the average water saturation is 0.12 and the initial reservoir pressure is 17,106 kPa. The OOIP in the pool was $3.800 \times 10^6 \text{ m}^3$.

Gas injection started in 1982 and was followed by a solvent flood in 1987. The EOR project assessment is shown in Table 50. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 134 and 135.

The injection scheme resulted in improved oil recovery, as seen in Figure 135. Following gas injection, the oil rate increased from about 60 m³/d in 1988 to about 100 m³/d in 1990, at which point another well came on stream. The oil rate peaked in 1995 at 200 m³/d, after which point it began to decline rapidly. Gas injection was terminated in 2010.

The estimated primary recovery factor for the pool was 45 percent. The incremental EOR recovery factor with the solvent injection was 15.5 percent. The remaining OIP was $1.501 \times 10^6 \text{ m}^3$.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- Todd, M. R., Slotbroom, R. A., and Bates, G. M. "Evaluation Of A Tertiary Miscible Flood In The Keg River II Pool, Rainbow Field". Annual Technical Meeting paper# 84-35-20, 1984.

Sproule

4208.18158.CMFG.smr

Rainbow Keg River O

The Rainbow Keg River O pool is a light-medium oil carbonate reservoir at a depth of 1,854.1 m. The oil gravity is 42.08°API. The average porosity is 0.06, the average permeability is 2,900.89 mD, the average water saturation is 0.13 and the initial reservoir pressure is 16,875 kPa. The OOIP in the pool was $6.200 \times 10^6 \text{ m}^3$.

Gas injection started in 1970 and was terminated in 2004. The EOR project assessment is shown in Table 51. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 136 and 137.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 27.7 percent. The remaining OIP was $2.003 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow Keg River Z

The Rainbow Keg River Z pool is a light-medium oil carbonate reservoir at a depth of 1,609.3 m. The oil gravity is 38.1°API. The average porosity is 0.076, the average permeability is 3,901.61 mD, the average water saturation is 0.27 and the initial reservoir pressure is 11,790 kPa. The OOIP in the pool was 3.904 x 10^6 m³.

Gas injection began in 1971. The EOR project assessment is shown in Table 52. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 138 and 139.

The injection scheme resulted in improved oil recovery, as seen in Figure 139. Following gas injection, the oil rate remained fairly constant at about 120 m^3/d until 1983. The oil rate peaked at about 600 m3/d in 1993, after several more wells came on production. The rate then began to decline. Gas injection was terminated in 2009.

The estimated primary recovery factor for the pool was 32 percent. The incremental EOR recovery factor with the solvent injection was 33 percent. The remaining OIP is $1.366 \times 10^6 \text{ m}^3$.

Sproule

4208.18158.CMFG.smr

 $\label{eq:exponential} {\tt P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}$

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow South Keg River B

The Rainbow South Keg River B pool is a light-medium oil carbonate reservoir at a depth of 1,875.7 m. The oil gravity is 39.81°API. The average porosity is 0.077, the average permeability is 2,237.23 mD, the average water saturation is 0.12 and the initial reservoir pressure is 18,319 kPa. The OOIP in the pool was 7.890 x 10^6 m³.

Solvent flooding commenced in 1994 and was terminated in 2007. The EOR project assessment is shown in Table 53. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 140 and 141.

The estimated primary recovery factor for the pool was 44 percent. The incremental EOR recovery factor with the solvent injection was 21 percent. The remaining OIP was $2.762 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow South Keg River E

The Rainbow South Keg River E pool is a light-medium oil carbonate reservoir at a depth of 1,945.9 m. The oil gravity is 40°API. The average porosity is 0.1, the average permeability is 503.88 mD, the average water saturation is 0.1 and the initial reservoir pressure is 18,944 kPa. The OOIP in the pool was $8.775 \times 10^6 \text{ m}^3$.

Solvent flooding commenced in 1994 and was terminated in 2007. The EOR project assessment is shown in Table 54. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 142 and 143.

The estimated primary recovery factor for the pool was 26 percent. The incremental EOR recovery factor with the solvent injection was 10 percent. The remaining OIP was $5.616 \times 10^6 \text{ m}^3$.

A Sproule

4208.18158.CMFG.smr

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Rainbow South Keg River G

The Rainbow South Keg River G pool is a light-medium oil carbonate reservoir at a depth of 1,931 m. The oil gravity is 44.08°API. The average porosity is 0.088, the average permeability is 66.34 mD, the average water saturation is 0.11 and the initial reservoir pressure is 17,946 kPa. The OOIP in the pool was 4.359 x 10^6 m³.

The EOR project assessment is shown in Table 55. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 144 and 145.

The estimated primary recovery factor for the pool was 20 percent. The incremental EOR recovery factor with the solvent injection was 12 percent. The remaining OIP is $2.964 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Redwater D-3

The Redwater D-3 pool is a light-medium oil dolomite reservoir at a depth of 983.7 m. The oil gravity is 36.09°API. The average porosity is 0.065, the average permeability is 1,411.02 mD, the average water saturation is 0.25 and the initial reservoir pressure is 7,824 kPa.

The EOR project assessment is shown in Table 56. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 146 and 147.

The experimental hydrocarbon miscible flood consisted of four inverted five-spot patterns. It was started in 1985 and continued to at least 1990. By 1990, the incremental oil recovery from pattern 11A was 4.4 percent, and it was 5.6 percent from pattern 9C, for an average of 5.0 percent.

The estimated primary recovery factor for the pool as a whole was 65 percent.

4208.18158.CMFG.smr

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Redwater D-3 Miscible Flood Experimental Pilot, Esso Resources Canada Limited, Progress report No. 1, January 1, 1985 - June 30, 1986
- 3. Redwater D-3 Miscible Flood Experimental Pilot, Esso resources Canada Limited, Progress report No. 10, July 1, 1989 December 31, 1989.

Rich D-3A

The Rich D-3A pool is a light-medium oil carbonate reservoir at a depth of 1,818.7 m. The oil gravity is 33.61°API. The average porosity is 0.11, the average water saturation is 0.10 and the initial reservoir pressure is 13,616 kPa. The OOIP in the pool was 1.333×10^6 m³.

The EOR project assessment is shown in Table 57. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 148 and 149.

The experimental pilot consisted of a single well sour gas injection scheme which started in September 1995. A total volume of 2,371.2 x 10^3 m³ was injected into well 9-36-34-21W4M by December 1995. The well was brought on production during February 21 to 25, 1996. Initially, the well flowed at a high GOR. Subsequently, it was put on stable pumping production. During March and April 1996, the well produced a total of 911.7 m³ of oil, 198 x 10^3 m³ of gas and 5,988 m³ of water in 1,464 hours, which gives a production capability of 14.95 m³/d of oil at a water cut of 86.7 percent and 217 m³/m³ GOR. Prior to the scheme, the well produced at an average rate of 4 m³/d of oil at a watercut of 98.5 percent and 90 m³/m³ GOR. These results were interpreted to indicate that there was remaining unrecovered attic oil in the pool.

The original oil was highly undersaturated. Based on the change in the GOR, the operator estimated that the OOIP in the attic was less than 18,670 m³. The estimated primary recovery factor for the pool was 46 percent.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- Rich D-3A Pool EUB Approval No. 7809 Experimental Single Well Sour Gas Injection Scheme, Gulf Canada Resources Limited, Progress Report No. 1, Sept 1, 1995 - April 30, 1996.

Sproule

4208.18158.CMFG.smr

Simonette D-3

The Simonette D-3 pool is a light-medium oil carbonate reservoir at a depth of 3,542 m. The oil gravity is 47.09°API. The average porosity is 0.062, the average permeability is 337.65 mD, the average water saturation is 0.16 and the initial reservoir pressure is 35,520 kPa. The OOIP in the pool was $1.200 \times 10^6 \text{ m}^3$.

The EOR project assessment is shown in Table 58. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 150 and 151. No details of the project were located.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 6 percent.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Suffield Lower Mannville J

The Suffield Lower Mannville J pool is a heavy oil sandstone reservoir at a depth of 1,004.6 m. The oil gravity is 14.53°API. The average porosity is 0.25, the average water saturation is 0.44 and the initial reservoir pressure is 10,677 kPa. The OOIP in the pool was $0.625 \times 10^6 \text{ m}^3$.

The EOR project assessment is shown in Table 59. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 152 and 153.

This project involved gas injection, but it was not designed as a miscible flood test but as an anti-water coning test. Gas injection tests were conducted at eight single well locations, while three of the AWACT wells utilized gas only, five wells had a chemical wetting agent added to the gas treatment program to evaluate its effectiveness in controlling water production. One single well test was conducted utilizing the chemical wetting agent without gas injection to monitor its effect on production rates. The tests have been successful in increasing oil production, reducing water production and extending the production life of several wells.

The estimated primary recovery factor for the pool as a whole was 1.2 percent.

Sproule

4208.18158.CMFG.smr

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Suffield Experimental Anti-Water Coning, AEC Oil and Gas Company, Semi-Annual ERCB Report, Aug 1, 1988 March 31, 1989.

Suffield Upper Mannville N

The Suffield Upper Mannville N pool is a heavy oil sandstone reservoir at a depth of 961.6 m. The oil gravity is 14.23°API. The average porosity is 0.26, the average water saturation is 0.34 and the initial reservoir pressure is 7,708 kPa. The OOIP in the pool was $2.600 \times 10^6 \text{ m}^3$.

An experimental solvent flood was conducted in the pool from 2003 to 2005 using solvent injection. No details of the project were located.

The EOR project assessment is shown in Table 60. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 154 and 155.

The estimated primary recovery factor for the pool was 12 percent.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Swan Hills Beaverhill Lake A & B (Commingled 001)

The Swan Hills Beaverhill Lake A & B pool, now called Commingled 001, is a light-medium oil carbonate reservoir at a depth of 2,425.7 m. The oil gravity is 41.08°API. The average porosity is 0.08, the average water saturation is 0.19 and the initial reservoir pressure is 20,226 kPa. The OOIP in the pool was 163.698×10^6 m³.

Solvent flooding was started in 1986. The EOR project assessment is shown in Table 61. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 156 and 157.

The estimated primary recovery factor for the pool was 17 percent. The incremental EOR recovery factor with the solvent injection was 36 percent.

Sproule

4208.18158.CMFG.smr

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Swan Hills South Beaverhill Lake A

The Swan Hills South Beaverhill Lake A pool is a light-medium oil carbonate reservoir at a depth of 2,536.8 m. The oil gravity is 41.08°API. The average porosity is 0.084, the average water saturation is 0.16 and the initial reservoir pressure is 21,585 kPa.

Solvent flooding commenced in 1994. The EOR project assessment is shown in Table 62. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 158 and 159.

The Swan Hills South CO_2 pilot location can be seen in Figure 160, and the pilot scheme can be seen in Figure 161. The performance of injection wells 100/16-19-065-10W5 and 100/14-20-065-10W5 are given in Figures 162 and 163, respectively. The CO_2 EOR performance response of wells 04-29-065-10W5 and 02-30-065-10W5 can be seen in Figures 164 and 165, respectively. Forecast and actual pilot performance plots are given in Figure 166. Voidage replacement ratio plots are given in Figure 167, and a plot showing the July and August 2010 gas analyses is shown in Figure 168. Finally, the oil recovery and CO_2 injection cumulative values as of December 2010 are summarized in Figure 169.

The estimated primary recovery factor for the pool was 17 percent. The incremental EOR recovery factor with the solvent injection was 28 percent. The remaining OIP is $138.800 \times 10^6 \text{ m}^3$.

Pilot Objectives

The technical and economical feasibility of CO_2 EOR in SSHU second generation projects (in the non-reef area) was investigated. Well completion strategies were determined, as well as optimal CO_2 slug size, well spacing, WAG ratio and injection rates. Operational challenges such as slugging, GOR control, corrosion were identified, and the simulation model was validated and tuned.

2010 Pilot Performance

The oil rate improved in four wells.

A Sproule

4208.18158.CMFG.smr

 $\label{eq:exponential} {\tt P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}$

Based on a 2010 pressure survey, Penn West was not compliant with the pressure requirements for Approval 11002A. In Penn West's opinion, the 2010 pressure survey was not representative of average pattern reservoir pressure. Penn West planned to conduct a new bottomhole pressure survey early in 2011 with which to demonstrate pressure and VRR compliance. Penn West was also reviewing current allocation factors (particularly for 16-20-065-10W5), as these values have changed as a result of water injection in wells offsetting the pilot. Approximately 12.5 percent of the hydrocarbon pore volume of CO_2 was injected by the end of 2010.

Observed CO_2 concentrations surrounding non-pilot wells were within the historical limit. CO_2 was contained within the pilot area. The target CO_2 injection rate was achieved, and successful isolation to below ZI shale was confirmed; however, injection logging clearly identified that CO_2 was not evenly distributed over the entire target zone.

Good pressure response between the injectors and most producers was clearly identified.

As of December 2010, oil rate improvement was observed in four wells. Pressure was maintained close to MMP, and miscibility was achieved. The CO_2 was contained within the pilot area and not fully distributed to the target interval. Injector–producer communication was established by monitoring flowing bottomhole pressure.

Compliance

 CO_2 concentration in the injection stream was greater than or equal to 98 mole percent. Cumulative and monthly VRR was greater than or equal to 1.0, and minimum operating pressure was 18 MPa (in at least two annual pressure surveys).

Battery oil, water, gas and CO_2 concentration were continuously monitored, and pilot wells were tested at least once every week. Real time BHP/T sensors were put on the producers, and monthly gas analysis was performed on both pilot and non-pilot wells. Geochemical analysis was also performed, as well as corrosion monitoring and quarterly fluid analysis from each producer.

There were no plans to inject CO_2 into the pilot in 2011. Well 2-29 was planned to be converted into an injector. Geochemical, gas analysis monitoring and pressure surveys were continued in 2011.

4208.18158.CMFG.smr

- 1. Approval No. 11002A, Experimental Scheme, SSHU C02 Miscible Flood, Progress Report No.3, Penn West Exploration, January 1, 2010 December 31, 2010.
- 2. Derochie, L. J. "Performance Of South Swan Hills Tertiary Miscible Flood". JCPT paper# 87-06-07, 1987.
- 3. Griffith, James D. and Cyca, Len G. "Performance of South Swan Hills Miscible Flood". SPE Journal of Petroleum Technology paper# 8835, 1981.
- 4. Griffith, J. D. and Horne, A. L. "PD 14(3) South Swan Hills Solvent Flood". 9th World Petroleum Congress paper# 16328, 1975.
- 5. SSH CO₂ Pilot Review, Experimental Scheme Approval No. 11002A, Penn West Exploration, 25 January 2011.

Turner Valley Rundle

The Turner Valley Rundle pool is a light-medium oil carbonate reservoir at a depth of 1,480.6 m. The oil gravity is 40.1°API. The average porosity is 0.082, the average water saturation is 0.1 and the initial reservoir pressure is 10,410 kPa.

An experimental solvent flood was conducted in the pool from 2001 to 2005 using nitrogen injection.

The EOR project assessment is shown in Table 63. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 170 and 171.

The estimated primary recovery factor for the pool was 12 percent. The incremental EOR recovery factor with the solvent injection was 2 percent. The remaining OIP is $208.700 \times 10^6 \text{ m}^3$.

Virginia Hills Beaverhill Lake

The Virginia Hills Beaverhill Lake pool is a light-medium oil carbonate reservoir at a depth of 2,815.1 m. The oil gravity is 38.1° API. The average porosity is 0.09, the average permeability is 17.77 mD, the average water saturation is 0.24 and the initial reservoir pressure is 24,988 kPa. The OOIP in the pool was 36.510×10^6 m³.

Solvent flooding was started in 1989 and was terminated in 2006. The EOR project assessment is shown in Table 64. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 172 and 173.

Sproule

The estimated primary recovery factor for the pool was 23 percent. The incremental EOR recovery factor with the solvent injection was 22 percent. The remaining OIP was $20.081 \times 10^6 \text{ m}^3$.

References:

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Jones, P.W. and Baker, R.O. "Profile Control in Virginia Hills EOR Injectors". SPE/DOE Enhanced Oil Recovery Symposium paper# 24193, 1992.

West Pembina Nisku D

The West Pembina Nisku D pool is a light-medium oil carbonate reservoir at a depth of 3,141 m. The oil gravity is 45.82°API. The average porosity is 0.117, the average water saturation is 0.07 and the initial reservoir pressure is 40,479 kPa. The OOIP in the pool was $2.400 \times 10^6 \text{ m}^3$.

Solvent flooding was started in 1981. The scheme was followed by chase gas injection in 1987, which was terminated in 1994. The EOR project assessment is shown in Table 65.

More details on similar Nisku pinnacle reefs can be found in the descriptions of the Brazeau Nisku A, D and E pools and the references cited in those sections.

The estimated primary recovery factor for the pool was 40 percent. The incremental EOR recovery factor with the solvent injection was 30 percent. The remaining OIP is $0.480 \times 10^6 \text{ m}^3$.

References:

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. West Pembina Nisku D Pool, Penn West Petroleum Ltd., Annual Progress Report, 22 January 2011, (2010-10658).

Wizard Lake D-3 A

The Wizard Lake D-3 A pool is a light-medium oil carbonate reservoir at a depth of 1,966.7 m. The oil gravity is 38.1°API. The average porosity is 0.098, the average permeability is 2,380.68 mD, the average water saturation is 0.07 and the initial reservoir pressure is 15,507 kPa. The OOIP in the pool was 63.900×10^6 m³.

Sproule

4208.18158.CMFG.smr

Solvent flooding commenced in 1986 and was terminated in 1998. The EOR project assessment is shown in Table 66. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 174 and 175.

The estimated primary recovery factor for the pool was 66 percent. The incremental EOR recovery factor with the solvent injection was 19 percent.

References

- 1. ERCB Oil Reserves Detailed Report, 31 December 2010.
- 2. Backmeyer, L.A., Guise, D.R., MacDonell, P.E., and Nute, A.J., "The Tertiary Extension of the Wizard Lake D-3A Pool Miscible Flood". SPE paper# 13271, 1984.
- 3. Cook, P.G. "Optimizing the Blowdown of Wizard Lake". SPE paper# 97669, 2005.
- 4. Douglas, J. L. and Weiss, M. "Wizard Lake: Reservoir Quality As A Key To Successful Miscible Displacement". JCPT paper# 91-02-06, 1991.
- 5. Hsu, H.H. "Numerical Simulation of Gravity-Stable Hydrocarbon Solvent Flood, Wizard Lake D-3A Pool, Alberta, Canada". SPE paper# 17620, 1988.
- 6. Martin, William Earl and Young, M.N. "The Wizard Lake D-3A Pool Miscible Flood". International Petroleum Exhibition and Technical Symposium paper# 10026, 1982.
- 7. Young, Marshall N. and Martin, W. Earl. "The Wizard Lake D-3A Pool Miscible Flood". JCPT paper# 80-02-04, 1980.

Zama Keg River F

The Zama Keg River F pool is a light-medium oil carbonate reservoir at a depth of 1,494.6 m. The oil gravity is 35.11° API. The average porosity is 0.07, the average permeability is 9,850.13 mD, the average water saturation is 0.13 and the initial reservoir pressure is 14,444 kPa. The OOIP in the pool was 0.532×10^{6} m³.

Gas injection began in 2007. The EOR project assessment is shown in Table 67. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 176 and 177.

The estimated primary recovery factor for the pool was 33.1 percent. The incremental EOR recovery factor with the solvent injection was 5 percent. The remaining OIP is $0.329 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

A Sproule

Zama Keg River G2G

The Zama Keg River G2G pool is a light-medium oil carbonate reservoir at a depth of 1,510.3 m. The oil gravity is 36.09°API. The average porosity is 0.08, the average permeability is 161.09 mD, the average water saturation is 0.13 and the initial reservoir pressure is 14,117 kPa. The OOIP in the pool was 0.591 x 10^6 m³.

Gas injection began in 2006. The EOR project assessment is shown in Table 68. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 178 and 179.

The estimated primary recovery factor for the pool was 22.5 percent. The incremental EOR recovery factor with the solvent injection was 4 percent. The remaining OIP was $0.434 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Zama Keg River NNN

The Zama Keg River NNN pool is a light-medium oil carbonate reservoir at a depth of 1,532.2 m. The oil gravity is 36.09°API. The average porosity is 0.07, the average permeability is 60.95 mD, the average water saturation is 0.15 and the initial reservoir pressure is 15,283 kPa. The OOIP in the pool was $0.562 \times 10^6 \text{ m}^3$.

Gas injection began in 2006. The EOR project assessment is shown in Table 69. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 180 and 181.

The estimated primary recovery factor for the pool was 30 percent. The incremental EOR recovery factor with the solvent injection was 5 percent. The remaining OIP is $0.376 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

4208.18158.CMFG.smr

Zama Keg River RRR

The Zama Keg River RRR pool is a light-medium oil carbonate reservoir at a depth of 1,550.5 m. The oil gravity is 39.11°API. The average porosity is 0.1, the average water saturation is 0.15 and the initial reservoir pressure is 15,250 kPa. The OOIP in the pool was $0.748 \times 10^6 \text{ m}^3$.

Gas injection began in 2007. The EOR project assessment is shown in Table 70. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 182 and 183.

The estimated primary recovery factor for the pool was 25 percent. The incremental EOR recovery factor with the solvent injection was 5 percent. The remaining OIP was $0.524 \times 10^6 \text{ m}^3$.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

Zama Keg River X2X

The Zama Keg River X2X pool is a light-medium oil dolomite reservoir at a depth of 1,479.9 m. The oil gravity is 36.09° API. The average porosity is 0.075, the average permeability is 2,994.26 mD, the average water saturation is 0.16 and the initial reservoir pressure is 12,536 kPa. The OOIP in the pool was 0.538×10^{6} m³.

The EOR project assessment is shown in Table 71. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 184 and 185.

The estimated primary recovery factor for the pool was 27.5 percent.

Pennzoil's acid gas injection project is located in Township 116-6W6 in the Zama area of northern Alberta. The project is designed to receive waste acid gas from the Nova Gas Clearinghouse (NCL) gas plant located at 13-12-116-6W6 (Figure 186). The NCL plant processes sour natural gas from the Slave and Sulfur Point formations by removing the H_2S and CO_2 from the inlet stream and preparing a pipeline-quality sales gas outlet stream for transmission in the Nova pipeline system.

The NCL plant started delivering acid gas for disposal on May 3, 1995. The waste product from the NCL plant, acid gas, is delivered to Pennzoil's X2X pool for injection into the Zama

A Sproule

Keg River formation using wells 1-25-116-6W6 (the primary injection well) and 2/16-24-116-6W6 (the relief injection well). Voidage in the pool is maintained by production from well 16-24-116-6W6. Well 14-24-116-6W6, also completed in the Keg River X2X pool, is a suspended oil well currently being used to monitor reservoir pressure in the back reef area. The project area is illustrated in Map 1 in Figure 187.

The NCL plant generates approximately $60 \times 10^3 \text{ m}^3/\text{d}$ of acid gas at current throughput levels. Daily activities are summarized graphically in Figure 188. The acid gas stream is averaging approximately 20 percent H₂S and 80 percent CO₂. Approval 7732 originally allowed 70,000 m³/d of injection. Pennzoil, at the request of NCL, has applied for and received approval to increase the injection to 120,000 m³/d.

Scheme Performance

Performance of the scheme is summarized in Figure 189.

As of December 31, 1995, cumulative acid gas injected into the X2X pool was 9,600 m³ (28,900 at reservoir conditions). The cumulative amounts of sulfur and CO_2 disposed during this report period are 2,600 tonnes and 14.0103 tonnes, respectively. Wellhead injection pressure averaged 9,000 kPa. An acid gas analysis retrieved during November 1995 indicated the acid gas composition is approximately 20 percent H₂S and 80 percent CO₂.

Cumulative production (as of December 31, 1995) from well $16-24-116\sim 6W6$ since acid gas injection started in April 1995 was 270 m³ of oil, 43,000 m³ of gas and 55,500 m³ of water. The cumulative reservoir voidage is 57,100 m³.

When well 6-24 was first put back on production, it produced a small amount of oil. This oil was not considered tertiary oil, but rather residual waterflood oil not recovered through the previous production completion. The well is currently flowing formation water with a trace of gas.

As of December 31, 1995, cumulative net reservoir voidage was 28,200 m³. The first representative reservoir pressure of 21,546 kPa was measured at well 16-24 just prior to the scheme start-up. The second representative reservoir pressure of 18,969 kPa was measured in December 1995.

Using the voidage-pressure relationship in Figure 190, the average reservoir pressures were predicted for each month during the report period when the reservoir pressure was not measured. Reservoir voidage is a pressure-dependent function, so an iterative solution was required. The formation volume factor for the acid gas, used to convert volumes injected at

A Sproule

standard conditions to reservoir volumes, is determined from the relationship presented in Figure 191.

The data used to prepare Figure 191 were from the PVT properties for the acid gas.

Pennzoil was trying to reduce the reservoir pressure in the X2X pool to the initial reservoir pressure of approximately 15,500 kPa. To achieve that pressure, Pennzoil continued to produce well 16-24 at volumes that exceeded the volumes injected.

Monitoring

In November, Pennzoil reviewed the operating procedures for the acid gas injection project with the following conclusions:

1. Acid gas composition was determined in only one month of the reporting period. In the future, Pennzoil will perform a tutwieler test on the injection stream every month to determine the H_2S content. The CO_2 content was determined by subtraction. Pennzoil continued to retrieve an acid gas sample for complete analysis once per reporting period.

2. Reservoir pressure was measured in only one month of the reporting period. In the future, Pennzoil will perform a dead weight pressure (DWT) survey on the inactive injection well. From this survey, and knowing the composition of the fluid in the tubing, the reservoir pressure will be determined. In addition to the DWT survey, Pennzoil will conduct a fluid level survey on well 14-24 to determine reservoir pressure in the back reef area every three months, or twice per reporting period.

Corrosion Monitoring

The initial study prepared for this injection project concluded that the acid gas was only corrosive if free water was present in the system. To ensure the acid gas had a water dew point well below the operating conditions of the injection system, a continuous dew point analyzer was installed in late September 1995. Initially, the analyzer indicated the acid gas had a dew point of -20 to -25°C. After the operating staff made slight modifications to the process, the dew point was lowered to between -30 and -40°C. To supplement the dew point monitoring, an inhibitor was injected continuously into the pipeline. The inhibitor used was a Baker Chemicals product, Cronox, and it was mixed with diesel fuel. X-ray shadow shot surveys were used to monitor the corrosion of the pipeline. A survey completed in November 1995 showed that no corrosion was present in the pipeline.

4208.18158.CMFG.smr

1. Zama Keg River X2X Pool, Acid Gas Injection Scheme, Approval No. 7732, Progress Report No. 1, January 1996.

Zama Muskeg L

The Zama Muskeg L pool is a light-medium oil evaporite reservoir at a depth of 1,512.8 m. The oil gravity is 36.09° API. The average porosity is 0.1, the average permeability is 2,232.49 mD, the average water saturation is 0.16 and the initial reservoir pressure is 13,885 kPa. The OOIP in the pool was $0.429 \times 10^6 \text{ m}^3$.

The EOR project assessment is shown in Table 72. The pool location, wells and recovery performance during the miscible flood scheme are summarized in Figures 192 and 193.

The estimated primary recovery factor for the pool was 20 percent. The incremental EOR recovery factor with the solvent injection was 5 percent.

References

1. ERCB Oil Reserves Detailed Report, 31 December 2010.

4.2 Chemical Floods

The EOR project assessments and reservoir properties for each project are summarized in Tables 73 to 94. These are the key parameters to develop the criteria for successful miscible floods.

Brintnell Polymer Flood

The Brintnell Upper Wabiskaw pool is a heavy oil sandstone reservoir at a depth of 300 to 425 m TVD. The oil gravity is 10°API. The average porosity is 0.28 to 0.32, the average permeability is 300 to 3,000 mD, the average water saturation is 0.30 to 0.40 and the initial reservoir pressure is 1,900 to 2,600 kPa. Dead oil viscosity ranges from 800 to 80,000 mPa.s at 15°C (reservoir temperature is 13 to 17°C).

This overview of the Brintnell polymer project is largely based on CNRL's 2010 presentation to the ERCB. Brintnell is located in the Wabasca Oil Sands area, and the production formation is the Wabiskaw. The location of the project is shown in Figure 194.

4208.18158.CMFG.smr

Figure 195 shows a type-log of the reservoir. A map of the viscosity of the produced oil is shown in Figure 196; the majority of the developed area is below 5,000 mPa.s.

Polymer injection began in May 2005, with the first production response noted in March 2006. Average water cuts have increased but are generally less than 60 percent. This behavior conforms to the theory where rapid water breakthrough is expected, but production continues at a moderate and constant water cut for a significant time. The primary oil recovery factor was estimated to be 7.5 percent, while the incremental recovery factor due to polymer was estimated to be 15 to 21 percent. The performance of an average pattern under polymer flooding is shown in Figure 197. The range of oil viscosity in the polymer flooded areas is large, with most areas below 5,000 mPa.s but some areas as high as 50,000 mPa.s.

The EOR project assessment is shown in Table 73.

Approval 10147 is the first area expanded after the pilot. The area is shown in Figure 198. Figure 199 is a graph of Approval 10147 performance. Polymer injection commenced in 2005, and polymer response was observed in January 2007. Average water cuts increased in 2009 to 40 percent. Parts of the area have exceeded the results from the pilot area. The primary recovery factor was 5.75 percent, and in 2010, the incremental polymer recovery factor estimate was 15 to 21 percent.

The polymer flood was expanded to Approval 10423. The area is shown in Figure 200. Figure 201 is a graph of Approval 10423 performance. The polymer flood was started in 2007 and was expanded through 2010. Until the end of 2009, only a small area had responded. A large increase in production is anticipated in late 2010 and early 2011. There is a large range in flooded oil viscosity, with most areas under 5,000 mPa.s but some parts as high as 50,000 mPa.s.

The polymer flood was expanded to Approval 10787, shown in Figure 202. Figure 203 is a graph of Approval 10787 performance. A small area of polymer flood was started in 2007; expansion of the flood area was planned for 2011. This is the first area to have a multilateral well being flooded by several injectors, and results have been excellent to 2010.

The area of Approval 9467 is shown in Figure 204. Approval 9467 was initially approved as a waterflood which began in early 2002. A portion of the approval was converted to polymer flood injection in 2008. The remaining portion was to be converted to polymer flood in late 2010. The conversion to polymer flood will be included in Approval 10423. Figure 205 is a graph of Approval 9467 performance to early 2010. The Approval 9467 area is referred to as the N. Horsetail waterflood.

A Sproule

The area of Approval 9673 is shown in Figure 206. It was initially approved as a waterflood which began in early 2004 and was expanded within the approval area during 2005 and 2006. In 2008 and 2009, additional lands were added to 9673, and polymer flood was implemented in them. In later 2009, the previously waterflooded areas were converted to polymer flood. All areas of the approval which are under flood are being flooded by polymer. The approval area is referred to as the North Brintnell polymer flood. Figure 207 is a performance graph of Approval 9673.

Short- and Long-Term Opportunities

The aggressive expansion of the polymer flood is planned to continue. Expansion areas will test differing reservoir properties including oil viscosity, water saturation, reservoir permeability and pay thickness. Testing will include reduced inter-well spacing and additional multilateral well configurations. A reduced inter-well spacing pilot is planned for 2010.

Figure 208 shows the entire flood response to 2010. Figure 209 summarizes the major approval area recovery factors.

Conclusions of the Chemical Flood Performance

The phased introduction of polymer flooding has been successful. Plans are underway to continue the expansion.

The initial reservoir pressure was determined via pressure gradients from gas wells in the pool. The Wabiskaw Sand fracture pressure was challenging to determine in an unconsolidated sandstone. Surface pressures are recorded daily and monitored. Pressure switches are in place on injectors to ensure MAWHIP is not exceeded. Cap Rock testing was done to ensure the limits of injection are 100 times less than rate predicted to initiate vertical fractures.

Conversion is underway to use saline water as part of the mixing process, reducing the amount of non-saline used per unit of polymer. Expansion plans after 2007 were designed for use with saline water only.

References

1. Approval No. 8988, Experimental Scheme Utilizing an Emulsion for the Enhanced Recovery of Crude Bitumen, Progress Report, CNRL, 2005.

Sproule

4208.18158.CMFG.smr

- 2. Approval No. 9673, North Brintnell Waterflood Enhanced Recovery of Crude Bitumen by Water Injection, Performance Presentation 1, CNRL, 21 January 2005.
- 3. Approval No. 9673, 9467, 9572 10147, North Brintnell Waterflood and Polymer Flood Performance, Performance Presentation, CNRL, 2006.
- 4. Approval No. 9673, 9467, 9572, 10147, In Situ Oil Sands Schemes North Brintnell, Performance Presentation, CNRL, 2007.
- 5. Approval No. 9673, 9467, 9572, 10147, 10423, 10787, In Situ Oil Sands Schemes North Brintnell, Performance Presentation, CNRL, 15 February 2008.
- 6. Approval No. 9673, 9467, 10147, 10423, 10787, In Situ Oil Sands Schemes Brintnell Area, Annual Presentation, Canadian Natural Resources Limited, 18 March 2009.

Cessford Basal Colorado A

Experimental Alkaline/Polymer Flood (#4357A/3692A)

The Cessford Basal Colorado A pool is a heavy oil sandstone reservoir at a depth of 920 m. The oil gravity is 23°API. The average porosity is 0.24, the average permeability is 350 mD, the average water saturation is 0.30 and the initial reservoir pressure is 8,784 kPa. The OOIP in the pool was 17.400×10^6 m³.

Figure 210 shows the pool outline. Figure 211 shows the pool performance.

Recovery using an alkaline/polymer flood was evaluated in three areas (North, Central and South). Figure 212 shows the pool outline and identifies the North, Central and South areas and the wells.

The North area patterns are on the edges of the gas cap, as shown in Figure 213. Figure 214 shows the North area alkali/polymer flood well locations adjacent to the gas cap.

Waterflooding commenced in the three areas in 1981 under Approval 2604. Alkaline flooding commenced in the North and Central patterns on July 19, 1984, under Approval 3692. The North and Central areas were converted to an alkali/polymer flood in May 1985. An alkali/polymer flood was started in the South area in January 1985. The alkali/polymer flood was terminated in the North and South areas in October 1990, and it was terminated in the Center area in February 1991.

The EOR project assessment is shown in Table 74.

A preflush of softened salt water was injected from December 1983 to July 18, 1984 in the North and Central areas to act as a buffer between the caustic (alkali) solution and the Red

A Sproule

^{4208.18158.}CMFG.smr

Deer River water which had been injected since 1981. Injection of the caustic (alkali) solution, containing 1 weight percent sodium hydroxide and 1.3 weight percent sodium chloride, started on July 19, 1984. In late 1984, it was determined that an alkali/polymer solution would be more efficient than a caustic flood.

There was no period of preflush or caustic injection in the South area before alkali and polymer were injected.

The recovery performance during the primary, waterflood, alkali and alkali/polymer schemes are summarized for the total pool and the North, Central and South areas in Figures 215 to 219.

Poor injectivity at the chemical injection wells was observed. Workovers on the chemical injectors were encouraging but still not in the range of the waterflood injectors. Figures 220 and 221 show injection histories for the seven injectors from 1962 to 1990.

No incremental production attributable to the caustic/polymer injection was observed in the North and South areas of the project, due to poor injectivity. It is estimated that with the injection rates observed, it will take between 6 and 90 years to complete the placement of a 10-percent pore volume slug in each of the five injectors in the North and South areas. The reservoir cannot wait six or more years for the chemical slug to be injected because of the pressure gradient across the pool, caused by gas production in the east and water influx in the west, and the maturity of the surrounding waterflood.

Attempts to improve injectivity have, at best, resulted in temporary increases in the injection capability. Due to poor injection capability, voidage replacement ratios are poor in most of the chemical injection patterns. It is estimated that terminating the chemical injection and conducting workovers will increase the voidage replacement ratios. The continued injection of the caustic/polymer solution at the current low rates is likely to be detrimental to the ultimate recovery of the patterns.

Conclusions of the chemical flood performance are as follows:

- Incremental oil production has been observed in the Central area in response to caustic/polymer injection. The effect of the caustic versus polymer cannot be discerned; however, it is thought that the polymer injection is primarily responsible for the incremental production.
- No incremental production has been observed in the other patterns, probably because of the poor injectivity in them. Workovers have resulted, at best, in temporary increases in injectivity.

A Sproule

- It will take a minimum of six years to inject adequate volumes of the caustic/polymer solution to reasonably expect a production response. At these low rates, the production response may not be easy to discern from the data.
- Low chemical injection rates have resulted in very low voidage replacement ratios. Loss of reservoir pressure will probably offset the potential gain from the use of chemicals. Continued operation of the chemical flood will have a detrimental impact on ultimate oil recovery.
- Continued operation of the waterflood surrounding the caustic/polymer patterns will probably cause the wells to water-out before the response to the chemical injection can be observed.
- Lack of waterflood response at most patterns before the chemical flood began will make any calculation of incremental recovery very difficult and inaccurate.
- There is a significant pressure gradient across the oil leg where the chemical flood is being conducted because of the depletion of the Basal Colorado A pool gas. Possible oil migration into the low pressure gas cap mandates that the oil zone be processed as quickly as possible to minimize the effects of migration and to maximize recovery. The size of the gas cap (in 1990, it produced over 0.5 TCF) precludes it from being repressurized.
- The observed incremental recovery in the one pattern where the chemical injection has been a technical success is not significant compared to the large volume of the injected chemicals.
- The poor injectivity does not appear to be related to the core permeability. Core permeability measurements could be erroneously high, with the fines removed during cleaning or the clays dried out before the samples were tested.
- The poor injectivity could also be because
 - The preflush may have been too small to adequately flush the multivalent ions from the formation. Once the caustic fluid contacted these ions, precipitates formed.
- The adsorption of the polyacrylamide polymer and/or the caustic solution has reduced the effective permeability of the reservoir.
- The formation clays may have reacted with the caustic solution and either hydrated or migrated, causing plugging.

Overall Performance

- Caustic/polymer flooding is ineffective and potentially detrimental,
- Significant problems were encountered with injection,
- VRR was significantly reduced during the chemical flood,
- Injection issues could not be solved,
- The chemical scheme had lower than anticipated oil rates and recovery,

• Caustic/polymer injection results are not promising.

Short & Long Term Opportunities

Caustic/polymer flooding was ineffective in improving recovery in the Cessford Basal Colorado A pool, so it was discontinued. Injection problems were encountered, and reduced VRR resulted. Workovers of the injection wells had very limited success. The caustic/polymer flood was terminated, and there are no additional plans to implement chemical recovery.

References

- Approval No. 4357, Cessford Basal Colorado 'A' Pool Experimental Alkaline-Polymer Solution Flood Scheme, Progress Report, Hudson's Bay Oil and Gas Limited, July 1, 1984
 December 31, 1984.
- 2. Approval No. 4357A, Cessford Basal Colorado 'A' Pool Experimental Alkaline/Polymer Flood, Progress Report, Crestar Energy, January 1, 1991 December 31, 1991.
- 3. Approval No. 4357, Cessford Basal Colorado 'A' Pool Experimental Alkaline/Polymer Flood, Progress Report, Crestar Energy, January 1, 1992 December 31, 1992.
- 4. Edinga, K.J.; McCaffery, F.G.; and Wytrychowski, I.M. "Cessford Basal Colorado A Reservoir Caustic Flood Evaluation". SPE # 8199, 1980.

Chauvin South Sparky E

Experimental Polymer Flood (5379)

The Chauvin South Sparky E pool is a heavy oil sandstone reservoir at a depth of 1,400 m. The oil gravity is 21.1°API. The average porosity is 0.24, the average water saturation is 0.30 and the initial reservoir pressure is 8,784 kPa. The OOIP in the pool was 2.075×10^6 m³.

Figure 222 identifies the Chauvin South Sparky E well locations. Figure 223 is a production/injection performance plot of the pool, and Figure 224 is a production/injection performance plot of the polymer pilot. Figure 225 outlines the pilot area.

The polymer flood was implemented in three patterns in an existing waterflood area.

The EOR project assessment is shown in Table 75.

Sproule

^{4208.18158.}CMFG.smr

The polymer flood started on February 1, 1988, with the injection of a formaldehyde solution (1,500-2,000 ppm), and was scheduled to continue for approximately two weeks. The formaldehyde solution was reduced to 500 ppm on February 17, 1988. Polymer injection commenced after the formaldehyde solution was reduced to 450 ppm. Continuous injection of the polymer did not occur until February 27, 1988, due to shipment and equipment start-up problems. Polymer injection was terminated April 2, 1991. Formaldehyde injection was discontinued on May 23, 2001.

The experimental life of the pilot was from March 1988 to January 1993. The project consists of 11 oil producers and 3 polymer injection wells in an area of 195 ha. There are three injectors: two polymer injectors and one converted to water injection. The major start-up problem was the maintenance of a consistent polymer injection rate.

The pilot area production performance from 1986 to 1992 is shown in Figure 226.

Figure 227 shows the total injection rate, viscosity, and HCOH concentration from 1988 to 1991.

Figures 228 to 230 show the injection performance to January 31, 1993 for the three injectors.

When the polymer injection was stopped, there was a steady decline in the oil production and a slight increase in water production, as expected. The increasing GOR leveled out as total voidage replacement, which had encountered issues, was nearing 1.

Area	Oil	Water	Gas	
	(m ³)	(m ³)	(10 ³ m ³)	
Total pilot area	109,600	380,064	3,195	
NW/4-24-3W4 pattern	26,182	149,018	1,239	
SW quarter of section	73,635	181,544	1,603	
25-42-3W4m				
NE quarter of section	9,759	49,502	354	
26-42-3W4				

The following table summarizes the pilot production:

A study that was conducted on the polymer pilot's performance deemed it to be successful.

4208.18158.CMFG.smr

- 1. Approval No. 5379, Chauvin South Sparky "E" Experimental Polymer Flood Pilot Scheme, Progress Report No. 1, BP Resources Canada Limited, February 1, 1988 - July 31, 1988.
- 2. Approval No. 5379, Chauvin South Sparky "E" Experimental Polymer Flood Pilot Scheme, Technical Report, BP Resources Canada Limited, May 31, 1993.

Countess Upper Mannville H

Commercial Polymer Flood (11250B)

The Countess Upper Mannville H pool is a light-medium oil sandstone reservoir at a depth of 1,062.5 m. The oil gravity is 26°API. The average porosity is 0.22, the average water saturation is 0.22 and the initial reservoir pressure is 8,234 kPa. The OOIP in the pool was $5.725 \times 10^6 \text{ m}^3$.

Recovery using a polymer flood was evaluated. Figure 231 identifies the well locations, and Figure 232 is a production/injection performance plot. The EOR project assessment is shown in Table 76.

The estimated primary recovery factor for the pool is 10.5 percent. The estimated incremental polymer flood recovery factor is 36 percent. No recovery factor was specified for the waterflood. The estimated remaining OIP after primary, waterflood and polymer injection is $0.191 \times 10^6 \text{ m}^3$.

The Upper Mannville H is still under polymer injection.

Countess Upper Mannville H

Experimental ASP (10640)

The Countess Upper Mannville H pool is a heavy oil sandstone reservoir at a depth of 1,400 m. The oil gravity is 10.9°API. The average porosity is 0.24, the average permeability is 945 mD, the average water saturation is 0.30 and the initial reservoir pressure is 8,784 kPa. The OOIP in the pool was 2.075×10^6 m³.

Recovery using an alkali/surfactant/polymer (ASP) flood was evaluated. The EOR project assessment is shown in Table 77.

A Sproule

4208.18158.CMFG.smr

Edgerton Woodbend A

Experimental Polymer Flood

The Edgerton Woodbend A pool is a heavy oil carbonate reservoir at a depth of 697.4 m. The oil gravity is 16.82°API, the average porosity is 0.2, the average water saturation is 0.25 and the initial reservoir pressure is 4,831 kPa. The OOIP in the pool was $8.789 \times 10^6 \text{ m}^3$.

Recovery using a polymer flood was evaluated. Figure 233 identifies the Edgerton Woodbend A wells, and Figure 234 is a production/injection performance plot. The EOR project assessment is shown in Table 78.

Entice Lower Mannville B

Commercial ASP Flood (11549)

The Entice Lower Mannville B pool is a light-medium oil sandstone reservoir at a depth of 1,782.8 m. The oil gravity is 34°API. The average porosity is 0.16, the average water saturation is 0.31 and the initial reservoir pressure is 13,645 kPa. The OOIP in the pool was $2.596 \times 10^6 \text{ m}^3$.

Recovery using an alkali/surfactant/polymer (ASP) flood was evaluated. Figure 235 identifies the well locations, and Figure 236 is a production/injection performance plot. The EOR project assessment is shown in Table 79.

Three areas were monitored for recovery performance:

- Primary recovery area,
- Waterflood recovery area,
- Total area.

4208.18158.CMFG.smr

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Primary	16	1.7		4		0.6		0.6		
Waterflood	355	37.6		10	15	79.3	119	198		
TOTAL	944	100	2596			259	556	825	773.1	51.9

The following table summarizes the area and recovery information available.

---Not Reported

The estimated primary recovery factor for the pool was 10 percent, and the incremental waterflood was 15 percent. The incremental EOR recovery factor with the ASP was not specified. The remaining pool OIP was 51,900 m³. The current pool cumulative oil production is 773,100 m³, and the pool recovery is 32 percent.

Reported recoveries indicate that the EOR flood is adding incremental recovery; therefore, expanding the EOR flood should be evaluated. It should be noted that the EOR flood is still in operation.

Horsefly Lake Lower Mannville

Experimental Alkali/Polymer Flood (4065)

The Horsefly Lake Lower Mannville pool is a light-medium oil sandstone reservoir at a depth of 964.3 m.

Figure 237 identifies the Horsefly Lake Mannville well locations, and Figure 238 is a production/injection performance plot of the Horsefly Lake Mannville wells.

The pilot is located in a high water area of the reservoir. Figure 239 is a location map of the pilot area. The pattern consists of five wells: one producer and four injectors. Four existing producers outside this pattern are also part of the pilot. The total pilot area including the four outside producers is about 13 ha.

The pilot was terminated on December 31, 1987.

4208.18158.CMFG.smr
Recovery using an alkali polymer flood was evaluated. The EOR project assessment is shown in Table 80.

Pilot Performance

Total oil production to the end of 1987 is 14,231 m³ or 12 percent of the OOIP in the pilot area. This represents 94 percent of the expected ultimate incremental oil.

The total incremental oil recovered was 10,042 m³ (8 percent) of the OOIP in the pilot area. Incremental oil represents 94 percent of the expected ultimate incremental oil.

Chemical injection was completed in May 1987.

Cumulative injection totaled 43 percent pore volume; cumulative chase water injection was 16 percent pore volume.

Figure 240 shows incremental pilot caustic/polymer oil recovery from 1985 to 1991, during which period, incremental oil of 15,010 m³ was observed. Figure 241 is a plot of the oil rate and cumulative oil production, and Figure 242 shows the oil rate versus time from 1984 to 1988. Figure 243 shows water and oil cut versus time from 1984 to 1988, and Figure 244 shows injection performance during the same period. Figure 245 is a table summarizing the incremental oil from 1984 to 1990. A plot of oil rate versus cumulative injected pore volume can be seen in Figure 246, and Figure 247 shows the water-oil ratio against the cumulative amount of oil produced.

Total oil production to the end of 1987 is 14,231 m³ or 12 percent of OOIP in the pilot area. This represents 88 percent of the expected total recoverable reserves.

Conclusions

The alkali/polymer flood did not work due to excessive adsorption because of the high clay content of the reservoir. The improvement in the recovery was attributed to the closer well spacing. The reservoir was found to be more heterogeneous than expected, hence the benefit of the closer well spacing.

References

 Approval No. 4065, Horsefly Lake Caustic-Polymer Pilot Project Lower Mannville Pool, Progress Report No. 6, PanCanadian Petroleum Limited, July 1, 1987 - December 31, 1987.

4208.18158.CMFG.smr

- 2. Approval No. 4065, Horsefly Lake Caustic-Polymer Pilot Project Lower Mannville Pool, Technical Report, PanCanadian Petroleum Limited, January 20, 1986.
- 3. Enhanced Recovery Week April 3, 1989, "Horsefy consumed caustic, waterflood may benefit".

Mooney Bluesky A

Commercial ASP Flood (11488A)

The Mooney Bluesky A pool is a heavy oil sandstone reservoir at a depth of 913 m. The oil gravity is 16.6°API. The average porosity is 0.26, the average water saturation is 0.35 and the initial reservoir pressure is 5,790 kPa. The OOIP in the pool was 7.883 x 10^6 m³.

Recovery using an alkali/surfactant/polymer (ASP) flood was evaluated. Figure 248 identifies the Mooney Bluesky A well locations, and Figure 249 is a production/injection performance plot of the Mooney Bluesky A wells. The EOR project assessment is shown in Table 81.

Three areas were monitored for recovery performance:

- The primary recovery area,
- The waterflood recovery area,
- The total area.

The following table summarizes the area and recovery information available:

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Primary	788	37.4		7		200		200		
Waterflood	763	12.5		7	7	85.6	96.6	193		
TOTAL	2,108	100	7,883			552	556	1,087	442.7	644.3

--- Not Reported

No ASP data is reported.

The current field recovery is 14 percent.

 $\label{eq:exponential} {\tt P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}$

Provost Upper Mannville A

Commercial Polymer Flood (10529F)

The Provost Upper Mannville A polymer flood is operated by Pengrowth Energy Corporation. The field is in southeastern Alberta. Figure 250 shows the well locations. Wells with red symbols are assigned to the Upper Mannville A pool. Figure 251 shows the production/injection history of the pool. The development is in the Lloydminster formation, which contains heavy oil. The reservoir depth is 778.3 m, and the oil gravity is 15.1°API. The average porosity is 0.3. The average water saturation is 0.25, and the initial reservoir pressure is 4,125 kPa. The OOIP in the pool was 13.190 x 10^6 m³.

The reservoir properties and the recovery factors are summarized in Table 82. Figure 252 shows the pilot area, and Figure 253 shows the well locations. Finally, Figure 254 shows the production profile of well 14-15-37-01W4M.

The estimated primary recovery factor for the pool is only 3 percent. The estimated incremental EOR recovery factor with polymer injection is 12 percent.

Three areas were monitored for recovery performance:

- The primary recovery area,
- The waterflood recovery area,
- The total area.

The following table summarizes the area and recovery information available

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Primary	435	25.8		3		71.1		71.1		
Waterflood	1,252	74.2		3	12	325	1,298	1,623		
TOTAL	1,687	100	13,190			396	1,298	1,694	609.4	1,084.6

--- Not Reported

4208.18158.CMFG.smr

Based on production to December 31, 2010, the field recovery factor is 13 percent. Performance data indicate the field should be reviewed for potential opportunities to expand the current EOR.

References

1. Provost Upper Mannville "A" Pool, Pengrowth Energy Corporation, Annual Progress Report, 23 March 2011, (2011-10529E).

David Lloydminster DD

Experimental Alkaline/Polymer Flood (5353F/4263)

The David Lloydminster DD pool, also referred to as the Provost Lloydminster A pool, is a light-medium oil sandstone reservoir at a depth of 760 m. The oil gravity is 22.6°API. The average porosity is 0.29 and the average permeability is 1,400 mD. The OOIP in the pool was 1.486×10^6 m³.

Figure 255 identifies the well locations, and Figure 256 is a production/injection performance plot.

Initially, the David pool (Projects 1 and 2) was under waterflood from November 1978 to March 1986. Project 1 was changed to an alkaline flood and then amended to polymer with alkali on June 1, 1987.

Recovery using an alkaline/polymer flood was evaluated in seven patterns. Figure 257 shows the pool outline, and Figure 258 shows the seven patterns configured for the pilot. Figure 257 is also a net pay isopach map of the David pool, and it identifies the waterflood areas adjacent to the alkaline/polymer flood.

The EOR project assessment is shown in Table 83.

A one-year pre-flush was run from March 1986 to February 1987. Softened fresh water injection for the pre-flush portion of the experimental scheme was started in March 1986, and it lasted until February 1987. Alkali (soda ash) injection on all seven patterns began in March 1987, and alkali/polymer injection began in May 1987.

A total of 307,310 m³ (0.19 pore volume) of fresh water pre-flush and 459,821 m³ (0.4 pore volume) of alkali/polymer were injected. The design was for 0.10 pore volume of fresh

Sproule

water buffer followed by 0.35 pore volume slug of alkali/polymer and finally 0.10 pore volume of tapered polymer.

In September 1989, five of the seven patterns had reached the target of 0.35 pore volume of alkali/polymer injected. Modifications were made to begin the injection of tapered polymer (no alkali) while the injection of alkali/polymer continued into patterns 3 and 5. The five patterns finished their tapered polymer injection on August 31, 1990 and began to inject fresh water. Patterns 3 and 5 finished their target pore volume slug of alkali/polymer on December 10, 1990 and started injecting the tapered polymer slug at that point.

Figure 259 summarizes the slug sizes for each pattern. Figure 260 is a performance plot for the David pool. The graph identifies the primary, waterflood and alkaline/polymer flood productions. Figure 261 shows a comparison of the actual alkaline-polymer flood performance and the alkaline-polymer core flood. Figure 262 is a performance plot of oil cut versus cumulative oil recovery for the alkaline/polymer flood in comparison to the North, South and West waterfloods.

Summary

Alkaline/polymer flood was more effective in terms of incremental oil recovery than waterflood. Waterflood in adjacent patterns did not affect the chemical flood performance.

References

- 1. Approval No. 4263 and 2671C, David Lloydminister 'A' Pool, Progress Report No. 3, Dome Petroleum Limited, August 1985 February 1986.
- 2. Approval No. 5353B, David Experimental Alkali/Polymer Scheme, Progress Report No. 9, Amoco Canada Petroleum Company Ltd., March 1, 1990 August 31, 1990.
- 3. Manji, K. H., and Stasiuk, B. W., "Design considerations for Dome's David Alkali/Polymer flood". JCPT paper # 88-03-04, 1988.
- 4. Pitts, M. J., Chemical Enhanced Oil Recovery, Surtek Inc., CIM Presentation.
- 5. Pitts, M.J., Wyatt, K., and Surkalo, H. "Alkaline-Polymer Flooding of the David Pool, Lloydminster Alberta". SPE paper# 89386, 2004.

Provost Cummings I

The Provost Cummings I pool is a heavy oil sandstone reservoir at a depth of 763.3 m. The oil gravity is 24°API. The average porosity is 0.28, the average water saturation is 0.23 and the initial reservoir pressure is 5,430 kPa. The OOIP in the pool was $12.430 \times 10^6 \text{ m}^3$.

4208.18158.CMFG.smr

Recovery using a polymer flood was evaluated. The EOR project assessment is shown in Table 84. The Provost Cumming I wells are identified in Figure 263, and Figure 264 is a production/injection performance plot.

There is no additional information on the Provost Cummings I pool available publicly.

Suffield Upper Mannville UU

Commercial ASP Flood (1249B)

The Suffield Upper Mannville UU is under an ASP flood which is designated as a commercial project. The Glauconitic reservoir is a heavy oil sandstone at a depth of 928.8 m. The oil gravity is 14.1°API. Figure 265 identifies the well locations. The reservoir properties and expected recovery factors are summarized in Table 85. Figure 266 is a production/injection performance plot. Figure 267 identifies the pilot area.

The average porosity is 0.30, the average water saturation is 0.28, and the initial reservoir pressure is 7,538 kPa. The OOIP in the pool was 0.531×10^6 m³. Figure 268 shows a type log for the Suffield Upper Mannville UU. The reservoir is a washover (splay) sand of the main sand at SFB Suffield. No aquifer or bottom water is present.

There are two horizontal chemical injection wells, four horizontal production wells and three vertical production/observation wells. The cumulative injection of alkali/surfactant/polymer (ASP) to August 2010 is 146,000 m³ (0.28 HCPV). The average injection concentrations to October 2010 are

- Alkali = 0.75 percent,
- Surfactant = 0.1 percent,
- Polymer = 0.135 percent.

Figures 269 and 270 show the produced water analysis and a map of the scale activity, respectively. The produced water analysis shows where there has been breakthrough of the chemicals. Scale formation has been observed at some wells and is being monitored carefully. Both calcium carbonate scale and silica scale are present.

Figure 271 shows the production performance of the project, excluding the horizontal well 02/14-10, which was drilled in 2010. Figures 272 and 273 show the water and injection pressure for two injection wells.

Sproule

4208.18158.CMFG.smr

Two operational issues have been identified. The first is amorphous silica scale at production wells. The second is injection wells pressuring up to MOP, as of October 2010, limiting injectivity in one injection well. Despite these issues, ASP injection is still reported as economic in the pool.

The success of the scheme can only be determined through several measurements, observations, tests and laboratory investigations. Extended water analysis, pH, residual polymer and surfactant are used to determine breakthrough and estimate reservoir sweep. They also show the path of the injection fluids. They have encountered a backlog in the lab, however, due to the high-end nature of the test.

In the produced water analysis (Figure 269), the large red circles indicate wells with significant chemical breakthrough. The blue arrow indicates predominant injection flow based on well oil-cut increases. The black arrow indicates the least significant oil cut increases, with no chemical breakthrough, but with significant Phase 1 scaling.

The wellbore (scaled in 2009–2010) has scales similar to those in the Taber area ASP floods. In the lab, the Phase 1 scale was found to be calcium carbonate, and the Phase 2 scale was found to be amorphous silica scale. The chemical supplier is working to find new inhibitors; in 2010, it was working on a generation 4 inhibitor. The current solution is to pull rods every six to nine months (or if scale coupons show positive) and mechanically remove any scale. To date, scale does not appear to be forming in the reservoir.

The only significant operations conducted on the production wells were scale inspections and removal. Stimulation is only increased by injectivity after significant operations are conducted on the injection wells.

ASP commenced in May 2007, operating under the maximum allowable concentrations. The ASP solution did not reach less than $135.6 \ 10^3 m^3$ injection. As of August 2010, $146 \ x \ 10^3 m^3$ of ASP solution was injected.

Production wells were sampled on a bi-annual to monthly basis, and water, pH, silica, polymer and surfactant were extended as required. There was a backlog in the lab due to the specialized nature of the test, but a program is in place to send water into Corelabs at a minimum bi-monthly frequency (most times monthly), to test for residual polymer, pH, all routine and extended ions, and silica.

Water is also sent to the surfactant manufacturer for residual surfactant analysis once a year or when production data dictate. To date, the only well to have contained surfactant

A Sproule

4208.18158.CMFG.smr

was 00/10V-3, in which a small amount was found in the water when the pH was well over 12.

Oil composition was monitored to see if changes over time occurred and if they could be used to help optimize and evaluate the flood. The best measure of success was the change in oil cut and incremental oil produced. Changes occurred in the characteristics of produced fluid. Produced water was monitored for pH, polymer concentration, all major and extended ions, and silica. An increase in pH and polymer concentration was an indication of breakthrough, chemical effectiveness and adsorption. Produced silica may be an indication of wellbore scaling problems to come.

Overall, the ASP flood was successful.

Short- & Long-Term Opportunities

A 2011 ASP roll-out in the Suffield Upper Mannville YYY pool was planned. The YYY pool is a commercial scale ASP flood which is currently in the regulatory approval process.

Figure 274 is a location map with the YYY pool and the existing UU pool outlined. Figure 275 illustrates the YYY area geological relationships. Figure 276 is a gross isopach of the YYY pool, and Figure 277 is a forecast for the YYY Pool, comparing the waterflood and ASP prediction.

Summary

The EOR scheme 11249 worked well. Amorphous silica scale issue at production wells remains, and long-term injectivity is still partially in question, but commercial roll-out of the ASP flooding process was planned for the Suffield UM YYY pool in 2011.

References

- 1. Cumulative Voidage Replacement Ratio Suffield Upper Mannville UU Pool, EnCana, 1 September 2009, (2009-11249).
- 2. Enhanced Oil Recovery Scheme Suffield Upper Mannville UU Pool, EnCana, Annual Presentation, 28 October 2009, (2009-11249).
- 3. Enhanced Oil Recovery Scheme Suffield Upper Mannville UU Pool, Cenovus Energy, Annual Presentation, 26 October 2010 (2010-11249).
- 4. Simulation Test Data Suffield Upper Mannville UU Pool, EnCana, 2009, (2009-11249).

4208.18158.CMFG.smr

Suffield Upper Mannville U

Commercial Polymer Flood (11249B & 11485)

The Suffield Upper Mannville U pool is a heavy oil sandstone reservoir at a depth of 957.4 m. The oil gravity is 17.3°API. The average porosity is 0.26, the average water saturation is 0.18 and the initial reservoir pressure is 10,703 kPa. The OOIP in the pool was $3.609 \times 10^6 \text{ m}^3$.

Recovery using a polymer flood was evaluated. Figure 278 identifies the well locations, and Figure 279 is a production/injection performance plot. The EOR project assessment is shown in Table 86.

Three areas are monitored for recovery performance:

- Primary recovery area,
- Waterflood recovery area,
- Polymer flood area.

The following table summarizes the area and recovery information available:

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Primary	372	100	3,609			541	655	1,196	878.6	317.4
Waterflood	179	48.1		15	16	252	269	521		
Polymer	193	51.9		15	16	289	386	675		
flood										

--- Not Reported

4208.18158.CMFG.smr

Taber Glauconite K

Commercial ASP Flood (10860E)

The Taber Glauconitic K pool is a heavy oil sandstone reservoir at a depth of 963.6 m. The oil gravity is 19°API. The average porosity is 0.26, the average water saturation is 0.15 and the initial reservoir pressure is 7,719 kPa. The OOIP in the pool was $4.529 \times 10^6 \text{ m}^3$. This pool is the same as the East Taber Mannville D Unit #1, where a polymer pilot was carried out from 1990 to 1992. The pilot is described in the next section.

Figure 280 identifies the well locations, and Figure 281 is a production/injection performance plot.

Recovery using an alkali/surfactant/polymer (ASP) flood was evaluated.

The EOR project assessment is shown in Table 87.

One area under ASP flood was monitored for recovery performance. The following table summarizes the recovery information available from the area:

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
ASP Flood	308	100	4,529	18	38	815	1,721	2,536	2,047.3	438.7

--- Not Reported

East Taber Mannville D Unit #1

Experimental Polymer Flood (5078C)

The East Taber Mannville D pool is a heavy oil sandstone reservoir. The OOIP in the pool was $2.54 \times 10^6 \text{ m}^3$.

Recovery using a polymer flood was evaluated. The EOR project assessment is shown in Table 88.

The pool outline is shown in Figure 282.

4208.18158.CMFG.smr

Two geological facies exist within Unit 1: a channel sand and a sheet sand. The two facies are distinctly separated by a shale deposit. The sheet sand contains four wells and does not receive pressure support.

There were two polymer injection wells. All of the injection wells replace reservoir voidage for both the polymer flood areas and the waterflood areas.

Figure 283 is a production summary from 1980 to 1992.

The polymer flood has not responded as predicted. Only two wells have shown favourable response. A lack of widespread response implies that the pore volume being swept is less than was originally planned. Based on pool performance, the polymer bank size was reduced.

Figure 284 shows the polymer concentration versus the pore volume injected.

Polymer breakthrough is attributed to polymer flooding attempts from 1971 to 1979. The polymer flood conducted during that period was deemed to be ineffective.

Poor flood response on all but two project wells made it economically and technically unjustifiable to continue with the original slug design. The remaining slugs were redesigned using equations derived by Stoneberger and Claridge to have concurrent breakthroughs of the remaining polymer slugs and drive water.

Polymer flood response was generally disappointing, with limited production response. Polymer injection was completed, and two production wells were sensitive to the level of injection. The operation was then converted to a regular waterflood. There is residual polymer in the produced water which continues to be injected.

Figure 285 shows the actual versus predicted performance of the polymer area recovery curves.

All-unit injection into the two polymer injection wells replaced voidage for the polymer flood and waterflood areas.

The OOIP was 2,540 x 10^3 m³. Predicted ultimate waterflood and polymer flood recovery for the project area was 1,077 x 10^3 m³, or 42 percent of OOIP.

4208.18158.CMFG.smr

Polymer flood response was beginning to respond when it was suspended in 90-08, to allow remedial work to be performed. With polymer injection shut-in, there was a sharp decline in oil production and an increase in the water-oil ratio, indicating that polymer injection affected the sweep efficiency. Polymer injection was placed back on line in July 1991, and oil production returned to pre-shut-in rates.

Short & Long Term Opportunities

The pilot was converted to a waterflood. There were no plans for future chemical flooding.

Summary

The polymer flood was not successful.

References

- Approval No. 5077 and 5078, East Taber Mannville D Unit No. 1 Conventional Waterflood and Experimental Polymer Flood, Progress Report, Chevron Canada Resources, June 30, 1991 - December 31, 1991.
- Approval No. 5077 and 5078, East Taber Mannville D Unit No. 1 Conventional Waterflood and Experimental Polymer Flood, Progress Report, Chevron Canada Resources, January 1, 1992 - June 30, 1992.

Taber South Mannville B

Commercial ASP Flood (10418B)

The Taber South Mannville B, operated by Husky, is the first field-wide ASP flood in Canada.

Figure 286 identifies the well locations. Figure 287 is a production/injection performance plot.

Injection began in May 2006. The ASP target was to inject 30 percent pore volume. ASP injection ended on October 17, 2008, at 34 percent pore volume injected. Figure 288 identifies the pool order. Figure 289 shows the pool outline.

The Taber South Mannville B pool is a heavy oil sandstone reservoir at a depth of 983.3 m. The oil gravity is 19.1°API. The porosity is 0.22, the average water saturation is 0.39, and the initial reservoir pressure is 7,821 kPa. The OOIP in the pool was 6.843 x 10^6 m³.

A Sproule

Figure 290 is a map of the Mannville B net oil isopach.

The reservoir properties and expected oil recoveries are summarized in Table 89.

Following ASP injection, polymer-only injection had a target of 40 percent pore volume. At the end of May 2010, 16.3 percent pore volume of polymer was injected. Normal waterflooding followed the polymer injection.

During the ASP portion of injection, all minimum concentrations were maintained. Titrations were performed daily by operations to verify ASP injection fluid. An injection of 2,648 x 10^3 m³ ASP solution was followed by an injection of 1,270 x 10^3 m³ of polymer to May 2010 (out of a total planned slug of 2,480 x 10^3 m³ of polymer).

The objective was to maintain a cumulative VRR of 1.0. On an overall pool basis, cumulative VRR to May 31, 2010 was 0.95. The pool has maintained a constant VRR over the last few years.

Due to operational issues (silicate scale) in 2008/2009, the VRR fell to 0.95. In 2010, there was some progress in scale mitigation, which allowed for stabilization in the VRR. The pool was divided into seven zones to help balance injection throughout. Figure 291 shows the cumulative VRR by area from May 2006 (the beginning of the project) to May 2010, as well as a total pool VRR.

The southern and northern edges of the pool (Areas 2 and 6) have had significant drops in injectivity. Area 2 injectors are on the edges of the area, in poor quality reservoir (low pay). An additional injector was drilled in the centre of Area 2 (12 m pay). Area 6 produced small volumes, so small changes in injection show up as large changes in VRR.

A monitoring program was put in place as follows:

- Monthly water analysis is performed on every producer, including measurements of pH and polymer concentration;
- Targets are reviewed every month to help balance flood and prevent premature breakthrough;
- Injected water is sampled daily for polymer concentration, viscosity, pH, NaOH and surfactant concentrations.

Figures 292 and 293 show the Mannville B polymer concentrations and the pH of the water produced at the producers, respectively.

Sproule

4208.18158.CMFG.smr

Figure 294 shows the Mannville B production history and operator's forecast. Figure 295 shows the Mannville B injection volumes and pressures.

Overall Performance (May 2006 to May 2010)

Significant changes in both total production and oil cut have been observed since injection began. Total production increased from 56 m³/d to a current rate of 250 m³/d. Production peaked at 290 m³/d in October 2008. Production declined from Q4 in 2008 due to the presence of silicate scale and reduced injectivity. This meant significant periods of downtime for the wells, and that offsetting injection had to be shut-in to service most of them. While the oil cut continued to remain constant (or improve), the reduction in injection volumes caused a drop in oil production.

Operation issues are continually being addressed:

- Research and testing with scale inhibitors is ongoing,
- Runtimes have improved from 3 months to 5.5 months for problem wells,
- There are plans to drill an additional injection well,
- The oil cut has improved from 1.6 percent to 13 percent.

Injection Performance (May 2006 to May 2010)

Average injection pressure for the pool has steadily increased since the switch from ASP to only polymer. This is a result of the increased viscosity of the injected fluid without the caustic. Injection rates have decreased from a combination of the increased viscosity and the operation issues related to silicate scaling.

Summary

Operational issues associated with the scale are having an impact on production and costs as well as making it difficult to maintain a VRR of 1.0.

Continued improvements in the oil cut show that ASP is working. In addition, in Areas 3, 4 and 5 (the centre of the pool), the incremental recovery is close to the original forecast.

Area 2 (the southern edge of pool) highlights the importance of properly placed injectors. Injector quality and location will be a key factor in future ASP projects.

Figure 296 shows some of the key indicators used to monitor the wells. Figure 297 compares waterflood production and ASP production. Figure 298 compares the oil and fluid forecast to the actual values based on ASP volumes injected. Figure 299 is a performance

A Sproule

plot of Mannville B oil production and oil cut. Figure 300 shows injection rates and average wellhead pressures against time. Figure 301 outlines the pool and the 7 areas within it. Figure 302 shows the VRR by area. Figure 303 shows the injection fluid chemical concentration over time.

Three areas were monitored for recovery performance:

- The primary recovery area,
- The waterflood recovery area,
- The total area.

The following table summarizes the area and recovery information available:

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Primary	90	13.3		10		20.2		20.2		
Waterflood	105	15.6		10	15	43.8	65.7	110		
Total	675	100	6,843			684	2,671	3,355	3,032.5	322.5

--- Not Reported

References

- 1. Warner ASP Flood Taber South Mannville B Pool, Husky, Annual Presentation, June 2007, (2007-10418B).
- 2. Warner ASP Flood Taber South Mannville B Pool, Husky, Annual Presentation, June 2008, (2008-10418B).
- 3. Warner ASP Flood Taber South Mannville B Pool, Husky, Annual Presentation, June 2009, (2009-10418C).
- 4. Warner ASP Flood Taber South Mannville B Pool, Husky, Annual Presentation, June 2010, (2010-10418D).
- 5. Warner ASP Flood Taber South Mannville B Pool, Husky, Application 01-023, Annual Report, June 30, 2006.
- 6. Warner ASP Flood Taber South Mannville B Pool, Husky, Application 01-023, Annual Report, June 28, 2007.
- 7. Warner ASP Flood Taber South Mannville B Pool, Husky, Application 01-023, Annual Report, June 27, 2008.

A Sproule

4208.18158.CMFG.smr

Viking-Kinsella Wainwright B

Commercial Polymer Flood (11195A) (Sparky)

The Viking-Kinsella Wainwright B pool is a heavy oil sandstone reservoir at a depth of 649 m. The oil gravity is 21.1°API. The average porosity is 0.29, the average water saturation is 0.28 and the initial reservoir pressure is 4,392 kPa. The OOIP in the pool was $23.099 \times 10^6 \text{ m}^3$

Recovery using a polymer flood was evaluated. Figure 304 identifies the wells in the pool. Figure 305 is a production/injection performance plot. The EOR project assessment is shown in Table 90. Figure 306 outlines the pool and pilot areas. Figure 307 is a cross-section through the Viking-Kinsella Field and the pilot area. Figure 308 is a type log of well 10D-24-48-9. Figure 309 illustrates the reservoir quality in the Sparky A and the Sparky B Upper and Lower. Figure 310 shows the full field production and injection performance from 1973 to 2010. Figure 311 shows the full field voidage replacement ratio, and Figure 312 identifies the 23 producers and 13 injectors in the pilot area.

The design study involved three phases of laboratory work:

- 1. Fluid-fluid evaluations
 - Interfacial tension screening;
 - Phase behaviour screening;
 - The effect of un-softened produced water dilution on IFT and phase behaviour, static consumption, and cation exchange;
 - ASP/polymer rheology.
- 2. Linear corefloods
 - Defining relative permeability, polymer rheology, water and chemical injectivity, and matrix retention of chemical solution.
- 3. Radial sandpack testing (16 sets)
 - Evaluating the efficiency of various chemical solutions.

Figure 313 shows the results of the laboratory testing.

Sproule

Polymer injection at a concentration of 2,500 ppm began in June 2009. Injection rate and pressure were limited by the plant discharge pressure control valve. The cumulative voidage replacement ratio was 0.83.

Figure 314 shows the pilot area production and injection performance from June 2009 to July 2010. Figure 315 shows the pilot area voidage replacement ratio. Figure 316 summarizes the production performance from the pilot area, and Figure 317 summarizes the polymer injection performance factors.

In producers, polymer concentrations were tested monthly to find trace amounts of polymer through clay reaction testing for the first 10 months of the flood (until April 2010). Polymer produced fluids were lab tested on the wells which tested positive. As of August 2010, all producers are lab tested on a monthly basis.

Figure 318 summarizes the polymer breakthrough monitoring on producers.

The estimated primary recovery factor for the pool was 14 percent, and 30 percent for the waterflood. The incremental EOR recovery factor with the polymer injection was 5 percent. The remaining OIP was 1.343×10^6 m³. Note that the polymer flood is still in operation.

Currently, the Viking-Kinsella Wainwright B pool is still under polymer flood.

Four areas were monitored for recovery performance:

- The primary recovery area,
- The waterflood recovery area,
- The polymer flood recovery area,
- The total area.

4208.18158.CMFG.smr

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Primary	160	4.4		5		19.8		19.8		
Waterflood	2,989	83.1		14	30	2,810	6,021	8,831		
Polymer	450	12.5		14	35	369	922	1,291		
flood										
Total	3,599	100	23,099			3,199	6,943	10,140	7,874.1	2,265.9

The following table summarizes the area and recovery information available:

--- Not Reported

Overall Performance

Initial results are encouraging, but there is a large economic pre-investment and technical risk component.

Short- & Long-Term Opportunities

Expansion is possible through continued evaluation of the Phase 1 pilot project:

- Maintaining current polymer concentration,
- Pattern balancing and control of early breakthrough,
- Waiting on occurrence and magnitude of "oil bank" arrival,
- Continually improving injection,
- Evaluating polymer flood performance on an economic basis.

Expansion plans could include the gradual addition of injection patterns to cover the eastern half of the pool (utilizing existing poly mixing capacity), the evaluation of a surfactant IFT altering component, and possible commitment to a large-scale Phase 2 project.

Summary

The early stages of the project showed that laboratory studies and bench testing are critical, including:

• Special core analysis, mineralogy, wettability and IFT;

- Oil vs chemical rheology testing, relative permeability, viscosity;
- Polymer type, hydration characteristics, sensitivity to shear;
- Formation, injection and produced water compatibility with polymer.

Project operation required consistent water quality and polymer concentration. There was always the possibility for injectivity decline and necessary injector stimulation. Oil cut and polymer breakthrough measurements were critical for pattern balancing and progress evaluation.

For continued operation, clean and iron-free water for the mother solution and the 2,500 ppm polymer injection solution must be maintained. Injection should be increased, e.g., the pilot injection should be increased from the current 650 m3/d. Capital expansion is possible with two to four new injectors. Injectors should be stimulated; within the pilot area, injectors are already being stimulated in sections 17 and 18.

References

- 1. Viking-Kinsella/Wainwright B Polymer Flood, ERCB, Request for Extension For Presentation, August 7, 2009, (2009-11195).
- 2. Viking-Kinsella/Wainwright B Polymer Flood, Harvest Energy, Annual Presentation, October 13, 2010, (2010-11195A).
- 3. Viking-Kinsella/Wainwright B Polymer Flood, Harvest Energy, Polymer Breakthrough Data, 2010, (2010-11195).

Viking-Kinsella Wainwright B

Experimental Alkaline Flood (3884)

The Viking-Kinsella Wainwright B pool is a heavy oil sandstone/siltstone/shale reservoir at a depth of 675 m. The oil gravity is 21.1°API. The average porosity is 0.30, the average water saturation is 0.28 and the initial reservoir pressure is 4,825 kPa. The OOIP in the pool was $19.400 \times 10^6 \text{ m}^3$.

Approval was issued for polymer flood scheme 2884 in the Wainwright B Pool on December 2, 1983. The existing waterflood project was converted to alkaline injection scheme. When approval was requested, waterflood 2537A was rescinded.

Recovery using an alkaline flood was evaluated, but no results were located.

The EOR project assessment is shown in Table 91.

A Sproule

Wildmere CMG Pool 003 Sparky E, Lloydminster A

Commercial Polymer Flood (9336F)

The Wildmere Sparky E/Lloydminster A pool is a heavy oil sandstone reservoir at a depth of 569.7 m. The oil gravity is 18.1°API. The average porosity is 0.30, the average water saturation is 0.21 and the initial reservoir pressure is 3,672 kPa. The OOIP in the pool was $51.700 \times 10^6 \text{ m}^3$.

Figure 319 identifies the well locations. Figure 320 is a production/injection performance plot. Recovery using a polymer flood was evaluated. The EOR project assessment is shown in Table 92.

Four areas were monitored for recovery performance:

- The primary recovery area,
- The waterflood recovery area,
- The polymer flood recovery area,
- The total area.

The following table summarizes the area and recovery information available:

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Primary	1,163	30.5		3.5		355		355		
Waterflood	2,489	65.2		11	9	42,187	3,451	7,668		
Polymer	164	4.3		11	12	354	386	740		
flood										
Total	3,816	100	23,099			4,926	3,837	8,763	6,633.1	2,129.91

--- Not Reported

Opportunities for expanding the polymer flood beyond the current area should be evaluated.

Sproule

4208.18158.CMFG.smr

Wrentham Lower Mannville B & Lower Mannville C

Commercial Polymer Flood (8716/8715)

The Wrentham Lower Mannville B and Lower Mannville C pools are heavy oil sandstone reservoirs at depths of 943 and 953 m, respectively. The oil gravity is 20.1°API. For the B pool, the average porosity is 0.23, the average water saturation is 0.26 and the initial reservoir pressure is 7,614 kPa. The average porosity is 0.21, the average water saturation is 0.32 and the initial reservoir pressure is 9,591 kPa for the C pool. The OOIP in the B pool was 1.224×10^6 m³ and the C Pool was 2.127×10^6 m³.

Figure 321 identifies the Wrentham Lower Mannville B well locations, and Figure 322 is a production/injection performance plot of the field. Figure 323 identifies the Wrentham Lower Mannville C well locations, and Figure 324 is a production/injection performance plot of the field.

ASP technology was reviewed beginning in April 1998. The chemical system selection was started in June 1999. In October 1999, the facility design of Etzikom began. The facility construction, re-completions, conversions, and tie-ins started in August 2000. Alkali/polymer injection into Etzikom began in December of the same year, with 5 percent wt NaOH and 1,400 ppm polymer in softened water. On April 1, 2001 and June 1, 2001, polymer increased to 1,600 ppm and then to 1,800 ppm to reach target viscosity. Approximately 30 percent pore volume of alkali-polymer solution was to be injected. In March 2003, polymer only slug began, with 1,800 ppm polymer solution. In October 2003, polymer taper started, with 1,800 ppm polymer solution. In May 2005, chemical flood was complete, and waterflood was resumed.

Both pools are combined in the same injection system. The injectors have no chokes polymer is sheared over the pressure drop. One way of controlling injection volumes is by shutting wells in, which was only done at the start of the project. Eventually, injectivity decreased to such an extent that all wells were open all the time.

The EOR project assessments for the Lower Mannville B and Lower Mannville C are shown in Tables 93 and 94.

The polymer flood areas were monitored for recovery performance in both the B and C pools.

A Sproule

4208.18158.CMFG.smr

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Polymer	99	100	1,224	15	30	184	367	551	511.2	39.8

The following table summarizes the area and recovery information available for the Lower Mannville B:

--- Not Reported

The following table summarizes the area and recovery information available for the Lower Mannville C:

AREA	AREA	% of	OOIP	Primary	Enhanced	Initial	Enhanced	Total	Cumulative	Remaining
		total				Primary	Primary	Initial	Production	
		area				Reserves	Reserves	Reserves		
	(ha)	(%)	(E ³ m ³)	(%)	(%)	(E ³ m ³)				
Polymer	379	100	2,127	15	30	319	638	957	809.3	147.7

--- Not Reported

Figure 325 is a performance graph of forecast versus actual Etzikom Creek performance under alkali/polymer flood. Figures 326 and 327 are performance graphs of forecast versus actual performance for the B and C pools, respectively. Figures 328 and 329 are graphs of the Etzikom Creek facility injection for both pools. Figure 330 is a graph summarizing the polymer injection data, and Figure 331 summarizes the Etzikom Creek facility breakthrough for both pools. Figures 332 and 333 show the performance well response and breakthrough for individual wells in the B pool, and Figures 334 to 339 show the same plots for wells in the C pool.

Overall Performance

The B pool showed a dramatic response to injection, with 50 percent of the wells having an oil cut of at least 30 percent. It has a completely different lithofacies than other Glauconitic pools. It could never match simulation, and in it, peak well production was higher than expected and ultimate production was much lower than predicted.

4208.18158.CMFG.smr

Sproule

The C pool had a delayed production response. The oil cut continued to increase during chemical injection, and injectivity issues resulted in the polymer tapering decision which probably resulted in a lower ultimate recovery. Ninety-three percent of the wells had an oil cut of at least 10 percent.

Short & Long Term Opportunities

To date, 1.5 MMbo (6 percent of OOIP) of incremental oil has been recovered. The expected incremental recovery from alkali/polymer injection is 2.3 MMbo. Ultimate oil recovery is still low in these pools (31 to 36 percent), but some recoverable oil was left behind due to the implementation of the polymer taper and the way the pool was developed. Over the next several years, oil recovery options will be investigated, coinciding with the end of the Warner ASP flood when the polymer facility will become available. Options for recovery include

- Additional geological work;
- Further reservoir development and waterflooding;
- Schemes in one or both pools (evaluation of geologic risk);
- Polymer, CO₂ or another EOR method;
- Economics (higher recovery requires higher costs).

Summary

The geological model is key to understanding how chemicals interact with the reservoir and how fluids flow through the pore spaces, but additional monitoring resources (human and capital) are necessary to maximize flood performance. Injection is very important; injectors should be added before a project starts, to compensate for the loss of injection rates due to the injection of high viscosity solution. When unexpected loss of injectivity occurs, additional injectors must be drilled or converted.

Chemical flooding results in incremental oil production, and operational issues will occur as produced fluid continually changes. Active management of the flood is required through regional VRR, well optimizations, injection workovers and facility modifications.

References

1. Wrentham Lower Mannville B & Lower Mannville C Pools, Husky Energy Inc., Final Presentation, December 22, 2009, (2009-8716).

4208.18158.CMFG.smr P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

4.3 Thermal Recovery

Countess Upper Mannville B

The Countess Upper Mannville B pool is a light-medium oil Glauconitic sandstone reservoir consisting of a high quality sand underlain by water. The oil gravity is 28°API.

Located in southeastern Alberta, approximately 20 km west of Brooks, the pool was discovered in 1965. Waterflood operations commenced in 1973, followed in 1983 by a 16-ha inverted five spot in-situ combustion (fireflooding) pilot project. The project was done to evaluate the in-situ combustion process, and it included four existing producing wells (04-16, 01-17, 16-08, and 13-09-16-16W4M) and a new air injection well at A4B-16-19-16W4M. Waterflood operations in the pool continued during the pilot project and were adjusted so that the pressure gradients across the pilot area were minimized. The pilot project was completed in 1995.

It was found in the in-situ combustion pilot project that the combustion gas drive supported by the efficient displacement from the burned volume was the most important mechanism in fireflooding the pool, and the propagation of combustion gas and water ahead of the fire front was of considerable importance for oil recovery. The combustion gas was equally important in recovery before and after breakthrough, and oil production response occurred almost immediately after initiating air injection. A stable high temperature region and low temperature oxidation reaction were found to exist, and analyses of the recombined oil and gas indicated favorable mobility under fireflooding.

In 1991, 15 laboratory fireflood combustion tube tests were performed on the pool using both normal and enriched air injection. The normal air was composed of 21 percent oxygen and the enriched air of 38 percent and 95 percent oxygen. Observation of combustion under dry, normal, and wet conditions was done with a wide range of water injection rates. It was found that the pool doesn't appear to be burning a coke-like fuel, but rather an oxidized asphaltenes fraction. The difficulties seen in sustaining a high temperature combustion for this oil, and thus for oil greater than 25°API, was explained by the low rate of coke deposition.

References

- 1. Metwally, M., "Recovery Mechanisms: Fireflooding a High-Gravity Crude in a Waterflooded Sandstone Reservoir; Countess Field, Alberta", SPE 21536, 1991.
- 2. Tzanco, E. T., Moore, R. G., Belgrave, J. D. M., Ursenbach, M. G., "Laboratory Combustion Behaviour of Countess B Light Oil", SPE 91-05-03, Sep-Oct 1991.

Sproule

4208.18158.CMFG.smr P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

Peace River Cyclic Steam

This overview of the Baytex Peace River cyclic steam project is largely based on Baytex's 2010 presentation to the ERCB. The project uses cyclic steam in horizontal wells in the Bluesky formation. There are two single well tests:

- Harmon Valley, a single-cycle test at 100/16-17-084-18W5;
- Cliffdale, a multi-cycle test at 100/05-16-084-17W5.

The location of the Cliffdale well is shown in Figure 340. With a drainage area for 50 m around the well, the original bitumen in-place (OBIP) was 298,000 m^3 at Harmon Valley and 331,000 m^3 at Cliffdale.

The formation depth varies from 300 to 425 mTVD, with a net pay from 20 to 24 m. Porosity is 28 percent at the base of the sand, decreasing to 26 percent at the top. The permeability varies from 870 to 9,900 mD. Dead oil viscosity ranges from 10,160 to 42,070 mPa.s at 20°C. The oil saturation is up to 72 percent. Figure 341 shows a type log of the reservoir.

Production profiles for the two tests are shown in Figures 342 and 343. The cumulative steam-oil ratio (CSOR) at Harmon Valley is $0.38 \text{ m}^3/\text{m}^3$, and at Cliffdale, it is $3.98 \text{ m}^3/\text{m}^3$. The expected recovery factors for ten years of cyclic steam are 27.6 percent for Harmon Valley and 17.1 percent for Cliffdale.

The selection of cyclic steam over SAGD was based on numerical simulation and is primarily due to shale inter-bedding within the Bluesky oil sands, which decreases SAGD efficiency.

5.0 Summary of Findings: Success/Fail Criteria

In this section, each of the major EOR processes will be discussed under three subheadings:

- Alberta Experience,
- Observations,
- Potential Success Factors.

4208.18158.CMFG.smr

Microbial, foam flooding and other EOR processes are not evaluated, since there are too few projects for a valid sample to draw general conclusions, and the processes are not established worldwide.

5.1 Solvent Floods

Alberta Experience

Hydrocarbon miscible floods have been very successful in selected reservoirs in Alberta. Table 95 lists the commercial solvent floods in Alberta. The miscible floods in Alberta can be divided into four categories:

- Vertical floods, with injection into the structurally highest point in the reservoir and production from as low in the reservoir as possible. These projects usually have a limited area and few wells. All are in carbonate reservoirs.
- Horizontal floods, with injectors and producers at roughly the same level. The pay in these reservoirs can be quite low, and they can cover an extensive area. For the purposes of this report, only carbonate reservoirs are included in this group.
- Combination floods, where a thick reservoir covers a large area. The flooding has elements of both gravity stability and horizontal flow. Any dip in the reservoir can be beneficial. In Alberta, all of these are carbonate reservoirs.
- Sandstone reservoirs, in which several horizontal floods have been successful. The EOR incremental recovery is lower than it is for the carbonate reservoirs. Several have been successful with CO_2 injection.

In particular, vertical miscible floods in the Pembina, West Pembina and Brazeau River, Nisku reefs, and Rainbow and Rainbow South Keg River reefs have been successful. The average incremental recovery factor (IRF) for such hydrocarbon miscible floods is 28 percent.

In the Pembina Cardium A Lease, the reservoir is too tight for a successful miscible flood. This puts a lower limit on the permeability for a successful project.

There are also nine terminated experimental projects in Alberta, which are listed in Table 96. These projects are more difficult to assess, since none was carried out on a full-field basis. Some may have been technically successful, but none led to a commercial project.

A Sproule

4208.18158.CMFG.smr

Observations

The Keg River and Nisku miscible floods are vertically stable floods that were implemented early in the life of the pools—in most cases, before the reservoir pressure had dropped below the bubble point. The miscible floods in the Keg River reefs in the Zama area have not been as successful as those in the Rainbow area. The reservoir parameters in the Zama area are less favourable for miscible flooding than in the Rainbow pools, but no single parameter stands out. It may be a question of timing with respect to the oil prices when the floods were implemented or smaller volumes of solvent were injected.

None of the pools selected for miscible flooding have a gas cap. Several have bottom water, and at least one, Wizard Lake D3A, has a secondary gas cap.

Carbon dioxide flooding has environmental benefits in sequestering the CO_2 . However, in most cases, the volume that can be sequestered in an oil pool is limited. Due to early breakthrough, much of the CO_2 requirement can be met by recycling. This, of course, means that very little of the CO_2 actually escapes into the atmosphere.

The number of miscible floods that haves been implemented in Alberta are low compared to the number of potential pools. Several potential types of candidates have not been tested in the field, including reefal reservoirs with an initial gas cap and an underlying aquifer, where production of the gas cap will have led to the oil sandwich moving up the reservoir, leaving behind residual oil. A miscible flood with injection from down-structure (thereby avoiding the gas cap) could recover some of this residual oil. The use of horizontal wells in vertical floods can delay the onset of coning and increase recovery.

Potential Success Factors

For hydrocarbon miscible floods, a high initial pressure and low oil gravity are key factors. Vertical floods seem to work extremely well. Another factor which may be critical is the permeability, both vertical and horizontal.

Carbon dioxide floods also require a low oil gravity, though the initial pressure is not as great a concern, largely because multiple-contact miscibility can be achieved at relatively low pressures.

The parameters of the pools with solvent projects were examined, and the minimum and maximum values are listed in Table 97. These provide data for fine-tuning the screening criteria for each process.

4208.18158.CMFG.smr

Sproule

 $\label{eq:exponent} P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx$

5.2 Chemical Floods

Alberta Experience

All of the chemical flood projects, both experimental and commercial, have been implemented in reservoirs in the cretaceous Mannville Group, with the exception of the Edgerton Woodbend A pool, which is in the Upper Devonian Woodbend group.

There are currently eight commercial polymer floods listed in the Alberta Oil Reserves report. The eight projects are listed in Table 98. There are also five ASP floods, which are included in Table 98.

As previously noted, the Edgerton polymer flood is an exception. It also has the lowest incremental recovery factor of only 3 percent. The primary recovery is also low, at 6 percent.

There is currently only one active experimental polymer flood in the Viking-Kinsella Sparky JJ pool. There are also nine terminated experimental projects:

- Three polymer floods,
- Two alkali floods,
- Three alkali/polymer floods,
- One ASP flood.

These are listed in Table 99.

Assessment of the success of each project requires a detailed review of the literature and the progress reports submitted to the ERCB. Most of the experimental projects were terminated in the early 1990s, when low oil prices reduced interest in EOR. The two recent pilots are the Countess Upper Mannville H alkali/polymer pilot and the Suffield Upper Mannville UU ASP pilot, both of which are operated by Cenovus Corporation.

Recent ASP floods such as the Taber Glauconite K and the Taber South Upper Mannville show that ASP floods can be very effective even in pools that have been extensively waterflooded.

In the oilsands areas, two projects in the Wabiskaw formation in the Wabasca area are using polymer flooding on heavy oil. Most screening criteria put the maximum viscosity for a polymer flood at 200 mPa.s. The Wabasca polymer floods are in reservoirs with much higher oil viscosities: 500 mPa.s and higher. This is the result of merging polymer flooding with

A Sproule

4208.18158.CMFG.smr

horizontal well technology. Research carried out at Sproule suggests that the upper limit for the oil viscosity for a chemical flood may be 10,000 mPa.s, i.e., if the oil can be produced without the addition of heat, it can be polymer flooded.

Observations

The experimental chemical floods appear to have been affected by low oil prices at the time. The current high oil prices should enable many of the technical successes to be converted into commercial successes.

The Wabasca polymer floods have extended the range of applicability of chemical flooding from medium oils to heavy oils. The Chauvin Sparky E polymer flood extended the applicability of polymer flooding to reservoirs with higher water salinity through the use of a biopolymer.

There does not appear to have been any attempt at using polymers for vertical conformance improvement in Alberta. This may be a method which should be examined in future developments, e.g., in some Viking waterfloods where there is a strong decrease in permeability with depth.

The choice between polymer flooding and ASP in Alberta is biased towards ASP due to the favourable Royalty treatment. Since polymer flooding is inherently cheaper that ASP, equal treatment for polymer floods may encourage the expansion of chemical flooding to small oil accumulations.

Potential Success Factors

Chemical floods appear to be very successful in providing incremental oil recovery in Lower Cretaceous sandstone reservoirs, particularly the Mannville group. For the most part, these have high permeability, high porosity, relatively low salinity water, and oil in the medium/heavy range.

The only chemical flood in a carbonate reservoir appears to have been unsuccessful.

Many other reservoir types have not been tested in Alberta.

The parameters of the pools with chemical projects were examined, and the minimum and maximum values are listed in Table 100. These provide data for fine-tuning the screening criteria for each process.

4208.18158.CMFG.smr

Sproule

 $\label{eq:exponent} P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx$

5.3 Thermal Recovery

Alberta Experience

There are only three experimental projects in the conventional oil areas where thermal recovery was tested (Table 101). In two projects in the Countess and Shekilie fields, in-situ combustion was tested. At Suffield, AEC tested hot-water injection. There are no commercial thermal projects at present.

In the oilsands areas, there have been numerous projects. Currently licensed commercial projects include

- Commercial CSS (6),
- Commercial SAGD (25),
- "Commercial" (5),
- Primary (143),
- "Experimental" (13),
- "Enhanced Recovery" (8).

The ERCB Oilsands report does not specify what is classed as "Commercial", "Experimental" and "Enhanced Recovery".

In addition, there have been 401 terminated approvals. These include

- CSS (169),
- SAGD (13),
- Combustion (16),
- Solvent injection/VAPEX (13),
- Electromagnetic (7),
- Single well SAGD (SWSAGD) (6),
- Jet leaching,
- Steam drive (14).

A detailed discussion of these is outside the scope of this study. However, some of the projects will have application to heavy and medium oil in the conventional oil areas. These include

- An extension of polymer flooding to more viscous oil,
- CSS in horizontal wells in heavy oil,
- SAGD in heavy oil.

4208.18158.CMFG.smr

Observations

Due to the size of Alberta's oilsands resources, it is only to be expected that thermal recovery would be tested much more extensively in the oilsands areas than in the conventional areas. Note that some of the "oilsands" projects are in areas now designated as "conventional oil and gas". Some examples are SAGD in Provost; CSS in Atlee-Buffalo and Chauvin South; and ISC at Viking-Kinsella, Suffield, Joarcam, and others. Table 102 lists the "oilsands" experimental projects south of Township 52.

SAGD has clearly been very successful in bitumen, but it has only recently been applied to heavy oil in Alberta and Saskatchewan.

In-situ combustion is applicable to many reservoirs. However, it is a complex process which is very difficult to operate. Safety is a major concern with the possibility of oxygen reaching the producing wells. Operating difficulties include high sulphate levels due to the high sulphur content of heavy oils and bitumen, which can lead to high levels of corrosion and scaling.

A variation of in-situ combustion, the "THAI" process (toe-to-heel air injection) is currently being tested at several locations, but performance data are not yet available.

The "HPAI" process (high pressure air injection) is intended for light oil and has been tried with some apparent success in other parts of the world, but there has been no test in Alberta to date.

Potential Success Factors

Thermal recovery is applicable to many medium and heavy oils. As such, there is competition with primary recovery, waterflood and chemical floods. In general, thermal recovery is costly, so it is not the preferred choice for EOR, except for in bitumen cases, in which it is the only option. Nevertheless, thermal recovery can result in very high recovery factors.

Due to the high capital and operating costs of steam generation, there are significant economies of scale, so the size of the resource is a key factor in success.

4208.18158.CMFG.smr

6.0 Screening of Alberta Oil Pools for EOR Potential

The parameters of the pools listed in the reserves report were compared to the binary screening criteria, and those pools which satisfied the criteria were selected. The OOIP of each selected pool was taken and summed to determine the total OOIP in the pools that met the criteria for the selected process.

6.1 Waterflood

Waterflooding is not normally considered an EOR process. It is considered to be secondary recovery, while EOR is tertiary recovery (i.e., it is a follow-up to waterflooding). Nevertheless, EOR techniques are often used instead of waterflooding, and in any case, waterflooding is always a potential competitor to any EOR process in light, medium, and often, heavy oils (except bitumen).

Over 700 waterfloods are listed in Alberta, with a combined OOIP of $3.78 \times 10^9 \text{ m}^3$. The average incremental recovery factor is 0.118, with a maximum of 0.500.

Since most pools over a certain size can be waterflooded, there are a large number of pools which have waterflood potential. A quick scan identified 7,500 pools with OOIP less than $160 \times 10^3 \text{ m}^3$, implying that there are about 4,500 pools which could be waterflooded (i.e., 3,800 pools not on waterflood are potential candidates). Pools with an active water drive or an extensive gas cap should be excluded from these totals.

The pools with an initial OOIP of greater than $160 \times 10^3 \text{ m}^3$ that have not been waterflooded contain 7.0 x 10^9 m^3 of OOIP. This is very much an upper limit, since closer examination of each pool may detect a large gas cap, poor communication, low permeability, active water drive or excessive primary depletion. Since the total OOIP in Alberta was $11.2 \times 10^9 \text{ m}^3$, the non-waterflooded pools represent a large fraction of the total. Cumulative oil production from all light, medium and heavy crude oil pools in Alberta to the end of 2010 was $2.6 \times 10^9 \text{ m}^3$.

6.2 Solvent Floods

The ranges of parameters used for binary screening are listed in Table 103. The table is based on the ranges of parameters for solvent floods in Table 97. Note that considerable judgement was used in setting the values for the screening criteria.

The results in Table 97 were altered in several ways:

4208.18158.CMFG.smr

Sproule

- If there was no reason for a parameter to be a limit, a low or high value was substituted. For example, the lowest viscosity for a successful vertical flood was 1.3 mPa.s. However, there is no reason why a lower viscosity would not work, so the limit was set to 0.1 mPa.s.
- If the range of parameters included unsuccessful projects, the upper limit was reduced to include successful projects only. For example, the upper range of the viscosity for sandstone floods was 1,093.9 mPa.s. However, that value was associated with a heavy oil project which was unsuccessful; therefore, the upper limit was set to 15 mPa.s.
- None of the limits are precise, so some rounding—down for lower limits, up for upper limits—was applied.
- Pools with a prior waterflood were excluded. This does not mean that a pool with a prior waterflood will not be successful; it only means that none of the successful projects had a prior waterflood.
- Pools with a gas cap were excluded. As with a prior waterflood, this does not mean that in all cases where there is gas cap, solvent flooding will not work; it only means that none of the successful projects in Alberta had a gas cap.
- The initial pressure is an important parameter for solvent floods. In some cases, no
 pressure for a pool was available. For these, the depth was used as a proxy for
 pressure, assuming the normal pressure gradient of 10 kPa/m. Note that for at least
 three of the sandstone floods, the reservoirs were severely under-pressured and the
 reservoir pressure had to be increased to above the initial pressure to achieve
 miscibility.

Screening of the oil pools for solvent floods resulted in the following number of pools satisfying the criteria:

- 200 pools for vertical solvent floods,
- 734 pools for horizontal solvent floods,
- 382 pools for combination solvent floods,
- 1701 pools for sandstone solvent floods.

Table 104 is a summary of these results, including the total OOIP in the pools which meet the criteria.

The five largest pools which meet the criteria in each category are listed in Tables 105 to 107. The five largest pools for a "combination" solvent flood turned out to be identical to those for the vertical flood, so no table is shown for these. This emphasizes that a pool may satisfy the screening criteria for several processes and that the incremental reserves for

4208.18158.CMFG.smr

each process are not additive. A check on these pools confirmed that they are indeed suitable candidates for solvent floods.

The two most successful solvent floods were the vertical miscible floods in the Pembina Nisku and Rainbow Keg River reefs. The Pembina and Rainbow pools, which have not had solvent flooding but have potential, are listed in Tables 108 and 109.

6.3 Chemical Floods

The ranges of parameters used for binary screening are listed in Table 110. The table is based on the ranges of parameters for chemical floods in Table 100. Only polymer floods and ASP floods were considered, since there appears to be little benefit to alkali/polymer floods.

The results in Table 100 were altered in a similar manner to the solvent flood screening criteria, except that pools which were previously waterflooded were not excluded.

Screening of the oil pools for chemical floods resulted in the following number of pools satisfying the criteria:

- 1,396 pools for ASP floods,
- 935 pools for polymer floods.

Table 111 is a summary of these results, including the total OOIP in the pools satisfying the criteria.

The five largest pools satisfying the criteria in each category are listed in Tables 112 and 113. Several of these pools are in both categories. In essence, every pool that is conducive to polymer flooding is also a candidate for ASP (though the reverse is not necessarily true). This emphasizes that a pool may satisfy the screening criteria for several processes and that the incremental reserves for each process are not additive. A check on these pools confirmed that they are indeed suitable candidates for solvent floods. All of them are classified as heavy oil.

All of the pools in Tables 112 and 113 are close to having produced their initial reserves. In these cases, the chemical flood would be a true tertiary flood. Two of the pools show high recovery factors of over 40 percent. These are either on waterflood or have a natural waterdrive. The other pools have an ultimate recovery of less than 10 percent. These pools also have oil with a higher density, hence the higher viscosity. This suggests that the viscosity has limited the recovery, making the pools prime targets for EOR. If that is indeed the case, they should be considered for thermal recovery as well.

Sproule

6.4 Thermal Recovery

Since none of the thermal projects in conventional oil have been successful, it is not possible to determine appropriate screening criteria. Applying the screening criteria developed earlier for oilsands and heavy oil worldwide, screening of the oil pools for thermal recovery resulted in the following number of pools satisfying the criteria:

- 196 pools for cyclic steam,
- 214 pools for steam floods,
- 196 pools for SAGD,
- 1,434 pools for in-situ combustion.

Table 114 lists a summary of these results, including the total OOIP in the pools satisfying the criteria.

The large number of pools amenable to in-situ combustion was expected. However, the operational difficulties with in-situ combustion mean that it should be considered as a last resort.

7.0 Estimation of Incremental Recoverable Oil by EOR in Alberta

7.1 Waterflood

The total OOIP in the waterflood candidate pools is 7 x 10^9 m³. The average incremental recovery factor is 0.118, with a standard deviation of 0.093. Using one standard deviation to establish a range, the range of the incremental recovery factor is 0.025 to 0.211. The ultimate remaining potential oil recovery for waterfloods is from 0.2 x 10^9 m³ to 1.5×10^9 m³. Pools which are very tight, or pools with a large gas cap, large natural waterdrive, or complex geometry will reduce this number considerably.

Nevertheless, it appears that the potential for additional waterflooding is probably greater than that of EOR processes.

7.2 Solvent Floods

For vertical miscible floods, the incremental recovery factor ranges from 1.5 to 63 percent, with an average of 27 percent. Taking a narrower range, from 13 to 30 percent, the incremental oil recovery for solvent floods is between 8 and 18×10^6 m³.

Sproule

P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

4208.18158.CMFG.smr

For horizontal miscible floods, the incremental recovery factor ranges from 5.0 to 37 percent, with an average of 25.7 percent. Taking a narrower range, from 17 to 28 percent, the incremental oil recovery for solvent floods is between 31 and 50 x 10^6 m³.

For combination miscible floods, the incremental recovery factor ranges from 5 to 34 percent. Taking a narrower range, from 5 to 25 percent, the incremental oil recovery for solvent floods is between 3 and $16 \times 10^6 \text{ m}^3$.

For sandstone miscible floods, the incremental recovery factor ranges from 1.0 to 44 percent. Taking a narrower range, from 5.0 to 30 percent, the incremental oil recovery for solvent floods is between 23 and 140 x 10^6 m³.

The total for all solvent floods is in the range of 65 to $224 \times 10^6 \text{ m}^3$.

7.3 Chemical Floods

For polymer floods, the range of recovery factors is 12 to 36 percent, with an average of 25 percent. Applying a narrower range, from 16 to 34 percent, to the total OOIP in potential pools, the incremental recovery is 42 to 120×10^6 m³.

For ASP floods, the range of recovery factors is 12 to 42 percent. Applying a narrower range of 16 to 34 percent to the total OOIP in potential pools, the incremental recovery is 71 to $150 \times 10^6 \text{ m}^3$.

The recovery factors in the reserves report do not separate the recovery due to waterflood and the chemical flood. Detailed evaluations of several chemical floods indicate that a polymer flood increases the recovery factor over a waterflood by about 50 percent, i.e., one-third of the recovery in a waterflood/polymer flood is due to the polymer. The recovery from an ASP flood is perhaps 50 percent more than from a polymer flood (though the ASP floods are generally more recent than the polymer floods and there are fewer of them). Thus in an ASP flood, 40 to 45 percent of the waterflood/ASP flood recovery is due to the ASP.

The incremental recovery due to the polymer flood is therefore in the range of 14 to $40 \times 10^6 \text{ m}^3$, and in the ASP flood, it is in the range of 35 to 75 x 10^6 m^3 .

A Sproule

4208.18158.CMFG.smr
8.0 Conclusions

Examination of the records of the EOR projects in Alberta has shown that there have been many technical successes, with significant increased oil recovery. In particular, the vertical miscible floods in the Pembina/Brazeau River Nisku reefs and the Rainbow Keg River reefs have been outstanding, often recovering over 80 percent of the OOIP.

Chemical floods have also been successful, with both polymer and ASP floods providing increased oil recovery. Alkali and alkali/polymer floods have shown some success but very little incremental recovery over simple polymer.

There are a large number of oil pools in Alberta which are amenable for both miscible and chemical flooding. In the current high oil price/low gas price environment, many should be economically viable. The incremental oil potential is in the range of 100 to $300 \times 10^6 \text{ m}^3$. The total remaining conventional oil reserves in Alberta at the end of 2010 were $237 \times 10^6 \text{ m}^3$, meaning that EOR can potentially have a major impact on Alberta's conventional oil reserves.

9.0 Recommendations

As with any study of this type, many ideas are generated, and many gaps in knowledge are identified. Several of these should be investigated:

- The effect of prior depletion on the incremental recovery should be investigated, perhaps through a series of conceptual model studies.
- Generic economics should be generated for each process with guidelines as to costs and prices. These would allow for simple economic screening criteria.
- Although there has been considerable work in Alberta on EOR, many aspects have not been investigated. This study should be extended to include a wider selection of EOR projects from around the world.
- This study used a database which was set up to contain considerable data and to perform most of the screening. A user-friendly front-end should be developed, and the database should be made available to a wider number of users.
- The Alberta Oil Reserves report is a very useful source of information; however, it is not in a computer-friendly format and cannot be put into a spreadsheet easily (e.g., primary, waterflood and total recovery are on three lines). Changing the format would make it much easier to use.

4208.18158.CMFG.smr

References:

- 1. Alkafeef, S. F. and A. M. Zaid, "Review of and Outlook for Enhanced Oil Recovery Techniques in Kuwait Oil Reservoirs", College of Technological Studies - IPTC 11234
- 2. Taber J.J., F.D. Martin, and R.S. Seright, "EOR Screening Criteria Revisited", SPE Reservoir Engineering, August 1997.
- 3. Perry Jarrell et al, "Practical Aspects of CO2 Flooding", SPE Monograph 2002
- 4. S.M Farouq Ali and S. Thomas, "The Promise And Problems Of Enhanced Oil Recovery Methods", JCPT
- 5. Screening of Reservoirs for Exploitation by Application of Steam Assisted Gravity Drainage/VAPEX processes
- 6. Peter E. Doe et al, "The 1984 Natl. Petroleum Council Study on EOR: Chemical Processes", SPE 13240
- 7. G.J. Stosur, K.N. Frye, "Potential of Thermal Recovery in the United States", Petroleum Society of the CIM, SS85-21.
- 8. Barber, A.H., C. J. George, L. H. Stiles and B. B. Thimpson, "Infill Drilling to Increase reserves actual Experience in Nine Fields in Texas, Oklahoma and Illinois" SPE 11023, 1982.
- Lorenz, P. B. and D. A. Peru, "Guidelines help select reservoirs for NAHCO₃ EOR", Oil & Gas Journal, Sept 11, 1989, 53.

Alkaline

- 1. Edinga, K.J.; McCaffery, F.G.; and Wytrychowski, I.M. "Cessford Basal Colorado A Reservoir Caustic Flood Evaluation". SPE # 8199, 1980.
- 2. Symonds, R. W. P., Farouq Ali, S. M., and Thomas, S. "A Laboratory Study Of Caustic Flooding For Two Alberta Crude Oils". JCPT paper# 91-01-02, 1991.

Alkali/Polymer Flood

- 1. Pitts, M.J., Wyatt, K., and Surkalo, H. "Alkaline-Polymer Flooding of the David Pool, Lloydminster Alberta". SPE paper# 89386, 2004.
- 2. deZabata, E. F., J. M. Vislocky, E. Rubin and C. J. Radke, "A Chemical Theory for Linear Alkaline Flooding.", SPEJ, Apr 1982, 245.
- 3. Krumrine, P. H., E. H. Mayer and G. F. Brock, "Scale formatin During Alkaline Flooding.", JPT Aug 1985, 1466.
- 4. Cheng, K, H,, "Chemical Consumption During Alkaline Flooding: A Comparative Evaluation", SPE/DOE 14944, 1986.

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

ASP

1. Lin, F. F. J., Besserer, G. J., Pitts, M. J. "Laboratory Evaluation Of Crosslinked Polymer And Alkaline-Polymer-Surfactant Flood". JCPT paper# 87-06-04, 1987.

CO2 Flood

- 1. Delaney, R. P., and Fish, A. M., "Judy Creek CO2 Flood Performance Predictions". JCPT paper # 80-31-23, 1980.
- Edwards, Kelly. "CO2 in Alberta; a vision of the Future". International symposium on "Dynamics Of Fluids In Fractured Rocks; Concepts And Recent Advances". Berkeley, CA, United States, 2000.
- 3. Ko, S. C. M. "A Preliminary Study Of CO2 Flooding In A Watered-Out Reservoir In Alberta, Canada". JCPT paper# 82-33-76, 1982.
- 4. Ko, S. C. M., Stanton, P. M., and Stephenson, D. J. "Tertiary Recovery Potential Of CO2 Flooding In Joffre Viking Pool, Alberta". JCPT paper# 85-01-01, 1985.
- 5. Macintyre, K. J. "Design Considerations For Carbon Dioxide Injection Facilities". JCPT paper# 86-02-09, 1986.
- 6. Mungan, Necmettin, Calgary, Alberta. "Carbon Dioxide Flooding-applications". JCPT paper# 82-06-07, 1982.
- Pooladi-Darvish, M., Hong, H., Theys, S., Stocker, R., Bachu, S., and Dashtgard, S. "CO2 Injection for Enhanced Gas Recovery and Geological Storage of CO2 in the Long Coulee Glauconite F Pool, Alberta". SPE paper# 115789, 2008.
- 8. Pyo, K., Damian-Diaz, N., Powell, M., and Van Nieuwkerk, J. "CO2 Flooding in Joffre Viking Pool". Canadian International Petroleum Conference paper# 2003-109, 2003.
- 9. Stephenson, Derril J., Graham, Andrew G., and Luhning, Richard W. "Mobility Control Experience in the Joffre Viking Miscible CO2 Flood". SPE paper# 23598, 1993.
- Vandenhengel, W., Calgary, Alberta; and Stright Jr., D. H., Calgary, Alberta. "Economics of Carbon Dioxide Supplies For Use In Enhanced Oil Recovery In Alberta". JCPT paper# 79-02-05, 1979.
- 11. Vandenhengel, W., P. Eng., and Slright Jr., D. H., P. Eng. "An Evaluation Of The Feasibility Of Carbon Dioxide Flooding In Alberta". JCPT paper # 78-29-37, 1978.

CSS

- 1. Beattie, C.I., Boberg, T.C., and McNab, G.S., "Reservoir Simulation of Cyclic Steam Stimulation in the Cold Lake Oil Sands". SPE paper# 18752, 1991.
- 2. Boone, D.J. and McGregor, K.J. "Cold Lake Profitability Improvement". SPE paper# 30245, 1995.

4208.18158.CMFG.smr

- 3. Brown, Steven J. "Detection Of Casing Failures In Steam Injection Wells At Cold Lake Using Pressure And Rate Data". JCPT paper# 88-01-03, 1988.
- 4. Donnelly, J. K. "The Best Process For Cold Lake CSS Verses SAGD". Annual Technical Meeting paper# 99-26, 1999.
- 5. Edmunds, N., Barrett, K., Solanki, S., Cimolai, M., and Wong, A. "Prospects for Commercial Bitumen Recovery from the Grosmont Carbonate, Alberta". SPE paper# 46274, 2009.
- Fair, Dale R., Trudell, Cheryl L., Boone, Tom J., Scott, George R., and Speirs, Brian C. "Cold Lake Heavy Oil Development - A Success Story In Technology Application". International Petroleum Technology Conference paper# 12361, 2008.
- Fossey, J. P., Morgan, R. J., and Hayes, L. A. "Development of the Pelican Lake Area: Reservoir Considerations And Horizontal Technologies". JCPT paper # 97-06-05, 1997.
- Geneau, Micheal D. "Selection, Operation, and Evaluation of High Temperature Oil in Water Monitor for Two-Phase Extra Heavy Oil (Bitumen) Test Separator Service at Peace River". SPE Western Regional/AAPG Pacific Section Joint Meeting paper# 83505, 2003.
- Gronseth, J.M. "Geomechanics Monitoring of Cyclic Steam Stimulation Operations In the Clearwater Formation". ISRM International Symposium paper# IS-1989-166, 1989.
- Ho, D.W. and Morgan, B.T. "Effects of Steam Quality on Cyclic Steam Stimulation at Cold Lake, Alberta". SPE Annual Technical Conference and Exhibition paper# 20762, 1990.
- 11. Jiang, Q., Thornton, B., Russel-Houston, J., and Spence, S. "Review of Thermal Recovery Technologies for the Clearwater and Lower Grand Rapids Formations in the Cold Lake Area in Alberta". SPE paper# 140118-PA, 2010.
- 12. Koci, Paul Frantisek and Mohiddin, Junaid Ghulam. "Peace River Carmon Creek Project C--Optimization of Cyclic Steam Stimulation Through Experimental Design". SPE paper# 109826, 2007.
- 13. Koci, Paul Frantisek and Mohiddin, Junaid Ghulam. "Realistic History Matching of Cyclic Steam Stimulation Performance of Several Groups of Multilateral Wells in the Peace River Field, Canada". SPE EUROPEC/EAGE Conference and Exhibition paper# 107201, 2007.
- 14. Lebel, J.P. and Moriyama, R.T. "History Match of a Mature Cyclic Steam Stimulation Process at Cold Lake". SPE paper# 37549, 1997.
- 15. Lee, C. and Foster, H., SPE. "Refining Geology with the bit: An innovative approach to well design and geo-steering". SPE/PS-CIM/CHOA International Thermal Operations and Heavy Oil Symposium paper# 97809, 2005.

- 16. Maron, K.P., Bourne, S., Klemm, H., van den Beukel, A., and McGillivray, P. "Insights from monitoring of heavy oil". Abu Dhabi International Petroleum Exhibition and Conference paper# 118244, 2008.
- 17. Mehra, R.K., Ding, L.Y., and Donnelly, J.K. "Risk-Weighted Optimization for Cyclic Steam Stimulation of Water- Underlain Reservoirs". SPE Western Regional Meeting paper# 21770, 1991.
- 18. Pethrick, W. D., Sennhauser, E. S., and Harding, T. G. "Numerical Modelling Of Cyclic Steam Stimulation In Cold Lake Oil Sands". JCPT paper# 88-06-07, 1988.
- 19. Rubin, B. and Bitter, B.S. "Development of Operating Strategy for a Wolf Lake Satellite Underlain by a Water Leg Using Numerical Model Studies". SPE Enhanced Oil Recovery Symposium paper# 17393, 1988.
- 20. Sarioglu, G., Khallad, A.I., and Brown, M.W. "Analysis of Hangingstone Multiwell Cyclic Steam Pilot: Three Years' Performance History". SPE International Meeting on Petroleum Engineering paper# 22367, 1992.
- 21. Scott, George R. "Comparison of CSS and SAGD Performance in the Clearwater Formation at Cold Lake". SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference paper# 79020, 2002.
- 22. Seto, A.C. and Bharatha, S. "Thermal Conductivity Estimation From Temperature Logs". SPE International Thermal Operations Symposium paper# 21542, 1991.
- 23. Wong, F.Y.F., Anderson, D.B., O'Rourke, J.C., Rea, H.Q., and Scheidt, K.A. "Meeting the Challenge to Extend Success at the Pikes Peak Steam Project to Areas with Bottom Water". SPE Annual Technical Conference and Exhibition paper# 71630, 2001.
- 24. Wong, Frank Y., Anderson, Don B., O'Rourke, J. Cameron, Rea, Harley Q., and Scheidt, Keith A. "Meeting the Challenge To Extend Success at the Pikes Peak Steam Project to Areas With Bottomwater". SPE paper# 84776, 2003.
- 25. Zatka, Mirko J. "Long-Stroke Pumping System at Shell Canada 0x92 s Peace River Multilateral Thermal Wells". SPE International Thermal Operations/Heavy Oil Symposium paper# 54115, 1999.

Fireflood

- 1. Cady, G.V., Hoffman, S.J., and Scarborough, R.M. "Silverdale Combination Thermal Drive Project". SPE California Regional Meeting paper# 8904, 1980.
- 2. Nyland, E. "Fireflood Microseismic Monitoring: Results And Potential For Process Control". JCPT paper# 83-02-03, 1983.

A Sproule

4208.18158.CMFG.smr

Gas Flood

- 1. Flores, Dr. J. "Compositional Simulation To Develop An Enhanced Recovery Scheme For A Volatile Oil Reservoir". JCPT paper # 79-30-27, 1979.
- 2. Flores, Dr. J. "Compositional Simulation To Develop An Enhanced Recovery Scheme For A Volatile Oil Reservoir". SPE paper# 79-30-27, 1981.
- 3. Flores, J. and Pawelek, J. "A High-Pressure Dry-Gas Miscible Displacement Scheme Simulation and Economics". SPE paper# 8286, 1981.
- Passmore, R. G. and Kupsch, N. W. "Electric Submersible Pumps Reducing Failures Through Improved Field Procedures In The South Swan Hills Unit". JCPT paper# 83-04-01, 1983.
- 5. Rao, D. N. and Girard, M. G. "Induced Multiphase Flow Behaviour Effects in Gas Injection EOR Projects". SPE paper# 38390, 2002.
- 6. Sayegh, S., Huang, S., Zhang, Y. P., and Lavoie, R. "Effect of HS and Pressure Depletion on the CO MMP of Zama Oils". SPE paper# 37810, 2007.
- 7. Trivedi, J. J., Babadagli, T., Lavoie, R. G., and Nimchuk, D. "Acid Gas Sequestration During Tertiary Oil Recovery: Optimal Injection Strategies and Importance of Operational Parameters". SPE paper# 38901, 2007.
- 8. Trivedi, J. J., Babadagli, T., Lavoie, R. G., and Nimchuk, D. "Acid Gas Sequestration During Tertiary Oil Recovery: Optimal Injection Strategies And Importance of Operational Parameters". JCPT Canadian International Petroleum Conference paper# 2005-088, 2005.

General

- 1. "PD 6: Significant advances in secondary recovery". 6th World Petroleum Congress, Frankfurt, Germany, 1963.
- 2. Babadagli, T. "Mature Field Development A Review". SPE paper# 93884, 2005.
- 3. Beach, I., and Purdy, D., "A Canadian Alliance For Heavy Oil Recovery". SPE International Thermal Operations and Heavy Oil Symposium paper# 37525, 1997.
- 4. Cunha, L.B. "Recent In-Situ Oil Recovery-Technologies for Heavy- and Extraheavy-Oil Reserves". SPE paper# 94986, 2005.
- 5. Farouq Ali, S. M. "Current Status of In-Situ Recovery From the Tar Sands of Alberta". JCPT paper# 75-01-05, 1975.
- 6. Fisher, W. G. "Enhanced oil recovery". International Meeting on Oilfield Development Techniques. Daqing, China, 1989.
- Kisman, K. E. and Ruitenbeek, H. Jack. "A New Performance Indicator For Thermal Recovery Based On A Practical Economic Model". JCPT Annual Technical Meeting paper# 86-37-45, 1986.

Sproule

4208.18158.CMFG.smr

 $\label{eq:exponent} \ensuremath{\mathsf{P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx}} \\$

- 8. Mungan, N., Nelson, D. J., and Lee Wing, B. M. "Enhanced oil recovery possibilities for Pembina Nisku C-Pool". SPE - Society of Petroleum Engineers of AIME, Issue 54, pp. 1-11, 1979.
- 9. Mungen, R. and Nicholls, J. H. "PD 22(2) Recovery of Oil from Athabasca Oil Sands and from Heavy Oil Deposits of Northern Alberta by in-situ Methods". SPE 9th World Petroleum Congress paper# 16404, 1975.
- 10. Ren, W., Bentsen, R. G., and Cunha, L. B. "A Study of the Gravity Assisted Tertiary Gas Injection Processes". SPE paper# 37378, 2005.
- 11. Tortike, W.S. and Farouq Ali, S.M. "A Framework for Multiphase Nonisothermal Fluid Flow in a Deforming Heavy Oil Reservoir". SPE Symposium on Reservoir Simulation paper# 16030, 1987.
- 12. Venkatesan, V. N. and Shu, W. R. "Alteration In Heavy Oil Characteristics During Thermal Recovery". JCPT paper# 86-04-08, 1986.

ISC

- 1. Alderman, J.H., Fox, R.L., and Antonation, R.G. "In-Situ Combustion Pilot Operations in the Wabasca Heavy Oil Sands Deposit of North Central Alberta, Canada". SPE Annual Technical Conference and Exhibition paper# 11953, 1983.
- Ayasse, C., Bloomer, C., Lyngberg, E., Boddy, W., Donnelly, J., and Greaves, M. "First Field Pilot of the THAI Process". JCPT Canadian International Petroleum Conference paper# 2005-142, 2005.
- 3. Bojes, Josef M. and Wright, Geoffrey B. "Application Of Fluid Analyses To The Operation Of An In Situ Combustion Pilot". JCPT paper# 89-01-11, 1989.
- Byl, Margaret L., Moore, R. Gordon, and Ursenbach, Matt G. "Field Observations of In Situ Combustion In a Waterflooded Reservoir In the Kimsella Field". JCPT paper# 93-07-03, 1993.
- 5. Cao, E., Greaves, M., and Rigby, S. P. "Phase Properties of Mobile Oil Zone in the THAI CAPRI Process". JCPT Canadian International Petroleum Conference paper# 2009-048, 2009.
- Ejiogu, G. J., Bennion, D. W., Moore, R. G., and Donnelly, J. K. "Wet Combustiont-A Tertiary Recovery Process For the Pembina Cardium Reservoir". JCPT paper# 79-03-05, 1979.
- 7. Freeborn, W. Randy, Russell, Boyd and Macdonald, Alaistair J. "South Jenner Horizontal Wells A Water Coning Case Study". JCPT paper# 90-03-04, 1990.
- 8. Galas, C. M. F., Ejiogu, G. C., and Donnelly, J. K. "Fluid And Heat Movements During In-Situ Combustion In A Channelled Reservoir". JCPT paper# 91-03-03, 1991.
- 9. Galas, C.M.F. and Ejlogu, G.C. "Enhancement of In-Situ Combustion by Steam Stimulation of Production Wells". SPE Reservoir Engineering paper# 22646, 1993.

A Sproule

- 10. Hallam, R.J., Hajdo, L.E., Donnelly, J.K., and Baron, P.R. "Thermal Recovery of Bitumen at Wolf Lake". SPE Reservoir Engineering paper# 17022, 1989.
- 11. Lau, E.C., Good, W.K., and Kanakia, V. "COSH Performance and Economic Predictions for Six Field Types in Western Canada". SPE International Heavy Oil Symposium paper# 30296, 1995.
- 12. Marjerrison, D.M. and Fassihi, M.R. "Performance of Morgan Pressure Cycling In-Situ Combustion Project". SPE/DOE Improved Oil Recovery Symposium paper# 27793, 1994.
- 13. Mehra, R.K. "Performance Analysis of In-Situ Combustion Pilot Project". SPE International Thermal Operations Symposium paper# 21537, 1991.
- 14. Nzekwu, Ben I., Hallam, Richard J., and Williams, G.J.J. "Interpretation of Temperature Observations From a Cyclic-Steam/ In-Situ-Combustion Project". SPE Reservoir Engineering paper# 17389, 1990.

Micellar Flooding

- 1. Sarma, H. K., Maini, B. B., and Jha, K. "Evaluation of emulsified solvent flooding for heavy oil recovery". Fifteenth world petroleum congress. Beijing, China, 1998.
- 2. Thomas, S., Farouq Ali, S. M., and Daharu, R. "Tertiary Recovery Of Two Alberta Oils By Micellar Flooding". JCPT Annual Technical Meeting paper# 86-37-54, 1986.

Miscible Flood

- 1. Adamache, I., Kantzas, A., Mcintyre, F., and Sigmund, P. M. "Effect of Cyclic Flow Interruptions on Performance of Vertically Directed Miscible Floods". SPE paper# 22935, 1994.
- Asgarpour, S., Crawley, A.L., and Springer, S. "Performance Monitoring And Reservoir Management Of A Tertiary Miscible Flood In The Fenn - Big Valley South Lobe D-2A Pool". JCPT paper# 88-06-05, 1988.
- 3. Asgarpour, S., Singhal, A.K., Card, C.C., Wong, T.W., and Springer, S. "Re-Evaluation of Solvent Requirements for a Hydrocarbon Miscible Flood". SPE paper# 15572, 1988.
- 4. Backmeyer, L.A., Guise, D.R., MacDonell, P.E., and Nute, A.J., "The Tertiary Extension of the Wizard Lake D-3A Pool Miscible Flood". SPE paper# 13271, 1984.
- 5. Bennion, D. W., and Stewart, B. "Simulation Of A Directly Miscible Vertical Dlisplacement Hydrocarbon Solvent Flood". JCPT paper# 87-01-11, 1987.
- 6. Betiu, M., Ramler, L., and Barden, I. "Rainbow Keg River B" Pool Hydrocarbon Miscible Flood Project". Annual Technical Meeting paper# 82-33-29, 1982.
- 7. Biberdorf, O. C. "Golden Spike Enhanced Recovery By Gas Cycling". JCPT paper# 78-04-06, 1978.

4208.18158.CMFG.smr P:\ERCB_EOR_18158\Report\Phase 2\Summary.docx

- 8. Biberdorf, O.C. "Miscible Flood Forecasting Technique at Judy Creek". SPE paper# 12630, 1986.
- 9. Bilozir, D.E., and Frydl, P.M. "Reservoir Description and Performance Analysis of a Mature Miscible Flood in Rainbow Field, Canada". SPE paper# 19656, 1989.
- 10. Birarda, Gary S., Dilger, Chris W., and McIntosh, Ian. "Re-Evaluation of the Miscible WAG Flood in the Caroline Field, Alberta". SPE paper# 18066, 1990.
- 11. Bouck, L.S., Hearn, C.L., and Dohy, G. "Performance of a Miscible Flood in the Bear Lake Cardium Unit, Pembina Field, Alberta, Canada". SPE paper# 4600, 1975.
- Carr, L., Wong, F., Nagel, R., McIntyre, F., and Rosenegger, L. "An Application of Chemical Tracers In Monitoring Injection In Vertical Hydrocarbon Miscible Floods". JCPT paper# 97-08-04, 1997.
- 13. Chan, M.C.F., Springer, S.J., Burrowes, G.O., and Klappa, C.F. "Comprehensive Reservoir Study and Management Through Effective Geological and Engineering Teamwork". SPE paper# 14174, 1985.
- 14. Chernik, P.S., Symonds, R.W., and Todd, M.R. "Miscible Flood Performance Predictions for a Full-Field Project Using Multiple Prototypes To Represent Individual Wells". SPE Enhanced Oil Recovery Symposium paper# 17334, 1988.
- 15. Cook, P.G. "Optimizing the Blowdown of Wizard Lake". SPE paper# 97669, 2005.
- Davis, J.A., Blair, R.K., and Wagner, O.R. "Monitoring and Control Program for a Large Scale Miscible Flood". SPE Annual Fall Technical Conference and Exhibition paper# 6097, 1976.
- 17. Derochie, L. J. "Performance Of South Swan Hills Tertiary Miscible Flood". JCPT paper# 87-06-07, 1987.
- 18. Douglas, J. L. and Weiss, M. "Wizard Lake: Reservoir Quality As A Key To Successful Miscible Displacement". JCPT paper# 91-02-06, 1991.
- 19. Durham, M.O., and Miller, Gerald. "Enhancing Performance of Submersibles Operating in Miscible Flood Conditions". SPE Production Operations Symposium paper# 25446, 1993.
- 20. Edwards, K.A., Anderson, B., and Reavie, B. "Horizontal Injectors Rejuvenate Mature Miscible Flood - South Swan Hills Field". SPE paper# 77302, 2002.
- 21. Fong, D. K., Laflamme, A., Grenon, J. P., Weaver, B., Mcintyre, F., and Stetski, S. G."Design and Implementation of a Successful Vertical Tertiary Hydrocarbon Miscible Flood". SPE paper# 37623, 2001.
- 22. Fong, D. K., Wong, F. Y., and Mcintyre, F. J. "An Unexpected Benefit of Horizontal Wells On Offset Vertical Well Productivity In Vertical Miscible Floods". JCPT paper# 96-09-05, 1996.
- 23. Fong, D. K., Wong, F. Y., Nagel, R. G., and Peggs, J. K. "Combining A Volumetric Model With A Pseudo-Miscible Field Simulation To Achieve Uniform Fluid Levelling In The Rainbow Keg River B" Pool"". JCPT paper# 91-01-05, 1991.

Sproule

- 24. Frauenfeld, T., Lillico, D., Jossy, C., Vilcsak, G., Rabeeh, S., and Singh, S. "Evaluation of Partially Miscible Processes For Alberta Heavy Oil Reservoirs". Petroleum Society of Canada Annual Technical Meeting paper# 96-101, 1996.
- 25. Frimodig, J.P., Sankur, V., and Chun, C.K. "Design of a Tertiary Hydrocarbon Miscible Flood for the Mitsue Reservoir". SPE Journal of Petroleum Technology paper# 13270, 1988.
- 26. Gillund, G. N. and Patel, C. "Depletion Studies of Two Contrasting D-2 Reefs". JCPT paper# 81-01-02, 1981.
- 27. Griffith, J. D. and Horne, A. L. "PD 14(3) South Swan Hills Solvent Flood". 9th World Petroleum Congress paper# 16328, 1975.
- 28. Griffith, J.D., Baiton, N., and Steffensen, R.J. "Ante Creek A Miscible Flood Using Separator Gas and Water Injection". SPE paper# 2644, 1970.
- 29. Griffith, James D. and Cyca, Len G. "Performance of South Swan Hills Miscible Flood". SPE Journal of Petroleum Technology paper# 8835, 1981.
- 30. Groeneveld, H. "Pressure Maintenance by Fluid Injection in the North Pembina Cardium Unit No. 1". SPE paper# 852, 1964.
- 31. Hahn, D., Yu, D., Tiss, M., Dunn, R., and Murphy, D. "Significant Production Enhancement of Extended Reach, Prolific Gas Lift Oil Wells -- Case History of Systematic Problem Resolution". SPE paper# 48935, 1998.
- 32. Hsu, H.H. "Numerical Simulation of Gravity-Stable Hydrocarbon Solvent Flood, Wizard Lake D-3A Pool, Alberta, Canada". SPE paper# 17620, 1988.
- 33. Johns, M. L. and Holst, P. H. "Feasibility of Miscible Displacement In Swan Hills Unit No. 1". JCPT paper# 74-04-03, 1974.
- 34. Jones, P.W. and Baker, R.O. "Profile Control in Virginia Hills EOR Injectors". SPE/DOE Enhanced Oil Recovery Symposium paper# 24193, 1992.
- 35. Justen, John J., Hoenmans, P.J., Groeneveld, H., Connally, C.A., and Mason, W.L. "The Pembina Miscible Displacement Pilot and Analysis of Its Performance". SPE paper# 1308-G, 1960.
- 36. King, R.W., Zhao, L., Huang, H., McFarlane, R.A., and Gao, J. "Steam and Solvent Co-injection Test: Fluid Property Characterization". SPE/PS-CIM/CHOA International Thermal Operations and Heavy Oil Symposium paper# 97842, 2005.
- 37. Knowles, D. P., and d'Entremont, M. C. "Behavior Of Pressure Transients In Wells Equipped With Electric Submersible Pumps". JCPT Annual Technical Meeting paper# 84-35-105, 1984.
- 38. Kwan, F., Lee, Jong I., and Boyd, Trevor D. "Seismic Application in Horizontal Well Drilling - Brazeau River Nisku D Pool". SPE paper# 37133, 1996.
- 39. Larson, V. C., Peterson, R. B., and Lacey, J. W. "Technology's Role in Alberta's Golden Spike Miscible Project". SPE paper# 12253, 1967.
- 40. Lee, J. I. and Jerhoff, T. F. "Redevelopment of the Brazeau River Nisku A And D Vertical Miscible Floods With Horizontal Wells". JCPT paper# 96-09-04, 1996.

Sproule

- 41. Lee, Jong I. and Jerhoff, Tim F. "Redevelopment of the Brazeau River Nisku A and D Vertical Miscible Floods With Horizontal Wells". SPE paper# HWC-94-05, 1994.
- 42. Lee, Jong I. and Reitzel, Gordon A. "High Pressure, Dry Gas Miscible Flood Brazeau River Nisku Oil Pools". SPE Journal of Petroleum Technology paper# 10243, 1982.
- 43. Lee, Jong I., Astete, Ernesto L., and Jerhoff, Tim F. "Performance Review of Brazeau River Nisku Dry-Gas Miscible-Flood Projects". SPE paper# 22896, 1994.
- 44. Liu, P.C., and Besserer, G.J. "Application of Foam Injection in Triassic Pool, Canada: Laboratory and Field Test Results". SPE paper# 18080, 1988.
- 45. Lloyd, C. J. "Managing Hydrocarbon Injectionat At Judy Creek". JCPT paper# 95-02-03, 1995.
- 46. MacLean, D. A. "Design Of A Field-Wide Hydrocarbon Miscible Flood For The Kaybob Beaverhill Lake A" Pool"". JCPT paper# 89-03-01, 1989.
- 47. MacLean, D.A. and Edwards, K.A. "Acheson D-3A Pool: Primary to Secondary HCMF-40 Years of Performance". SPE paper# 26616, 1993.
- 48. Martin, William Earl and Young, M.N. "The Wizard Lake D-3A Pool Miscible Flood". International Petroleum Exhibition and Technical Symposium paper# 10026, 1982.
- 49. Moynihan, T.J., Fryters, J.C., and Chernik, P. "Simonette Beaverhill Lake A & B Pools: A Modern Example of Short Cycle Time Development". SPE paper# 38824, 1997.
- 50. Mustard, R. W. and Van Heukelom, J. C. "Deep-hole, High-temperature Submersible Pumping". JCPT paper# 79-02-02, 1979.
- 51. Novosad, Z., Sibbald, L. R., and Costain, T. G. "Design Of Miscible Solvents For A Rich Gas Drive-Comparison Of Slim Tube And Rising Bubble Tests". JCPT paper# 90-01-03, 1990.
- 52. Omoregie, Z.S. and Jackson, G.R. "Early Performance of a Large Hydrocarbon Miscible Flood at the Mitsue Field, Alberta". SPE paper# 16718, 1987.
- 53. Omoregie, Zuwa S., Vasicek, Stephen L., Jackson, G. Rick and Martinson, Lyle A. "Monitoring The Mitsue Hydrocarbon Miscible Flood-Program Design, Implementation And Preliminary Results". JCPT paper# 88-06-04, 1988.
- 54. Patel, R. S., Tang, J. S., Batycky, J., Lai, S. Y., and Okazawa, T. "Oil Re-injection to Mitigate Solvent Coning". JCPT Annual Technical Meeting paper# 94-28, 1994.
- 55. Patel, R., Tang, J., Batycky, J., Lai, F., Okazawa, T. "Oil Re-injection to Mitigate Solvent Coning". JCPT paper# 97-02-04, 1997.
- 56. Patel, R.S., Batycky, J.P., Tang, J.S., Lai, S.Y., and Tibold, M.P. "The Application of Fluid Injection To Mitigate Coning". SPE paper# 28570, 1994.
- 57. Patel, R.S., Broomhall, R.W. "Use of Horizontal Wells in Vertical Miscible Floods, Pembina Nisku, Alberta, Canada". SPE/DOE Enhanced Oil Recovery Symposium paper# 24124, 1992.

- 58. Pritchard, D.W.L. and Nieman, R.E. "Improving Oil Recovery Through WAG Cycle Optimization in a Gravity-Overide-Dominated Miscible Flood". SPE/DOE Enhanced Oil Recovery Symposium paper# 24181, 1992.
- 59. Randall, Tom. "A Simplistic Evaluation of Over 30 Years' Horizontal Hydrocarbon Solvent Flood Performance In Alberta". JCPT paper# 93-07-01, 1993.
- 60. Rao, D. N., Girard, M., and Sayegh, S. G. "The Influence Of Reservoir Wettability On Waterflood And Miscible Flood Performance". JCPT paper# 92-06-05, 1992.
- 61. Reilly, Bernard T. and Scott, George R. "Cold Lake Project Recovery and the Role of Foamy Emulsion". SPE International Heavy Oil Symposium paper# 30287, 1995.
- 62. Reitzel, G.A. and Callow, G.O. "Pool Description and Performance Analysis Leads to Understanding Golden Spike's Miscible Flood". SPE paper# 6140, 1977.
- 63. Sayegh, S., Huang, S., Zhang, Y. P, and Lavoie, R. "Effect of HS and Pressure Depletion on the CO MMP of Zama Oils". JCPT Canadian International Petroleum Conference paper# 2006-030, 2006.
- 64. Sibbald, L.R., Novosad, Zdenka, and Costain, T.G. "Methodology for the Specification of Solvent Blends for Miscible Enriched Gas Drives (includes associated papers 23836, 24319, 24471 and 24548)". SPE Reservoir Engineering paper# 20205, 1991.
- 65. Stevens, L. C., Bird, S. F. and Justen, J. J. "15. The Pembina Oil Field, Alberta, Canada&endash;An Example of a Low Permeability Reservoir". 5th World Petroleum Congress paper# 8114, 1959.
- 66. Todd, M. R., Slotbroom, R. A., and Bates, G. M. "Evaluation Of A Tertiary Miscible Flood In The Keg River II Pool, Rainbow Field". Annual Technical Meeting paper# 84-35-20, 1984.
- 67. Wagner, O.R., Baker, L.E., and Scott, Gordon R. "The Design and Implementation of Multiple Tracer Program for Multifluid, Multiwell Injection Projects". Fall Meeting of the Society of Petroleum Engineers of AIME paper# 5125, 1974.
- 68. Wagner, O.R., Weisrock, W.P., and Patel, C. "Field Application of Lignosulfonate Gels To Reduce Channeling, South Swan Hills Miscible Unit, Alberta, Canada". SPE paper# 15547, 1986.
- 69. Wassmuth, F., Cameron, A., Schramm, L., Taylor, K., and Krasey, R. "A Waterflood And Chemically Improved Oil Recovery Evaluation For the Pembina Bear Lake Unit". JCPT paper# 99-02-01, 1999.
- 70. Winter, B. T. and Edwards, K. A. "Reservoir Management and Optimization of the Mitsue Gilwood Sand Unit #1 Horizontal Hydrocarbon Miscible Flood". SPE paper# 30725, 1995.
- 71. Wong, F. Y., Fang, O. K., McIntyre, F. J., and Kuehne, D. L. "Design And Field Trial Application of Foam In Production Wells to Improve Conformance". JCPT paper# 97-02-01, 1997.

Sproule

- 72. Wood, K., Lai, F., Woodford, R., and Taylor, H. "Solvent Tracers And The Judy Creek Hydrocarbon Miscible Flood". JCPT paper# 93-02-04, 1993.
- 73. Wood, K.N., Tang, J.S., and Luckasavitch, R.J. "Interwell Residual Oil Saturation at Leduc Miscible Pilot". SPE paper# 20543, 1990.
- 74. Young, Marshall N. and Martin, W. Earl. "The Wizard Lake D-3A Pool Miscible Flood". JCPT paper# 80-02-04, 1980.

Polymer Flood

- 1. Groeneveld, H., George, R.A., and Melrose, J.C. "Pembina Field Polymer Pilot Flood". SPE paper# 5829, 1977.
- Wassmuth, F. R., Green, K., Arnold, W., and Cameron, N. "Polymer Flood Application to Improve Heavy Oil Recovery at East Bodo". SPE paper# 20334, 2009.
- 3. Wassmuth, F. R., Green, K., Hodgins, L., and Turta, A. T. "Polymer Flood Technology For Heavy Oil Recovery". JCPT Canadian International Petroleum Conference paper# 2007-182, 2007.

Steamflood

- 1. Bojes, J.M. "Cyclic Steam Injection: Interpretation of Some Results From a Field Fluids Analysis Program". SPE Oilfield and Geothermal Chemistry Symposium paper# 13568, 1985.
- 2. Donnelly, J. K. "Who Invented Gravity?". paper# 98-09-DA, 1998.
- 3. Farouq Ali, S. M., Look Yee, K. C., Cordero, F. J., and Figueroa, J. M. "Role of Injection-production Strategy In the Solvent-steamflooding of the Athabasca Oil Sands". JCPT paper# 79-04-01, 1979.
- 4. Farouq Ali, S.M. and Meldau, R.F. "Current Steamflood Technology". SPE paper# 7183, 1979.
- 5. Finbow, R. J. and Koop, I. J. "A Sensitivity Study Of Cyclic Steam Stimulation Using A 2-D Mathematical Model". JCPT paper# 78-02-04, 1978.
- 6. Kular, G.S., Lowe, K., Coombe, D. "Foam Application in an Oil Sands Steamflood Process". SPE paper# 19690, 1989.
- Mathison, J.E., Mireault, R.A., Wilhelm, J.K., Alwast, N.K., and Williams, S.K. "Reservoir Characterization of the Wabiskaw B in the Kirby Area, Alberta, Canada". SPE/PS-CIM/CHOA International Thermal Operations and Heavy Oil Symposium paper# 97926, 2005.
- 8. Metwally, M. "Effect Of Gaseous Additives On Steam Processes For Lindbergh Field, Alberta". JCPT paper# 90-06-01, 1990.

4208.18158.CMFG.smr

- 9. Towson, D. and Khallad, A. "The PCEJ Steam Stimulation Project". Petroleum Society of Canada Annual Technical Meeting paper# 91-108, 1991.
- 10. Vittoratos, E. "Interpretation of Temperature Profiles From the Steam-Stimulated Cold Lake Reservoir". SPE California Regional Meeting paper# 15050, 1986.

Sproule

4208.18158.CMFG.smr

Field	Acheson
Pool Name	D-3 A
Formation	Leduc
ERCB Approval Nos.	10003
EOR Type	Solvent Flood
EOR Sub Type	CO2
Flood Type	Vertical
Group	Leduc
Number of Wells	91
Number of EOR Injectors	5
Number of EOR Producers	39
Date	
Discovery	1950
Secondary Recovery	
EOR 1	Solvent / HC Miscible Flood (1987 - 1996)
EOR 2	Chase Gas (1988 - 2005) North Area
EOR 3	Chase Gas (1995 - 2005) South Area
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1546.7
Average Pay Thickness (m)	18.39
Average Permeability (md)	2870.11
Average Porosity	0.1
Water Saturation	0.12
Lithology	Carbonate
Initial Pressure (kPa)	11922
Initial Temperature (C)	61
Oil Gravity (API)	37.8
Oil Density (kg/m3)	835.8
Oil Viscosity @ 15C (cp)	5.72
Oil Viscosity @ Tr (cp)	2.76
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	788
Primary Recovery Factor (fraction)	0.54
Incremental WF Recovery Factor (fraction)	0.125
Incremental EOR Recovery Factor (fraction)	0.185
Total Recovery Factor (fraction)	0.85
OOIP (E3m3)	9692
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	1454
Remaining Recoverable Reserves (E3m3)	

Field	Ante Creek
Pool Name	Beaverhill Lake
Formation	Beaverhill Lake
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	Enriched Gas
Flood Type	Horizontal
Group	Beaverhill Lake
Number of Wells	30
Number of EOR Injectors	9
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3433.1
Average Pay Thickness (m)	3.27
Average Permeability (md)	20.38
Average Porosity	0.1
Water Saturation	0.27
Lithology	Carbonate
Initial Pressure (kPa)	35550
Initial Temperature (C)	110
Oil Gravity (API)	44.08
Oil Density (kg/m3)	805.9
Oil Viscosity (cp)	2.50
Oil Viscosity @ Tr (cp)	1.42
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Droject (ba)	3020
Primary Recovery Eactor (fraction)	0.16
Incremental WE Recovery Factor (fraction)	0.10
Incremental FOR Recovery Factor (fraction)	0.22
Total Recovery Factor (fraction)	
	6218
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	3855
Remaining Recoverable Reserves (E3m3)	3000

Field	Bigoray
Pool Name	Nisku B
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	6
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1978
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2337.2
Average Pay Thickness (m)	49.24
Average Permeability (md)	1068.57
Average Porosity	0.067
Water Saturation	0.22
Lithology	Carbonate
Initial Pressure (kPa)	21024
Initial Temperature (C)	76
Oil Gravity (API)	38.16
Oil Density (kg/m3)	834.0
Oil Viscosity (cp)	5.44
Oil Viscosity @ Tr (cp)	2.28
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	67
nica or i roject (ila) Primary Recovery Eactor (fraction)	0.21
Incremental WE Recovery Factor (fraction)	0.18
Incremental FOR Recovery Factor (fraction)	0.10
Total Recovery Factor (fraction)	0.668
	1500
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	1300
Remaining Chiller Lace (ESms) after Filling & EON Necovery	067

Field	Bigoray
Pool Name	Nisku F
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	4
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1977
Secondary Recovery	Waterflood
EOR 1	Solvent Flood (1987)
EOR 2	Chase Gas (1989 - 1995)
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2404
Average Pay Thickness (m)	65.79
Average Permeability (md)	2418.1
Average Porosity	0.11
Water Saturation	0.07
Lithology	Carbonate
Initial Pressure (kPa)	20304
Initial Temperature (C)	78
Oil Gravity (API)	38.1
Oil Density (kg/m3)	834.3
Oil Viscosity (cp)	5.48
Oil Viscosity @ Tr (cp)	2.24
Salinity of Formation Water (ppm)	148530
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	52
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	0.24
Incremental EOR Recovery Factor (fraction)	0.235
Total Recovery Factor (fraction)	0.875
OOIP (E3m3)	2800
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	350
Remaining Recoverable Reserves (E3m3)	

Field	Brazeau River
Pool Name	Nisku A
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	1977
Secondary Recovery	Waterflood
FOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3110
Average Pay Thickness (m)	72.9
Average Permeability (md)	769
Average Porosity	0.11
Water Saturation	0.1
Lithology	Carbonate
Initial Pressure (kPa)	45803
Initial Temperature (C)	107
Oil Gravity (API)	44.06
Oil Density (kg/m3)	806.0
Oil Viscosity (cp)	2.51
Oil Viscosity @ Tr (cp)	1 44
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	108
Primary Recovery Factor (fraction)	0 405
Incremental WF Recovery Factor (fraction)	0.15
Incremental FOR Recovery Factor (fraction)	0.265
Total Recovery Factor (fraction)	0.200
	5200
Remaining Oil in-Place (F3m3) after Primary & EOP Pocovery	054
Pompining Decoverable Records (E2m2)	904

Field	Drozoou Divor
	Nisku D
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	6
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1978
Secondary Recovery	
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3069
Average Pay Thickness (m)	44.88
Average Permeability (md)	
Average Porosity	0.065
Water Saturation	0.12
Lithology	Carbonate
Initial Pressure (kPa)	34568
Initial Temperature (C)	102
Oil Gravity (API)	42.12
Oil Density (kg/m3)	815.0
Oil Viscosity (cp)	3.19
Oil Viscosity @ Tr (cp)	1.57
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	157
Primary Recovery Factor (fraction)	0.5
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.15
Total Recovery Factor (fraction)	0.65
OOIP (E3m3)	2700
Remaining Oil in-Place (E3m3) after Primary & FOR Recovery	945
Remaining Recoverable Reserves (F3m3)	010

Field	Prozecu Diver
Peel News	
Pool Name	NISKU E
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	4
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1978
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3199.9
Average Pay Thickness (m)	42.62
Average Permeability (md)	
Average Porosity	0.1
Water Saturation	0.12
Lithology	Carbonate
Initial Pressure (kPa)	46019
Initial Temperature (C)	108
Oil Gravity (API)	45.69
Oil Density (kg/m3)	798.6
Oil Viscosity (cp)	2.07
Oil Viscosity @ Tr (cp)	1.37
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	142
Primary Recovery Factor (fraction)	0.451
Incremental WF Recovery Factor (fraction)	0.04
Incremental EOR Recovery Factor (fraction)	0.35
Total Recovery Factor (fraction)	0.841
OOIP (E3m3)	2450
Remaining Oil in-Place (E3m3) after Primary & FOR Recovery	390
Remaining Recoverable Reserves (F3m3)	

Field	Caroline
Pool Name	Cardium E
Formation	Cardium
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Horizontal
Group	Sandstone
Number of Wells	81
Number of EOR Injectors	14
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2413.6
Average Pay Thickness (m)	2.5
Average Permeability (md)	41.41
Average Porosity	0.12
Water Saturation	0.16
Lithology	Sandstone
Initial Pressure (kPa)	27614
Initial Temperature (C)	81
Oil Gravity (API)	46.09
Oil Density (kg/m3)	796.8
Oil Viscosity (cp)	1.97
Oil Viscosity @ Tr (cp)	1.52
Salinity of Formation Water (ppm)	12210
Presence of Natural Fractures	No
Presence of Gas Cap	No
· · · ·	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	3519
Primary Recovery Factor (fraction)	0.09
Incremental WF Recovery Factor (fraction)	0.16
Incremental EOR Recovery Factor (fraction)	0.05
Total Recovery Factor (fraction)	0.3
OOIP (E3m3)	4700
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	3290
Remaining Recoverable Reserves (E3m3)	
- /	

Field	Chigwell
Pool Name	Viking E
Formation	Viking
ERCB Approval Nos.	10865D
EOR Type	Solvent Flood
EOR Sub Type	CO2
Flood Type	Horizontal
Group	Sandstone
Number of Wells	61
Number of EOR Injectors	7
Number of EOR Producers	
Date	
Discovery	1980
Secondary Recovery	
EOR 1	CO2 Flood (2007 -)
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1385.6
Average Pay Thickness (m)	2.85
Average Permeability (md)	72.89
Average Porosity	0.13
Water Saturation	0.38
Lithology	Sandstone
Initial Pressure (kPa)	9916
Initial Temperature (C)	40
Oil Gravity (API)	38
Oil Density (kg/m3)	834.8
Oil Viscosity (cp)	5.56
Oil Viscosity @ Tr (cp)	3.70
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	2385
Primary Recovery Factor (fraction)	0.08
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.03
Total Recovery Factor (fraction)	0.11
OOIP (E3m3)	4986
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	4437
Remaining Recoverable Reserves (E3m3)	

Field	Chigwell
Pool Name	Viking I
Formation	Viking
ERCB Approval Nos.	10392H
EOR Type	Solvent Flood
EOR Sub Type	CO2
Flood Type	Horizontal
Group	Sandstone
Number of Wells	30
Number of EOR Injectors	8
Number of EOR Producers	
Date	
Discovery	1985
Secondary Recovery	Solvent - CO2 Flood
EOR 1	Ethane Flood (1999 - 2006)
EOR 2	CO2 Flood (2006 -)
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1411
Average Pay Thickness (m)	1.96
Average Permeability (md)	43.76
Average Porosity	0.13
Water Saturation	0.39
Lithology	Sandstone
Initial Pressure (kPa)	7372
Initial Temperature (C)	55
Oil Gravity (API)	38.6
Oil Density (kg/m3)	831.9
Oil Viscosity (cp)	5.11
Oil Viscosity @ Tr (cp)	2.81
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
·	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	1467
Primary Recovery Factor (fraction)	0.08
Incremental WF Recovery Factor (fraction)	0.04
Incremental EOR Recovery Factor (fraction)	0.08
Total Recovery Factor (fraction)	0.2
OOIP (E3m3)	2075
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	1660
Remaining Recoverable Reserves (E3m3)	

Field	Enchant
Pool Name	Commingled 005
Formation	Arcs
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Horizontal
Group	
Number of Wells	7
Number of FOR Injectors	2
Number of EOR Producers	
Data	
	4007
Discovery	1987
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1355.5
Average Pay Thickness (m)	9.42
Average Permeability (md)	
Average Porosity	0.14
Water Saturation	0.2
Lithology	Carbonate
Initial Pressure (kPa)	11905
Initial Temperature (C)	35
Oil Gravity (API)	26.07
Oil Density (kg/m3)	898.0
Oil Viscosity (cp)	48.51
Oil Viscosity @ Tr (cp)	20.20
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
	110
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ba)	
Aled OFFIOJECI (IId)	0.00
Incrementel WE Decovery Eactor (fraction)	0.22
Incremental VVF Recovery Factor (fraction)	0.47
Incremental EOR Recovery Factor (fraction)	0.1/
I OTAL RECOVERY FACTOR (fraction)	0.39
	1743
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	

Field	Enchant
Pool Name	Comminaled 017
Formation	Arcs
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Horizontal
Group	
-	
Number of Wells	9
Number of EOR Injectors	4
Number of EOR Producers	
Date	
Discovery	1985
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1320.6
Average Pay Thickness (m)	5.62
Average Permeability (md)	
Average Porosity	0.13
Water Saturation	0.2
Lithology	Carbonate
Initial Pressure (kPa)	10374
Initial Temperature (C)	35
Oil Gravity (API)	28.03
Oil Density (kg/m3)	887.0
Oil Viscosity (cp)	31.01
Oil Viscosity @ Tr (cp)	14.28
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	149
Primary Recovery Factor (fraction)	0.25
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.23
Total Recovery Factor (fraction)	
OOIP (E3m3)	723
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	

Field	Fenn-Big Valley
Pool Name	Commingled 009
Formation	Nisku A
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Horizontal
Group	
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1574.4
Average Pay Thickness (m)	9.93
Average Permeability (md)	
Average Porosity	0.082
Water Saturation	0.14
Lithology	Carbonate
Initial Pressure (kPa)	11417
Initial Temperature (C)	57
Oil Gravity (API)	32.1
Oil Density (kg/m3)	864.9
Oil Viscosity (cp)	14.09
Oil Viscosity @ Tr (cp)	4.77
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	1023
Primary Recovery Factor (fraction)	0.468
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.052
Total Recovery Factor (fraction)	
OOIP (E3m3)	5804
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	

Field	Golden Spike
Pool Name	D-3 A
Formation	D-3
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Combination
Group	Leduc
Number of Wells	73
Number of EOR Injectors	11
Number of EOR Producers	
Date	
Discovery	1949
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1725.3
Average Pay Thickness (m)	135.71
Average Permeability (md)	
Average Porosity	0.087
Water Saturation	0.11
Lithology	Dolomite
Initial Pressure (kPa)	14400
Initial Temperature (C)	60
Oil Gravity (API)	37.09
Oil Density (kg/m3)	839.3
Oil Viscosity (cp)	6.34
Oil Viscosity @ Tr (cp)	2.94
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	590
Primary Recovery Factor (fraction)	0.53
Incremental WE Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.05
Total Recovery Factor (fraction)	0.58
	40603
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	73000
Remaining Chiller lace (ESING) after Filling & LOK (Recovery)	

Field	Goose River
Pool Name	Beaverhill Lake A
Formation	Beaverhill Lake
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Horizontal
Group	Beaverhill Lake
Number of Wells	75
Number of EOR Injectors	15
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2800
Average Pay Thickness (m)	17.93
Average Permeability (md)	9.89
Average Porosity	0.094
Water Saturation	0.19
Lithology	Carbonate
Initial Pressure (kPa)	24805
Initial Temperature (C)	98
Oil Gravity (API)	41.08
Oil Density (kg/m3)	819.9
Oil Viscosity (cp)	3.65
Oil Viscosity @ Tr (cp)	1.67
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	1600
Primary Recovery Factor (fraction)	0.16
Incremental WF Recovery Factor (fraction)	0.23
Incremental EOR Recovery Factor (fraction)	0.07
Total Recovery Factor (fraction)	0.46
OOIP (E3m3)	16160
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	8726
Remaining Recoverable Reserves (E3m3)	

Field	Joffre
Pool Name	D-3 B
Formation	Leduc
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Leduc
Number of Wells	7
Number of EOR Injectors	3
Number of EOR Producers	
Date	
Discovery	1985
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2113.3
Average Pay Thickness (m)	40.74
Average Permeability (md)	434.4
Average Porosity	0.09
Water Saturation	0.13
Lithology	Carbonate
Initial Pressure (kPa)	16550
Initial Temperature (C)	72
Oil Gravity (API)	38.57
Oil Density (kg/m3)	832.0
Oil Viscosity (cp)	5.13
Oil Viscosity @ Tr (cp)	2.31
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	76
Primary Recovery Factor (fraction)	0.33
Incremental WF Recovery Factor (fraction)	0.19
Incremental EOR Recovery Factor (fraction)	0.05
Total Recovery Factor (fraction)	0.57
OOIP (E3m3)	1721
Remaining Oil in-Place (E3m3) after Primary & FOR Recovery	740
Remaining Recoverable Reserves (F3m3)	110

Field	Joffre
Pool Name	Viking
Formation	Viking
ERCB Approval Nos.	9838
EOR Type	CO2 Miscible Flood
EOR Sub Type	CO2
Flood Type	Horizontal
Group	Sandstone
Number of Wells	422
Number of EOR Injectors	20
Number of EOR Producers	
Date	
Discovery	1953
Secondary Recovery	
EOR 1	CO2 Miscible Flood (1984 - 2006)
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1400.4
Average Pay Thickness (m)	2.73
Average Permeability (md)	349.22
Average Porosity	0.13
Water Saturation	0.36
Lithology	Sandstone
Initial Pressure (kPa)	6616
Initial Temperature (C)	46
Oil Gravity (API)	38.2
Oil Density (kg/m3)	833.8
Oil Viscosity (cp)	5.41
Oil Viscosity @ Tr (cp)	3.30
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	4465
Primary Recovery Factor (fraction)	0.16
Incremental WF Recovery Factor (fraction)	0.26
Incremental EOR Recovery Factor (fraction)	0.18
Total Recovery Factor (fraction)	0.6
OOIP (E3m3)	8215
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	3286
Remaining Recoverable Reserves (E3m3)	

Eistd	
	Judy Creek
	Beaverhill Lake A
Formation	Beaverhill Lake
ERCB Approval Nos.	10269
EOR Type	Solvent Flood
EOR Sub Type	CO2
Flood Type	Combination
Group	Beaverhill Lake
Number of Wells	360
Number of EOR Injectors	108
Number of EOR Producers	
Date	
Discovery	1959
Secondary Recovery	
EOR 1	Solvent HC Flood (2002 - 2003)
EOR 2	CO2 Flood (2007 - 2010)
EOR 3	Acid Gas (2007 - 2010)
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2628.6
Average Pay Thickness (m)	24.58
Average Permeability (md)	65.28
Average Porosity	0.09
Water Saturation	0.16
Lithology	Carbonate
Initial Pressure (kPa)	22564
	96
	30
Oil Density (ka/m3)	820.3
Oil Viscosity (cp)	3 60
Oil Viscosity (cp)	3.89
Collivity of Formation Water (opm)	1.09
Samily of Formation Water (ppm)	Not Available
	No
Presence of Gas Cap	NO
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ba)	5908
Primary Pacovary Easter (fraction)	0.16
Incromental WE Decovery Easter (fraction)	0.10
Incremental FOR Recovery Factor (fraction)	0.25
Tetel Decevery Factor (fraction)	0.09
	0.5
	//950
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	38970
Remaining Recoverable Reserves (E3m3)	

Field	Judy Creek
Pool Name	Beaverhill Lake B
Formation	Beaverhill Lake
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Combination
Group	Beaverhill Lake
Number of Wells	99
Number of EOR Injectors	21
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	Waterflood
EOR 1	Solvent Flood (1987)
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2696.2
Average Pay Thickness (m)	25.59
Average Permeability (md)	92.64
Average Porosity	0.099
Water Saturation	0.17
Lithology	Carbonate
Initial Pressure (kPa)	24442
Initial Temperature (C)	99
Oil Gravity (API)	42.08
Oil Density (kg/m3)	815.2
Oil Viscosity (cp)	3.21
Oil Viscosity @ Tr (cp)	1.60
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	2176
Primary Recovery Factor (fraction)	0.2
Incremental WF Recovery Factor (fraction)	0.24
Incremental EOR Recovery Factor (fraction)	0.05
Total Recovery Factor (fraction)	0.49
OOIP (E3m3)	28370
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	14469
Remaining Recoverable Reserves (E3m3)	

Field	Kaybob
Pool Name	Beaverhill Lake A
Formation	Beaverhill Lake
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Combination
Group	Beaverhill Lake
Number of Wells	115
Number of EOR Injectors	20
Number of EOR Producers	
Date	
Discovery	1957
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2982
Average Pay Thickness (m)	19.11
Average Permeability (md)	140.31
Average Porosity	0.08
Water Saturation	0.21
Lithology	Carbonate
Initial Pressure (kPa)	31820
Initial Temperature (C)	105
Oil Gravity (API)	42.98
Oil Density (kg/m3)	811.0
Oil Viscosity (cp)	2.86
Oil Viscosity @ Tr (cp)	1.50
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	4918
Primary Recovery Factor (fraction)	0.16
Incremental WF Recovery Factor (fraction)	0.24
Incremental EOR Recovery Factor (fraction)	0.065
Total Recovery Factor (fraction)	0.465
OOIP (E3m3)	36830
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	19704
Remaining Recoverable Reserves (E3m3)	

Field	Kaybab Sauth
Field	
Formation	l riassic
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Horizontal
Group	
Number of Wells	3
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1986
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
FOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2060 4
Average Pay Thickness (m)	6.38
Average Permeability (md)	0.00
Average Porosity	0.13
Water Saturation	0.17
Lithology	Carbonate
Initial Pressure (kPa)	16844
Initial Temperature (C)	86
Oil Gravity (API)	30.30
Oil Density (ka/m3)	828.0
Oil Viscosity (cp)	4.58
Oil Viscosity @ Tr (cp)	1.05
Salinity of Formation Water (ppm)	1.95
Breegenee of Netural Fractures	
Presence of Cas Cap	No
	INO
Oil Posonyos (as of Doc 31, 2010)	
Area of Draiget (ba)	2452
Alea of Plojeci (na)	3453
	0.15
	0.25
Incremental EOK Recovery Factor (traction)	0.05
I OTAL RECOVERY FACTOR (fraction)	0.45
	16880
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	9284
Remaining Recoverable Reserves (E3m3)	

Field	Leduc
Pool Name	D-2A
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Combination
Group	
· · ·	
Number of Wells	506
Number of EOR Injectors	4
Number of EOR Producers	
Date	
Discovery	10/7
Secondary Recovery	Waterflood
	Solvent Flood
EOR 2	Solvent Flood
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
	1486.6
Average Pay Thickness (m)	1400.0
Average Pay Thickness (II)	207.1
Average Perneability (IIId)	297.1
Motor Soturation	0.034
	0.20
Linitial Proceure (kPo)	
	10441
	54
	38.16
	834.0
	5.44
	2.94
Salinity of Formation Water (ppm)	249560
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	9169
Primary Recovery Factor (fraction)	0.25
Incremental WF Recovery Factor (fraction)	0.28
Incremental EOR Recovery Factor (fraction)	0.09
Total Recovery Factor (fraction)	0.62
OOIP (E3m3)	62650
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	23807
Remaining Recoverable Reserves (E3m3)	
Field	Mitsue
--	---------------
Pool Name	Gilwood A
Formation	Gilwood
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Horizontal
Group	
Number of Wells	799
Number of EOR Injectors	63
Number of EOR Producers	
Date	
Discovery	1964
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
FOR 2	Convent ricod
FOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1659.1
Average Pay Thickness (m)	4.98
Average Permeability (md)	234.02
Average Porosity	0.144
Water Saturation	0.36
Lithology	
Initial Pressure (kPa)	12323
Initial Temperature (C)	60
Oil Gravity (API)	43.08
Oil Density (kg/m3)	810.5
Oil Viscosity (cp)	2.83
Oil Viscosity @ Tr (cp)	2.00
Salinity of Formation Water (ppm)	284400
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	17500
Primary Recovery Factor (fraction)	0.25
Incremental WF Recovery Factor (fraction)	0.21
Incremental EOR Recovery Factor (fraction)	0.15
Total Recovery Factor (fraction)	0.61
OOIP (E3m3)	63672
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	24832
Remaining Recoverable Reserves (E3m3)	
<u> </u>	

Field	Nipisi
Pool Name	Gilwood A
Formation	Gilwood
ERCB Approval Nos	
	Solvent Flood
EOR Sub Type	
Flood Type	Horizontal
Group	Honzontai
Number of Wells	552
Number of FOR Injectors	39
Number of EOR Producers	
Date	
Discovery	1965
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
FOR 2	Solvent Hood
FOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1711
Average Pay Thickness (m)	6.92
Average Permeability (md)	479.19
Average Porosity	0.15
Water Saturation	0.35
Lithology	Sandstone
Initial Pressure (kPa)	17948
Initial Temperature (C)	51
Oil Gravity (API)	41.08
Oil Density (kg/m3)	819.9
Oil Viscosity (cp)	3.65
Oil Viscosity @ Tr (cp)	2.48
Salinity of Formation Water (ppm)	237000
Presence of Natural Fractures	No
Presence of Gas Cap	No
·	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	12408
Primary Recovery Factor (fraction)	0.26
Incremental WF Recovery Factor (fraction)	0.125
Incremental EOR Recovery Factor (fraction)	0.159
Total Recovery Factor (fraction)	0.544
OOIP (E3m3)	69480
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	31683
Remaining Recoverable Reserves (E3m3)	

Field	Pembina
Pool Name	Cardium A Lease
Formation	Cardium
ERCB Approval Nos.	
EOR Type	CO2
EOR Sub Type	
Flood Type	
Group	Sandstone
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	1977
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	
Average Pay Thickness (m)	
Average Permeability (md)	
Average Porosity	0.121
Water Saturation	0.15
Lithology	Sandstone
Initial Pressure (kPa)	33807
Initial Temperature (C)	52
Oil Gravity (API)	38.1
Oil Density (kg/m3)	834.3
Oil Viscosity (cp)	5.48
Oil Viscosity @ Tr (cp)	3.04
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.405
Incremental WF Recovery Factor (fraction)	0.12
Incremental EOR Recovery Factor (fraction)	0.3
Total Recovery Factor (fraction)	0.825
OOIP (E3m3)	3000
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	525
Remaining Recoverable Reserves (E3m3)	

Field	Pembina
Pool Name	Nisku A
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	4
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1977
Secondary Recovery	Waterflood
EOR 1	Solvent Flood (1985)
EOR 2	Chase Gas (1993 - 1994)
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3005.7
Average Pay Thickness (m)	68.69
Average Permeability (md)	954.26
Average Porosity	0.08
Water Saturation	0.2
Lithology	Carbonate
Initial Pressure (kPa)	33807
Initial Temperature (C)	100
Oil Gravity (API)	44.08
Oil Density (kg/m3)	805.9
Oil Viscosity (cp)	2.50
Oil Viscosity @ Tr (cp)	1.48
Salinity of Formation Water (ppm)	146450
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	105
Primary Recovery Factor (fraction)	0.405
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.42
Total Recovery Factor (fraction)	0.825
OOIP (E3m3)	3000
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	525
Remaining Recoverable Reserves (E3m3)	

Field	Pembina
Pool Name	Nisku D
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	7
Number of EOR Injectors	2
Number of EOR Producers	
Date	
Discovery	1978
Secondary Recovery	Waterflood
FOR 1	Solvent Flood (1985)
FOR 2	Chase Gas (1989 - 1997)
EOR 3	
FOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2576.6
Average Pay Thickness (m)	39.2
Average Permeability (md)	1331.6
Average Porosity	0.12
Water Saturation	0.1
Lithology	Carbonate
Initial Pressure (kPa)	25808
Initial Temperature (C)	82
Oil Gravity (API)	36 75
Oil Density (kg/m3)	841.0
Oil Viscosity (cp)	6.67
Oil Viscosity @ Tr (cp)	2 34
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	192
Primary Recovery Eactor (fraction)	0.35
Incremental WE Recovery Eactor (fraction)	0.00
Incremental FOR Recovery Factor (fraction)	0.35
Total Recovery Factor (fraction)	0.35
	6503
Remaining Oil in-Place (F3m3) after Primary & EOR Recovery	1051
Remaining Recoverable Reserves (E3m2)	1901

Field	Pembina
Pool Name	Nisku F
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	9
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1078
Secondary Recovery	Weterflood
	Colvert Fleed (1997)
EOR 1	
	Chase Gas (1993 - 2008)
EOR 3	
EUR 4	
Pesservair Eluid Proportion and Pesservair Perspectors	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2549.1
Average Pay Thickness (m)	17.51
Average Permeability (md)	1587.86
Average Porosity	0.119
Water Saturation	0.28
Lithology	Carbonate
Initial Pressure (kPa)	21736
Initial Temperature (C)	83
Oil Gravity (API)	34.58
Oil Density (kg/m3)	852.0
Oil Viscosity (cp)	9.31
Oil Viscosity @ Tr (cp)	2.65
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	193
Primary Recovery Factor (fraction)	0.35
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.45
Total Recovery Factor (fraction)	0.8
OOIP (E3m3)	2201
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	440
Remaining Recoverable Reserves (F3m3)	

Field Pembina Pool Name Nisku G Formation Nisku G ERC Type Solvent Flood EOR Type Solvent Flood EOR Sub Type Vertical Flood Type Vertical Group Pembina Number of Wells 5 Number of EOR Injectors 1 Number of EOR Producers 1 Date D Discovery Waterflood EOR 2 EOR 1 EOR 4 EOR 2 EOR 4 EOR 2 EOR 4 2006.3 Average Parosity 0.08 Waterge Porrosity 0.08 Waterge Porrosity 0.08 Waterge Porrosity 0.08 Waterge Porrosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (RPa) 1.56 Oil Gravity (API) 43.18 Oil Orasity (API) 1.56 Salinity of Formation Water (ppm) 1.56 Salinity of Formation Water (ppm) 1.56 Salinity of Formation Water (ppm) 1.58 Salinity of Formation Water (ppm) 1.68 Salinity of Formation Water (ppm) 1.68		
Pool Name Nisku G Formation Nisku ERCB Approval Nos. Solvent Flood EOR Type Solvent Flood EOR Sub Type Permbina Flood Type Permbina Number of Wells 5 Number of EOR Injectors 1 Number of EOR Producers 1 Date Discovery Date Discovery Discovery Waterflood EOR 3 EOR 4 EOR 4 EOR 3 EOR 4 2006.3 Average Pay Thickness (m) 32.17 Average Pay Thickness (m) 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Pressure (kPa) 27547 Initial Pressure (kPa) 31.9 Oil Gravity (API) 43.19 Oil Density (kgm3) 810.0 Oil Nosoity (GP) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Sa Cap Ne Oil Reserves (as of Dec 31, 2010) 1.56	Field	Pembina
Formation Nisku ERCB Approval Nos. E ERCB Approval Nos. Solvent Flood EOR Type Solvent Flood Flood Type Vertical Group Pembina Number of Wells 5 Number of EOR Injectors 1 Number of EOR Producers 1 Date Discovery 1978 Discovery Waterflood EOR 1 Solvent Flood EOR 2 EOR 3 EOR 4 EOR 2 EOR 4 2066.3 Average Parcestrik 2066.3 Average Porosity 0.08 Waterge Parcestrik 0.08 Waterge Parcestrik 0.08 Water Saturation 0.2 Lithology Catonate Initial Pressure (kPa) 27547 Initial Preserves (Res) 27547 Initial Pressure (kPa) 27547 Initial Pressure (kPa) 27547 Initial Pressure (kPa) 27547 Initial Pressure (KPa) 27547	Pool Name	Nisku G
ERCB Approval Nos. Solvent Flood EOR Sub Type Vertical Flood Type Vertical Group Permbina Number of Wells 5 Number of EOR Injectors 1 Number of EOR Injectors 1 Date 1978 Secondary Recovery Waterflood EOR 2 Solvent Flood EOR 4 Solvent Flood EOR 4 2006.3 Reservoir Fluid Properties and Reservoir Parameters 2006.3 Depth (m) 2006.3 Average Paremeability (md) 2203.57 Average Paremeability (md) 0.2 Lithology Carbonate Initial Temperature (C) 96 Oil Gravity (API) 43.19 Oil Society (CP) 2.79 Oil Viscosity @ Tr (cp) 1.56 Salinity of Formation Mater (ppm) 1.56 Salinity of Formation Mater (Formation	Nisku
EQR Type Solvent Flood EIOR Sub Type Vertical Flood Type Vertical Group Pembina Number of Wells 5 Number of EOR Injectors 1 Number of EOR Producers 1 Date Discovery Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 EOR 3 EOR 4	ERCB Approval Nos.	
EOR Sub Type Vertical Flood Type Pembina Immber of Wells 5 Number of EOR Injectors 1 Number of EOR Producers 1 Date 1 Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 2 EOR 3 2 EOR 4 2 Reservoir Fluid Properties and Reservoir Parameters 2 Depth (m) 2 Average Paremeability (md) 2 Average Permeability (md) 2 Average Permeability (md) 0.2 Lithology Carbonate Initial Terpestrue (kPa) 96 Oil Gravity (API) 43.19 Oil Viscosity @ Tr (cp) 2.79 Oil Viscosity @ Tr (cp) 1.56 Salainty of Formation Water (ppm) 165800 Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 0 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0.408 Incremental VP Recovery Factor (frac	EOR Type	Solvent Flood
Flood Type Vertical Group Pembina Number of Wells 5 Number of EOR Injectors 1 Number of EOR Producers 1 Date 1 Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 2 EOR 4 2 Reservoir Fluid Properties and Reservoir Parameters 2 Depth (m) 2006.3 Average Pay Thickness (m) 32.17 Average Pay Thickness (m) 32.17 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Pressure (kPa) 810.0 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 0.2 Presence of Gas Cap No Presence of Atural Fractures Yes Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 0.5	EOR Sub Type	
Group Pembina Number of Wells 5 Number of EOR Injectors 1 Number of EOR Producers 1 Date 1 Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 2 EOR 3 2006.3 Average Pay Thickness (m) 32.17 Average Pay Thickness (m) 2206.3 Average Pay Thickness (m) 0.2 Lithology Carbonate Initial Pressure (kPa) 0.2 Lithology Carbonate Initial Pressure (kPa) 96 Oil Gravity (API) 43.19 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 2.79 Oil Viscosity (cf) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Gas Cap No Primary Recovery Factor (fraction) 0.408 Incremental WF Recovery Factor (fraction) 0.5 Incremental WF Recovery Factor (fraction) 0.5 Incremental WF Recovery Factor (fraction) 0.5 <tr< td=""><td>Flood Type</td><td>Vertical</td></tr<>	Flood Type	Vertical
Number of Wells 5 Number of EOR Injectors 1 Number of EOR Producers 1 Date Discovery Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 Solvent Flood EOR 3 EOR 1 Depth (m) 2906.3 Average Parcesity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Pressure (kPa) 27547 Initial remperature (C) 96 Oil Density (kgm3) 810.0 Oil Viscosity (p) 2.79 Oil Viscosity (p) 2.79 Oil Viscosity (p) 1.55 Salinity of Foursation Water (ppm) 165800 Presence of Gas Cap No Primary Recovery Factor (fraction) 0 Incremental EOR Recovery Factor (fraction) 0.5<	Group	Pembina
Number of EOR Injectors 1 Date 1978 Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 2 EOR 3 2 EOR 4 2 Average Pay Thickness (m) 2206.3 Average Permeability (md) 2603.57 Average Permeability (md) 2603.57 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Temperature (C) 96 Oil Gravity (kPI) 43.19 Oil Oil Socity (cp) 2.79 Oil Viscosity (cp) 1.56 Salinity of Formation Water (ppm) 166800 Presence of Gas Cap No Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 0.408 Area of Project (ha) 198 Primary Recovery Factor (fraction)		
Number of EOR Injectors 1 Number of EOR Producers 1 Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 Solvent Flood EOR 3 EOR 4 Reservoir Fluid Properties and Reservoir Parameters 2906.3 Depth (m) 2906.3 Average Pay Thickness (m) 32.17 Average Pay Thickness (m) 20.2 Lithology Carbonate Initial Pressure (kPa) 0.2 Lithology Carbonate Initial Pressure (kPa) 96 Oil Gravity (API) 43.19 Oil Socity (API) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Natural Fractures Yes Presence of Sas Cap No Oil Reserves (as of Dec 31, 2010) 0.408 Area of Project (na) 198 Primary Recovery Factor (fraction) 0.5 Incremental WF Recovery Factor (fraction) 0.5 Incremental WF Recovery Factor (fraction) 0.5 Incremental WF Recovery Factor (fraction) 0.5	Number of Wells	5
Number of EOR Producers Date Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 Solvent Flood EOR 3 EOR 4 Reservoir Fluid Properties and Reservoir Parameters 2906.3 Average Pay Thickness (m) 22.17 Average Pay Thickness (m) 0.2 Average Pay Thickness (m) 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Temperature (C) 96 Oil Gravity (API) 43.19 Oil Viscosity @ Tr (cp) 2.79 Oil Viscosity @ Tr (cp) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Sa Cap No Oil Reserves (as of Dec 31, 2010) 198 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0.408 Incremental EVR Recovery Factor (fraction) 0.5 Incremental WF Recovery Factor (fraction) 0.5 Incremental WF Recovery Factor (fraction) 0.5 Oil In-Pla	Number of EOR Injectors	1
Date 1978 Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 2 EOR 4 2 Reservoir Fluid Properties and Reservoir Parameters 2 Depth (m) 2906.3 Average Pay Thickness (m) 32.17 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Pressure (kPa) 43.19 Oil Gravity (API) 43.19 Oil Viscosity @ Tr (cp) 2.79 Oil Viscosity @ Tr (cp) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Natural Fractures Yes Presence of Sa Cap No Oil Reserves (as of Dec 31, 2010) 2.79 Oil Reserves factor (fraction) 0.408 Incremental WF Recovery Factor (fraction) 0.408 Incremental WF Recovery Factor (fraction) 0.5 Incremental WF Recovery Factor (fraction) 0.5 Incremental EOR Recovery Factor (fraction) 0.58	Number of EOR Producers	
Date 1978 Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 2 EOR 3 2 EOR 4		
Discovery 1978 Secondary Recovery Waterflood EOR 1 Solvent Flood EOR 2 EOR 3 EOR 4 2006.3 Reservoir Fluid Properties and Reservoir Parameters 2006.3 Depth (m) 2006.3 Average Pay Thickness (m) 32.17 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Pressure (kPa) 2.76 Oil Gravity (API) 43.19 Oil Viscosity @ Tr (cp) 2.79 Oil Viscosity @ Tr (cp) 1.56 Salinty of Formation Water (ppm) 165800 Presence of Natural Fractures Yes Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 1.98 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0.408 Incremental WF Recovery Factor (fraction) 0.5 OIL Reserves (as of Dec 31, 2010) 0.5 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0.5	Date	
Discretion 1970 Becondary Recovery Waterflood EOR 1 Solvent Flood EOR 2	Discovery	1078
Construction Solvent Flood EOR 1 Solvent Flood EOR 3 EOR 4 Reservoir Fluid Properties and Reservoir Parameters 2906.3 Depth (m) 2906.3 Average Pay Thickness (m) 32.17 Average Permeability (nd) 2603.57 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Temperature (C) 96 Oil Gravity (API) 43.19 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 1.98 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0.5 Incremental EOR Recovery Factor (fraction) 0.50 OOIP (E3m3)	Secondary Recovery	Waterflood
Lith 1 Solvent Fluid EOR 3 EOR 4 Reservoir Fluid Properties and Reservoir Parameters 2906.3 Depth (m) 2906.3 Average Pay Thickness (m) 32.17 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Pressure (kPa) 96 Oil Gravity (API) 43.19 Oil Consity (kg/m3) 810.0 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 1.98 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0 Incremental EOR Recovery Factor (fraction) 0.5 Total Recovery Factor (fraction) 0.5 Cotal Recovery Factor (fraction) 0.5 Remaining Oil In-Place (E3m3) after Primary & EOR Recovery 244		Solvent Flood
EOR 2 EOR 3 EOR 4 Reservoir Fluid Properties and Reservoir Parameters Depth (m) 2906.3 Average Pay Thickness (m) 32.17 Average Pay Thickness (m) 32.17 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Temperature (C) 96 Oil Gravity (API) 43.19 Oil Density (kg/m3) 810.0 Oil Viscosity (cp) 2.79 Oil Viscosity @ Tr (cp) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 1.98 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0 Incremental EOR Recovery Factor (fraction) 0.5 Incremental EOR Recovery Fac		Solvent Flood
EOR 3 EOR 4 Reservoir Fluid Properties and Reservoir Parameters Depth (m) 2906.3 Average Pay Thickness (m) 32.17 Average Permeability (md) 2603.57 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Temperature (C) 96 Oil Gravity (API) 43.19 Oil Ouscosity (gm3) 810.0 Oil Viscosity (qm3) 1.56 Salinity of Formation Water (ppm) 1.56 Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 1.98 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0 Incremental EOR Recovery Factor (fraction) 0.5 Total Recovery Factor (fraction) 0.55 Total Recovery Factor (fraction) 0.55 Remaining Oil in-Place (E3m3) after Primary & EOR Recovery 244		
Reservoir Fluid Properties and Reservoir Parameters Depth (m) 2906.3 Average Pay Thickness (m) 32.17 Average Permeability (md) 2603.57 Average Porneability (md) 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Temperature (C) 96 Oil Gravity (API) 43.19 Oil Density (kg/m3) 810.0 Oil Viscosity (cp) 2.79 Oil Viscosity @ Tr (cp) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Natural Fractures Yes Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 1.98 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0 Incremental EOR Recovery Factor (fraction) 0.5 Total Recovery Factor (fraction) 0.55 Coll (E3m3) 2650 Remaining Oil in-Place (E3m3) after Primary & EOR Recovery 244		
Reservoir Fluid Properties and Reservoir ParametersDepth (m)2906.3Average Pay Thickness (m)32.17Average Pay Thickness (m)2603.57Average Permeability (md)2603.57Average Porosity0.08Water Saturation0.2LithologyCarbonateInitial Pressure (kPa)27547Initial Pressure (kPa)96Oil Gravity (API)43.19Oil Density (kg/m3)810.0Oil Viscosity (cp)2.79Oil Viscosity (cp)1.56Salinity of Formation Water (ppm)165800Presence of Gas CapNoOil Reserves (as of Dec 31, 2010)198Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	EOR 4	
Intest voin PrainteersDepth (m)2906.3Average Pay Thickness (m)32.17Average Perneability (md)2603.57Average Porosity0.08Water Saturation0.2LithologyCarbonateInitial Pressure (kPa)27547Initial Temperature (C)96Oil Gravity (API)43.19Oil Viscosity (cp)2.79Oil Viscosity (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)198Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Pasaryair Fluid Bronartias and Pasaryair Parameters	
Deprin (ff)2906.3Average Pay Thickness (m)32.17Average Pay Thickness (m)2603.57Average Porosity0.08Water Saturation0.2LithologyCarbonateInitial Pressure (kPa)27547Initial Temperature (C)96Oil Gravity (API)43.19Oil Viscosity (cp)2.79Oil Viscosity (cp)2.79Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Gas CapNoOil Reserves (as of Dec 31, 2010)198Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.5Coll Reserves (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)2450	Reservoir Fluid Floperties and Reservoir Farameters	0000.0
Average Pay Inickness (m) 32.17 Average Permeability (md) 2603.57 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Temperature (C) 96 Oil Gravity (API) 43.19 Oil Density (kg/m3) 810.0 Oil Viscosity (cp) 2.79 Oil Viscosity @ Tr (cp) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Natural Fractures Yes Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 0 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0 Incremental EOR Recovery Factor (fraction) 0.5 Total Recovery Factor (fraction) 0.908 OOIP (E3m3) 2650 Remaining Oil in-Place (E3m3) after Primary & EOR Recovery 244 Remaining Recoverable Reserves (E3m3) 244	Depth (m)	2906.3
Average Permeability (md) 2603.57 Average Porosity 0.08 Water Saturation 0.2 Lithology Carbonate Initial Pressure (kPa) 27547 Initial Temperature (C) 96 Oil Gravity (API) 43.19 Oil Density (kg/m3) 810.0 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 2.79 Oil Viscosity (cp) 1.56 Salinity of Formation Water (ppm) 165800 Presence of Natural Fractures Yes Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 198 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0.408 Incremental WF Recovery Factor (fraction) 0.5 Incremental UF Recovery Factor (fraction) 0.5 Total Recovery Factor (fraction) 0.908 OOIP (E3m3) 2650 Remaining Oil in-Place (E3m3) after Primary & EOR Recovery 244 Remaining Recoverable Reserves (E3m3) 244	Average Pay Thickness (m)	32.17
Average Porosity0.08Water Saturation0.2LithologyCarbonateInitial Pressure (kPa)27547Initial Temperature (C)96Oil Gravity (API)43.19Oil Density (kg/m3)810.0Oil Viscosity (cp)2.79Oil Viscosity (@ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)1.98Area of Project (ha)1.98Primary Recovery Factor (fraction)0.408Incremental WF Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.55OID Reserves (as of Dec 31, 2010)0.50Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Average Permeability (md)	2603.57
Water Saturation0.2LithologyCarbonateInitial Pressure (kPa)27547Initial Temperature (C)96Oil Gravity (API)43.19Oil Density (kg/m3)810.0Oil Viscosity (cp)2.79Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)198Area of Project (ha)0.408Incremental WF Recovery Factor (fraction)0.5Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)26500Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Average Porosity	0.08
LithologyCarbonateInitial Pressure (kPa)27547Initial Temperature (C)96Oil Gravity (API)43.19Oil Density (kg/m3)810.0Oil Viscosity (cp)2.79Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)198Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Water Saturation	0.2
Initial Pressure (kPa)27547Initial Temperature (C)96Oil Gravity (API)43.19Oil Density (kg/m3)810.0Oil Viscosity (cp)2.79Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Sas CapNoOil Reserves (as of Dec 31, 2010)0Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Lithology	Carbonate
Initial Temperature (C)96Oil Gravity (API)43.19Oil Density (kg/m3)810.0Oil Viscosity (cp)2.79Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)198Area of Project (ha)198Primary Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)100	Initial Pressure (kPa)	27547
Oil Gravity (API)43.19Oil Density (kg/m3)810.0Oil Viscosity (cp)2.79Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)2450	Initial Temperature (C)	96
Oil Density (kg/m3)810.0Oil Viscosity (cp)2.79Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)Area of Project (ha)198Primary Recovery Factor (fraction)0Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244	Oil Gravity (API)	43.19
Oil Viscosity (cp)2.79Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)Area of Project (ha)Primary Recovery Factor (fraction)Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244	Oil Density (kg/m3)	810.0
Oil Viscosity @ Tr (cp)1.56Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244	Oil Viscosity (cp)	2.79
Salinity of Formation Water (ppm)165800Presence of Natural FracturesYesPresence of Gas CapNoOil Reserves (as of Dec 31, 2010)100Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244	Oil Viscosity @ Tr (cp)	1.56
Presence of Natural Fractures Yes Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 198 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0.408 Incremental WF Recovery Factor (fraction) 0 Incremental EOR Recovery Factor (fraction) 0.5 Total Recovery Factor (fraction) 0.908 OOIP (E3m3) 2650 Remaining Oil in-Place (E3m3) after Primary & EOR Recovery 244	Salinity of Formation Water (ppm)	165800
Presence of Gas Cap No Oil Reserves (as of Dec 31, 2010) 198 Area of Project (ha) 198 Primary Recovery Factor (fraction) 0.408 Incremental WF Recovery Factor (fraction) 0 Incremental EOR Recovery Factor (fraction) 0.5 Total Recovery Factor (fraction) 0.908 OOIP (E3m3) 2650 Remaining Oil in-Place (E3m3) after Primary & EOR Recovery 244	Presence of Natural Fractures	Yes
Oil Reserves (as of Dec 31, 2010)Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)1000000000000000000000000000000000000	Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244		
Area of Project (ha)198Primary Recovery Factor (fraction)0.408Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Oil Reserves (as of Dec 31, 2010)	
Primary Recovery Factor (fraction)0.408Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Area of Project (ha)	198
Incremental WF Recovery Factor (fraction)0Incremental EOR Recovery Factor (fraction)0.5Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Primary Recovery Factor (fraction)	0.408
Incremental EOR Recovery Factor (fraction) 0.5 Total Recovery Factor (fraction) 0.908 OOIP (E3m3) 2650 Remaining Oil in-Place (E3m3) after Primary & EOR Recovery 244 Remaining Recoverable Reserves (E3m3) 244	Incremental WF Recovery Factor (fraction)	0
Total Recovery Factor (fraction)0.908OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Incremental EOR Recovery Factor (fraction)	0.5
OOIP (E3m3)2650Remaining Oil in-Place (E3m3) after Primary & EOR Recovery244Remaining Recoverable Reserves (E3m3)244	Total Recovery Factor (fraction)	0.908
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery 244 Remaining Recoverable Reserves (E3m3) 244	OOIP (E3m3)	2650
Remaining Recoverable Reserves (E3m3)	Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	244
	Remaining Recoverable Reserves (E3m3)	

Field	Pembina
Pool Name	Nisku G2G
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	4
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1977
Secondary Recovery	Waterflood
EOR 1	Solvent Flood (1984)
EOR 2	Chase Gas (1989 - 1994)
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3081.6
Average Pay Thickness (m)	51.9
Average Permeability (md)	390.39
Average Porosity	0.08
Water Saturation	0.12
Lithology	Carbonate
Initial Pressure (kPa)	32090
Initial Temperature (C)	102
Oil Gravity (API)	41.99
Oil Density (ka/m3)	815.6
Oil Viscosity (cp)	3.24
Oil Viscosity @ Tr (cp)	1.58
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	89
Primary Recovery Factor (fraction)	0.35
Incremental WE Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.28
Total Recovery Factor (fraction)	0.63
	2/06
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	800
Remaining Chiller lace (Lond) aller Fillially & LON Necovery	090

Field	Pembina
Pool Name	Nisku H2H
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	4
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1979
Secondary Recovery	Waterflood
EOR 1	Solvent Flood (1984)
EOR 2	Chase Gas (1990 - 1994)
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3033.3
Average Pay Thickness (m)	90.35
Average Permeability (md)	
Average Porosity	0.11
Water Saturation	0.14
Lithology	Carbonate
Initial Pressure (kPa)	31373
Initial Temperature (C)	104
Oil Gravity (API)	40.22
Oil Density (kg/m3)	824.0
Oil Viscosity (cp)	4.09
Oil Viscosity @ Tr (cp)	1.67
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	60
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0 47
Total Recovery Factor (fraction)	0.87
QOIP (E3m3)	4000
Remaining Oil in-Place (E3m3) after Primary & FOR Recovery	520
Remaining Recoverable Reserves (F3m3)	020

Field	Pembina
Pool Name	Nisku K
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	4
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1978
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2892.9
Average Pay Thickness (m)	73.06
Average Permeability (md)	1784.6
Average Porosity	0.127
Water Saturation	0.18
Lithology	Carbonate
Initial Pressure (kPa)	28706
Initial Temperature (C)	92
Oil Gravity (API)	43.62
Oil Density (kg/m3)	808.0
Oil Viscosity (cp)	2.64
Oil Viscosity @ Tr (cp)	1.57
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	54
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.48
Total Recovery Factor (fraction)	0.88
OOIP (E3m3)	2753
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	330
Remaining Recoverable Reserves (E3m3)	

Field	Pembina
Pool Name	Nisku L
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	7
Number of EOR Injectors	2
Number of EOR Producers	
Date	
Discovery	1978
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2880.6
Average Pay Thickness (m)	30.12
Average Permeability (md)	2427.51
Average Porosity	0.105
Water Saturation	0.12
Lithology	Carbonate
Initial Pressure (kPa)	28222
Initial Temperature (C)	93
Oil Gravity (API)	40.85
Oil Density (kg/m3)	821.0
Oil Viscosity (cp)	3.76
Oil Viscosity @ Tr (cp)	1.74
Salinity of Formation Water (ppm)	20408
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	253
Primary Recovery Factor (fraction)	0.25
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.63
Total Recovery Factor (fraction)	0.88
OOIP (E3m3)	5000
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	600
Remaining Recoverable Reserves (E3m3)	

Field	Pembina
Pool Name	Nisku M
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
- '	
Number of Wells	4
Number of EOR Injectors	1
Number of EOR Producers	· · · · · · · · · · · · · · · · · · ·
Date	
Discovery	1078
Secondary Receivery	Weterflood
	Waternood
	Solvent Flood
EUR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2850.1
Average Pay Thickness (m)	51.6
Average Permeability (md)	1551.53
Average Porosity	0.09
Water Saturation	0.09
Lithology	Carbonate
Initial Pressure (kPa)	27909
Initial Temperature (C)	92
Oil Gravity (API)	41.06
Oil Density (kg/m3)	820.0
Oil Viscosity (cp)	3.66
Oil Viscosity @ Tr (cp)	1.73
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Cap	No
·	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	107
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	0
Incremental FOR Recovery Eactor (fraction)	0.45
Total Recovery Factor (fraction)	0.55
	3120
Remaining Oil in-Place (F3m3) after Primary & EOP Pocovery	3120 760
	400

Field	Pembina
Pool Name	Nisku O
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	3
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1979
Secondary Recovery	Waterflood
FOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2844
Average Pay Thickness (m)	21.06
Average Permeability (md)	3941.39
Average Porosity	0.118
Water Saturation	0.16
Lithology	Carbonate
Initial Pressure (kPa)	26949
Initial Temperature (C)	88
Oil Gravity (API)	43.41
Oil Density (kg/m3)	809.0
Oil Viscosity (cp)	2.71
Oil Viscosity @ Tr (cp)	1.61
Salinity of Formation Water (ppm)	152200
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	140
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.4
Total Recovery Factor (fraction)	0.8
OOIP (E3m3)	1900
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	380
Remaining Recoverable Reserves (E3m3)	

Field	Pembina
Pool Name	Nisku P
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	5
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1979
Secondary Recovery	Waterflood
FOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2909.4
Average Pay Thickness (m)	37.81
Average Permeability (md)	1477.58
Average Porosity	0.11
Water Saturation	0.1
Litholoay	Carbonate
Initial Pressure (kPa)	28226
Initial Temperature (C)	93
Oil Gravity (API)	45.49
Oil Density (kg/m3)	799.5
Oil Viscosity (cp)	2.11
Oil Viscosity @ Tr (cp)	1.46
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	201
Primary Recovery Factor (fraction)	0.35
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.45
Total Recovery Factor (fraction)	0.8
OOIP (E3m3)	4740
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	948
Remaining Recoverable Reserves (F3m3)	0-10

Field	Pembina
Pool Name	Nisku P2P
Formation	Nieku
EBCB Approval Nos	NISKU
EOR Type	Salvant Elaad
EOR Type	Solvent Flood
Elect Type	Vertical
	Venical
Group	Pembina
Number of Wells	2
Number of COD Injectore	3
Number of EOR Injectors	
Number of EOR Producers	
Data	
Date	
Discovery	1977
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2932.7
Average Pay Thickness (m)	85.63
Average Permeability (md)	703.36
Average Porosity	0.1
Water Saturation	0.12
Lithology	Carbonate
Initial Pressure (kPa)	38036
Initial Temperature (C)	100
Oil Gravity (API)	42.08
Oil Density (kg/m3)	815.2
Oil Viscosity (cp)	3.21
Oil Viscosity @ Tr (cp)	1.59
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	61
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.45
Total Recovery Factor (fraction)	0.85
OOIP (E3m3)	2850
Remaining Oil in-Place (E3m3) after Primary & EOR Recoverv	428
Remaining Recoverable Reserves (E3m3)	

Field	Pembina
Pool Name	Nisku Q
Formation	Nisku
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	5
Number of EOR Injectors	1
Number of EOR Producers	· · · · · · · · · · · · · · · · · · ·
Date	
Discovery	1980
Secondary Pecovery	Waterfload
	Solvent Fleed
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
	2880 F
Average Pay Thickness (m)	2000.5
Average Pay Thickness (III)	1024 54
Average Perneability (IIId)	0.009
Average Folosity	0.096
	0.09
Littlology	
	26360
Oil Crevity (ADI)	91
Oil Gravity (API)	41.27
Oil Density (kg/m3)	819.0
	3.56
Oil viscosity @ Tr (cp)	1.73
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ba)	100
Ried of Project (iid)	0.4
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	0
Incremental EOK Recovery Factor (Ifaction)	0.29
	0.69
	2800
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	868
Remaining Recoverable Reserves (E3m3)	

Field	Provost
Pool Name	Cummings I
Formation	Cummings
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Horizontal
Group	Sandstone
Number of Wells	420
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1984
Secondary Recovery	
FOR 1	1995-04
EOR 2	1996-05
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	763.3
Average Pay Thickness (m)	4.83
Average Permeability (md)	384.82
Average Porosity	0.28
Water Saturation	0.23
Lithology	Sandstone
Initial Pressure (kPa)	5430
Initial Temperature (C)	30
Oil Gravity (API)	23,99
Oil Density (ka/m3)	910.0
Oil Viscosity (cp)	83.31
Oil Viscosity @ Tr (cp)	38.51
Salinity of Formation Water (npm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Can	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Eactor (fraction)	0.35
Incremental WE Recovery Factor (fraction)	0.15
Incremental EOR Recovery Factor (fraction)	0.10
Total Recovery Factor (fraction)	
OOIP (E3m3)	
Remaining Oil in-Place (E3m3) after Primary & FOR Recovery	1
Remaining Recoverable Reserves (F3m3)	

Field	Rainbow
Pool Name	Keg River A
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	37
Number of EOR Injectors	3
Number of EOR Producers	
Date	
Discovery	1965
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1833.6
Average Pay Thickness (m)	90.22
Average Permeability (md)	2007.68
Average Porosity	0.101
Water Saturation	0.1
Lithology	Carbonate
Initial Pressure (kPa)	17662
Initial Temperature (C)	84
Oil Gravity (API)	43.08
Oil Density (kg/m3)	810.5
Oil Viscosity (cp)	2.83
Oil Viscosity @ Tr (cp)	1.67
Salinity of Formation Water (ppm)	241690
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	253
Primary Recovery Factor (fraction)	0.5
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.25
Total Recovery Factor (fraction)	0.75
OOIP (E3m3)	14320
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	3580
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow
Pool Name	Keg River AA
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	23
Number of EOR Injectors	5
Number of EOR Producers	
Date	
Discovery	1967
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1682.4
Average Pay Thickness (m)	68.59
Average Permeability (md)	1485.43
Average Porosity	0.086
Water Saturation	0.11
Lithology	Carbonate
Initial Pressure (kPa)	18104
Initial Temperature (C)	84
Oil Gravity (API)	39.11
Oil Density (kg/m3)	829.4
Oil Viscosity (cp)	4.76
Oil Viscosity @ Tr (cp)	2.01
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	291
Primary Recovery Factor (fraction)	0.45
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.223
Total Recovery Factor (fraction)	0.673
OOIP (E3m3)	14320
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	4683
Remaining Recoverable Reserves (E3m3)	

Field	Painhow
Pielo Nama	Kan Diver P
Fourier	Keg River
EBCB Approval Nos	
EOD Turno	Calvert Fleed
EOR Type	Solvent Flood
EUR Sub Type	Vertical
Flood Type	
Group	Rainbow
Normalise of Martin	
Number of weils	95
Number of EOR Injectors	15
Number of EOR Producers	
Date	
Discovery	1965
Secondary Recovery	Waterflood
EOR 1	Solvent/Miscible Flood (2002 - 2006)
EOR 2	Chase Gas (2002 - 2006)
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1819.7
Average Pay Thickness (m)	61.73
Average Permeability (md)	1960.7
Average Porosity	0.09
Water Saturation	0.14
Lithology	Carbonate
Initial Pressure (kPa)	17173
Initial Temperature (C)	85
Oil Gravity (API)	38.1
Oil Density (kg/m3)	834.3
Oil Viscosity (cp)	5.48
Oil Viscosity @ Tr (cp)	2.10
Salinity of Formation Water (ppm)	46500
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	1195
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.25
Total Recovery Factor (fraction)	0.65
OOIP (E3m3)	46820
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	16397
Pompining Decoverable Posonies (E2m2)	10307

Eield	Rainbow
Pool Name	Keg River D
Formation	Keg River
ERCB Approval Nos.	
	Solvent Flood
EOR Sub Type	
Elood Type	Vertical
Group	Rainbow
Number of Wells	5
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1966
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	Convent hood
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1905.3
Average Pay Thickness (m)	46.32
Average Permeability (md)	675.97
Average Porosity	0.1
Water Saturation	0.08
Lithology	Carbonate
Initial Pressure (kPa)	17710
Initial Temperature (C)	82
Oil Gravity (API)	40.1
Oil Density (kg/m3)	824.6
Oil Viscosity (cp)	4.16
Oil Viscosity @ Tr (cp)	1.94
Salinity of Formation Water (ppm)	211318
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	34
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.28
Total Recovery Factor (fraction)	0.68
OOIP (E3m3)	1130
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	362
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow
Pool Name	Ken River F
Formation	Keg River
FRCB Approval Nos	
FOR Type	Solvent Flood
FOR Sub Type	Colvent hood
Elood Type	Vertical
Group	Rainbow
Number of Wells	11
Number of FOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1966
Secondary Recovery	Waterflood
	Solvent Flood
EOR 2	Convent nood
EOR 3	
FOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1840.6
Average Pay Thickness (m)	54.66
Average Permeability (md)	194.92
Average Porosity	0.117
Water Saturation	0.08
Lithology	Carbonate
Initial Pressure (kPa)	18126
Initial Temperature (C)	83
Oil Gravity (API)	39.11
Oil Density (kg/m3)	829.4
Oil Viscosity (cp)	4.76
Oil Viscosity @ Tr (cp)	2.03
Salinity of Formation Water (ppm)	209970
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	129
Primary Recovery Factor (fraction)	0.291
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.2
Total Recovery Factor (fraction)	0.491
OOIP (E3m3)	5541
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	2820
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow
Pool Name	Keg River EEE
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	4
Number of EOR Injectors	2
Number of EOR Producers	
Date	
Discovery	1968
Secondary Pecovery	Waterflood
	Solvent Flood
EOR 1	Solvent Flood
EOR 3	
EOR 4	
Pasaryair Fluid Proportios and Pasaryair Parameters	
	1017.1
	1847.4
Average Pay Thickness (m)	/5.4
Average Permeability (md)	261.27
Average Porosity	0.147
Water Saturation	0.07
Lithology	Carbonate
Initial Pressure (kPa)	14253
Initial Temperature (C)	86
Oil Gravity (API)	37.09
Oil Density (kg/m3)	839.3
Oil Viscosity (cp)	6.34
Oil Viscosity @ Tr (cp)	2.20
Salinity of Formation Water (ppm)	290420
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	21
Primary Recovery Factor (fraction)	0.399
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.098
Total Recovery Factor (fraction)	0.497
OOIP (E3m3)	1580
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	795
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow
Pool Name	Keg River F
Formation	Keg River
ERCB Approval Nos.	10376
EOR Type	Solvent / Gas Miscible Flood
EOR Sub Type	Solvent/ NGL/ Enriched Gas
Flood Type	Vertical
Group	Rainbow
Number of Wells	56
Number of EOR Injectors	12
Number of EOR Producers	39
Date	
Discovery	1966
Secondary Recovery	Waterflood (1972)
EOR 1	Gas Injection (1968)
EOR 2	Tertiary Immiscible Gas Flood (1993)
EOR 3	Tertiary HC Miscible Flood in NW Lobe (1996)
EOR 4	Tertiary HC Miscible Flood Total Pool (2000)
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1785.5
Average Pay Thickness (m)	56.08
Average Permeability (md)	771
Average Porosity	0.08
Water Saturation	0.19
Lithology	Carbonate
Initial Pressure (kPa)	13673
Initial Temperature (C)	85
Oil Gravity (API)	40
Oil Density (kg/m3)	825.1
Oil Viscosity (cp)	4.21
Oil Viscosity @ Tr (cp)	1.91
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	1501
Primary Recovery Factor (fraction)	0.38
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.15
Total Recovery Factor (fraction)	0.53
OOIP (E3m3)	37640
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	17691
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow
Pool Name	Keg River FF
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	7
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1967
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1718.7
Average Pay Thickness (m)	62.27
Average Permeability (md)	1195.13
Average Porosity	0.11
Water Saturation	0.1
Lithology	Carbonate
Initial Pressure (kPa)	15797
Initial Temperature (C)	87
Oil Gravity (API)	37.09
Oil Density (kg/m3)	839.3
Oil Viscosity (cp)	6.34
Oil Viscosity @ Tr (cp)	2.18
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	88
Primary Recovery Factor (fraction)	0.21
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.15
Total Recovery Factor (fraction)	0.36
OOIP (E3m3)	4177
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	2673
Remaining Recoverable Reserves (E3m3)	
	•

Field	Rainbow
Pool Name	Keg River G
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	9
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1966
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1909
Average Pay Thickness (m)	69.1
Average Permeability (md)	218.79
Average Porosity	0.08
Water Saturation	0.08
Lithology	Carbonate
Initial Pressure (kPa)	17120
Initial Temperature (C)	83
Oil Gravity (API)	39.11
Oil Density (kg/m3)	829.4
Oil Viscosity (cp)	4.76
Oil Viscosity @ Tr (cp)	2.03
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	65
Primary Recovery Factor (fraction)	0.434
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.418
Total Recovery Factor (fraction)	0.852
OOIP (E3m3)	2479
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	367
Remaining Recoverable Reserves (E3m3)	
	•

Field	Rainbow
Pool Name	Keg River H
Formation	Keg River
ERCB Approval Nos.	
	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	6
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1966
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1913.9
Average Pay Thickness (m)	48.68
Average Permeability (md)	353.64
Average Porosity	0.094
Water Saturation	0.1
Lithology	Carbonate
Initial Pressure (kPa)	19805
Initial Temperature (C)	84
Oil Gravity (API)	39.11
Oil Density (kg/m3)	829.4
Oil Viscosity (cp)	4.76
Oil Viscosity @ Tr (cp)	2.01
Salinity of Formation Water (ppm)	248512
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	86
Primary Recovery Factor (fraction)	0.392
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.2
Total Recovery Factor (fraction)	0.592
OOIP (E3m3)	2833
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	1156
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow
Pool Name	Keg River II
Formation	Keg River
FRCB Approval Nos	
	Solvent Flood
EOR Sub Type	
Elood Type	Vertical
Group	Rainbow
01000	
Number of Wells	14
Number of EOR Injectors	2
Number of EOR Producers	
Date	
Discovery	1967
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	Solvent Hood
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1832.9
Average Pay Thickness (m)	56.9
Average Permeability (md)	
Average Porosity	0.1
Water Saturation	0.12
Lithology	Carbonate
Initial Pressure (kPa)	17106
Initial Temperature (C)	89
Oil Gravity (API)	41.08
Oil Density (kg/m3)	819.9
Oil Viscosity (cp)	3.65
Oil Viscosity @ Tr (cp)	1.77
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	104
Primary Recovery Factor (fraction)	0.45
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.155
Total Recovery Factor (fraction)	0.605
OOIP (E3m3)	3800
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	1501
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow
Pool Name	Keg River O
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	12
Number of EOR Injectors	2
Number of EOR Producers	
Date	
Discovery	1966
Secondary Recovery	Waterflood
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1854.1
Average Pay Thickness (m)	61.26
Average Permeability (md)	2900.89
Average Porosity	0.06
Water Saturation	0.13
Lithology	Carbonate
Initial Pressure (kPa)	16875
Initial Temperature (C)	84
Oil Gravity (API)	42.08
Oil Density (kg/m3)	815.2
Oil Viscosity (cp)	3.21
Oil Viscosity @ Tr (cp)	1.75
Salinity of Formation Water (ppm)	165910
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	281
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.277
Total Recovery Factor (fraction)	0.677
OOIP (E3m3)	6200
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	2003
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow
Pool Name	Keg River Z
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	13
Number of EOR Injectors	3
Number of EOR Producers	
Date	
Discovery	1967
Secondary Recovery	Waterflood
	Solvent Flood
EOR 1	Solvent Flood
EOR 3	
EOR 4	
Pesserveir Eluid Properties and Pesserveir Perspectors	
Depth (m)	1609.3
Average Pay Thickness (m)	42.87
Average Permeability (md)	3901.61
Average Porosity	0.076
Water Saturation	0.27
Lithology	Carbonate
Initial Pressure (kPa)	11790
Initial Temperature (C)	86
Oil Gravity (API)	38.1
Oil Density (kg/m3)	834.3
Oil Viscosity (cp)	5.48
Oil Viscosity @ Tr (cp)	2.09
Salinity of Formation Water (ppm)	226520
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	216
Primary Recovery Factor (fraction)	0.32
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.33
Total Recovery Factor (fraction)	0.65
OOIP (E3m3)	3904
Remaining Oil in-Place (F3m3) after Primary & FOR Recovery	1366
Remaining Recoverable Reserves (E3m3)	1500

Field	Rainbow South
Pool Name	Keg River B
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	29
Number of EOR Injectors	4
Number of EOR Producers	
Date	
Discovery	1966
Socondary Pocovory	Waterflood
	Solvent Fleed
EOR 3	
EOR 4	
Peservoir Fluid Properties and Peservoir Parameters	
	4075 7
Average Day Thickness (m)	1875.7
Average Pay Thickness (m)	50
Average Permeability (md)	2237.23
Average Porosity	0.077
Water Saturation	0.12
Lithology	Carbonate
Initial Pressure (kPa)	18319
Initial Temperature (C)	84
Oil Gravity (API)	39.81
Oil Density (kg/m3)	826.0
Oil Viscosity (cp)	4.32
Oil Viscosity @ Tr (cp)	1.94
Salinity of Formation Water (ppm)	233114
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	328
Primary Recovery Factor (fraction)	0.44
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.21
Total Recovery Factor (fraction)	0.65
OOIP (E3m3)	7890
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	2762
Remaining Recoverable Reserves (E3m3)	

Field	Rainbow South
Pool Name	Keg River E
Formation	Keg River
ERCB Approval Nos.	7277
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	13
Number of EOR Injectors	3
Number of EOR Producers	
Date	
Discovery	1966
Secondary Recovery	Waterflood (1972)
	Solvent/Missible Flood (1972)
EOR 2	Chase Gas
EOR 4	
Posorvoir Eluid Proportios and Posorvoir Paramotors	
	1015.0
Depth (m)	1945.9
Average Pay Thickness (m)	/5.3/
Average Permeability (md)	503.88
Average Porosity	0.1
Water Saturation	0.1
Lithology	Carbonate
Initial Pressure (kPa)	18944
Initial Temperature (C)	87
Oil Gravity (API)	40
Oil Density (kg/m3)	825.1
Oil Viscosity (cp)	4.21
Oil Viscosity @ Tr (cp)	1.88
Salinity of Formation Water (ppm)	239081
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	196
Primary Recovery Factor (fraction)	0.26
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.1
Total Recovery Factor (fraction)	0.36
OOIP (E3m3)	8775
Remaining Oil in-Place (E3m3) after Primary & EOR Recoverv	5616
Remaining Recoverable Reserves (E3m3)	
· · · · · ·	

Field	Rainbow South
Pool Name	Keg River G
Formation	Keg River
ERCB Approval Nos.	7659
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Rainbow
Number of Wells	10
Number of FOR Injectors	3
Number of EOR Producers	~
Date	
Diacovery	4007
Secondary Recovery	Waterflood (1972)
EOR 1	Solvent/Miscible Flood (1995 - 2006)
EOR 2	Chase Gas
EOR 3	-
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1931
Average Pay Thickness (m)	73.33
Average Permeability (md)	66.34
Average Porosity	0.088
Water Saturation	0.11
Lithology	Carbonate
Initial Pressure (kPa)	17946
Initial Temperature (C)	88
Oil Gravity (API)	44.08
Oil Density (ka/m3)	805.9
Oil Viscosity (cp)	2 50
Oil Viscosity @ Tr (cp)	1.57
Salinity of Formation Water (nom)	Not Available
Prosonce of Natural Fractures	No
Procence of Coc Con	No
i reserve vi Gas Cap	
Oil Beconver (co. of Dec. 21, 2010)	+
On Reserves (as of Dec 31, 2010)	
Area of Project (ha)	115
Primary Recovery Factor (fraction)	0.2
Incremental WF Recovery Factor (fraction)	<u> </u>
Incremental EOR Recovery Factor (fraction)	0.12
Total Recovery Factor (fraction)	0.32
OOIP (E3m3)	4359
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	2964
Remaining Recoverable Reserves (E3m3)	

Field	Redwater
Pool Name	D-3
Formation	Leduc
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Combination
Group	Leduc
Number of Wells	1074
Number of EOR Injectors	45
Number of EOR Producers	
Date	
Discovery	1048
Secondary Receivery	1340
EOR 4	
Penerveir Eluid Preparties and Penerveir Peremeters	
Reservoir Fluid Properties and Reservoir Parameters	200 7
	983.7
Average Pay Thickness (m)	31.39
Average Permeability (md)	1411.02
Average Porosity	0.065
Water Saturation	0.25
Lithology	Dolomite
Initial Pressure (kPa)	7824
Initial Temperature (C)	34
Oil Gravity (API)	36.09
Oil Density (kg/m3)	844.3
Oil Viscosity (cp)	7.36
Oil Viscosity @ Tr (cp)	5.03
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.65
Incremental WF Recovery Factor (fraction)	0.05
Incremental EOR Recovery Factor (fraction)	
Total Recovery Factor (fraction)	
OOIP (E3m3)	
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	

Field	Rich
Pool Name	D-3A
Formation	Leduc
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Vertical
Group	Leduc
Number of Wells	5
Number of EOR Injectors	2
Number of EOR Producers	
Date	
Discovery	1982
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1818.7
Average Pay Thickness (m)	103.2
Average Permeability (md)	
Average Porosity	0.11
Water Saturation	0.1
Lithology	Carbonate
Initial Pressure (kPa)	13616
Initial Temperature (C)	65
Oil Gravity (API)	33.61
Oil Density (kg/m3)	857.0
Oil Viscosity (cp)	10.89
Oil Viscosity @ Tr (cp)	3.61
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Can	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	15
Primary Recovery Factor (fraction)	0.46
Incremental WE Recovery Factor (fraction)	0::0
Incremental EOR Recovery Factor (fraction)	
Total Recovery Factor (fraction)	
	1222
Remaining Ail in Place (E3m3) offer Primary & EAP Resources	1333
Remaining Oil III-Flace (ESIIIS) aller Fillially & EOK Recovery	1.0
	Ι.Ծ

Field	Simonette
Pool Name	D-3
Formation	Leduc
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Vertical
Group	Leduc
Number of Wells	36
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1958
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3542
Average Pay Thickness (m)	42.11
Average Permeability (md)	337.65
Average Porosity	0.062
Water Saturation	0.16
Lithology	Carbonate
Initial Pressure (kPa)	35520
Initial Temperature (C)	105
Oil Gravity (API)	47.09
Oil Density (kg/m3)	792.3
Oil Viscosity (cp)	1.76
Oil Viscosity @ Tr (cp)	1.33
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.06
Total Recovery Factor (fraction)	0.46
OOIP (E3m3)	1200
Remaining Oil in-Place (E3m3) after Primary & EOR Recoverv	
Remaining Recoverable Reserves (E3m3)	
, , ,	
Field	Suffield
--	-------------------
Pool Name	Lower Mannville J
Formation	
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Horizontal
Group	Sandstone
Number of Wells	4
Number of EOR Injectors	0
Number of EOR Producers	
Date	
Discovery	1978
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1004.6
Average Pay Thickness (m)	2.3
Average Permeability (md)	
Average Porosity	0.25
Water Saturation	0.44
Lithology	Sandstone
Initial Pressure (kPa)	10677
Initial Temperature (C)	35
Oil Gravity (API)	14.53
Oil Density (kg/m3)	969.0
Oil Viscosity (cp)	4395.05
Oil Viscosity @ Tr (cp)	739.99
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.012
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	
Total Recovery Factor (fraction)	0.012
OOIP (E3m3)	625
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	1.2

Field	Suffield
Pool Name	Upper Mannville N
Formation	
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Horizontal
Group	Sandstone
Number of Wells	40
Number of EOR Injectors	3
Number of EOR Producers	
Date	
Discovery	1078
Secondary Recovery	1070
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
	961.6
Average Pay Thickness (m)	344
Average Permeability (md)	5.77
Average Porosity	0.26
Water Saturation	0.20
Lithology	Sandstono
Initial Pressure (kPa)	7708
	22
	32
Oil Onavity (AFT)	071.0
Oil Density (kg/iiis)	971.0
Oil Viscosity (CP)	5303.71
Oil Viscosity @ TT (cp)	1093.86
Sainity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Peserves (as of Dec 31, 2010)	
Area of Project (ba)	
Ried of Floject (fid)	0.42
Incremental W/E Decovery Easter (fraction)	0.12
	0.1
Total Decevery Factor (fraction)	0.00
	0.22
	2600
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	

Field	Swan Hills
Pool Name	Commingled 001
Formation	Beaverhill Lake
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Combination
Group	Beaverhill Lake
Number of Wells	1420
Number of EOR Injectors	66
Number of EOR Producers	
Date	
Discovery	1957
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2425.7
Average Pay Thickness (m)	36.31
Average Permeability (md)	
Average Porosity	0.08
Water Saturation	0.19
Lithology	Carbonate
Initial Pressure (kPa)	20226
Initial Temperature (C)	95
Oil Gravity (API)	41.08
Oil Density (kg/m3)	819.9
Oil Viscosity (cp)	3.65
Oil Viscosity @ Tr (cp)	1.70
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.17
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.36
Total Recovery Factor (fraction)	0.53
OOIP (E3m3)	163698
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	
(

Field	Swan Hills South
Pool Name	
Formation	Beaverhill Lake
FRCB Approval Nos	
FOR Sub Type	
Elood Type	Combination
Group	Beaverhill Lake
Number of Wells	341
Number of EOR Injectors	56
Number of EOR Producers	
Date	
Discovery	1959
Secondary Recovery	1000
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2536.8
Average Pay Thickness (m)	22.67
Average Permeability (md)	
Average Porosity	0.084
Water Saturation	0.16
Lithology	Carbonate
Initial Pressure (kPa)	21585
Initial Temperature (C)	101
Oil Gravity (API)	41.08
Oil Density (kg/m3)	819.9
Oil Viscosity (cp)	3.65
Oil Viscosity @ Tr (cp)	1.64
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.17
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.28
Total Recovery Factor (fraction)	0.45
OOIP (E3m3)	
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	138800
Remaining Recoverable Reserves (E3m3)	

Eield	Turner Valley
Pool Name	
Formation	Rundle
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Combination
Group	
Number of Wells	901
Number of EOR Injectors	36
Number of EOR Producers	
Date	
Discovery	1917
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1480.6
Average Pay Thickness (m)	57.61
Average Permeability (md)	
Average Porosity	0.082
Water Saturation	0.1
Lithology	Carbonate
Initial Pressure (kPa)	10410
Initial Temperature (C)	60
Oil Gravity (API)	40.1
Oil Density (kg/m3)	824.6
Oil Viscosity (cp)	4.16
Oil Viscosity @ Tr (cp)	2.39
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	7326
Primary Recovery Factor (fraction)	0.12
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.02
Total Recovery Factor (fraction)	0.14
OOIP (E3m3)	208700
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	

Field	Virginia Hills
Pool Name	Beaverhill Lake
Formation	Beaverhill Lake
ERCB Approval Nos.	10082
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Combination
Group	Beaverhill Lake
Number of Wells	260
Number of EOR Injectors	16
Number of EOR Producers	
Date	
Discovery	1957
Secondary Recovery	
EOR 1	Solvent Flood (1989 - 2006)
EOR 2	Chase Gas (1989 - 2006)
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	2815.1
Average Pay Thickness (m)	21.54
Average Permeability (md)	17.77
Average Porosity	0.09
Water Saturation	0.24
Lithology	Carbonate
Initial Pressure (kPa)	24988
Initial Temperature (C)	98
Oil Gravity (API)	38.1
Oil Density (kg/m3)	834.3
Oil Viscosity (cp)	5.48
Oil Viscosity @ Tr (cp)	1.90
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
·	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.23
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.22
Total Recovery Factor (fraction)	0.45
OOIP (E3m3)	36510
Remaining Oil in-Place (E3m3) after Primary & EOR Recoverv	20081
Remaining Recoverable Reserves (E3m3)	
· · · · ·	

Field	Westpem
Pool Name	Nisku D
Formation	Nisku
ERCB Approval Nos.	7148
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Pembina
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	1979
Secondary Recovery	
EOR 1	Solvent Flood (1981)
EOR 2	Chase Gas (1987 - 1994)
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	3141
Average Pay Thickness (m)	47.29
Average Permeability (md)	
Average Porosity	0.117
Water Saturation	0.07
Lithology	Carbonate
Initial Pressure (kPa)	40479
Initial Temperature (C)	104
Oil Gravity (API)	45.82
Oil Density (kg/m3)	798.0
Oil Viscosity (cp)	2.04
Oil Viscosity @ Tr (cp)	1.38
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	88
Primary Recovery Factor (fraction)	0.4
Incremental WF Recovery Factor (fraction)	0.1
Incremental EOR Recovery Factor (fraction)	0.3
Total Recovery Factor (fraction)	0.8
OOIP (E3m3)	2400
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	480
Remaining Recoverable Reserves (E3m3)	

Field	Wizard Lake
Pool Name	D-3A
Formation	Leduc
ERCB Approval Nos.	
EOR Type	
EOR Sub Type	
Flood Type	Vertical
Group	Leduc
Number of Wells	75
Number of EOR Injectors	9
Number of EOR Producers	
Date	
Discovery	1951
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1966.7
Average Pay Thickness (m)	85.96
Average Permeability (md)	2380.68
Average Porosity	0.098
Water Saturation	0.07
Lithology	Carbonate
Initial Pressure (kPa)	15507
Initial Temperature (C)	72
Oil Gravity (API)	38.1
Oil Density (kg/m3)	834.3
Oil Viscosity (cp)	5.48
Oil Viscosity @ Tr (cp)	2.38
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	Yes
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.66
Incremental WF Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	0.19
Total Recovery Factor (fraction)	0.85
OOIP (E3m3)	63900
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	

Field	Zama
Pool Name	Keg River F
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Zama
Number of Wells	4
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1967
Secondary Recovery	
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1494.6
Average Pay Thickness (m)	51.42
Average Permeability (md)	9850.13
Average Porosity	0.07
Water Saturation	0.13
Lithology	Carbonate
Initial Pressure (kPa)	14444
Initial Temperature (C)	71
Oil Gravity (API)	35.11
Oil Density (kg/m3)	849.3
Oil Viscosity (cp)	8.56
Oil Viscosity @ Tr (cp)	2.95
Salinity of Formation Water (ppm)	129480
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	20
Primary Recovery Factor (fraction)	0.331
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.05
Total Recovery Factor (fraction)	0.381
OOIP (E3m3)	532
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	329
Remaining Recoverable Reserves (E3m3)	

Field	Zama
Pool Name	Keg River G2G
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Zama
Number of Wells	2
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1968
Secondary Recovery	1300
	Solvent Flood
	Solvent Flood
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Denth (m)	1510.3
Average Pay Thickness (m)	33.81
Average Permeability (md)	161.09
Average Porosity	0.08
Water Saturation	0.13
Lithology	Carbonate
Initial Pressure (kPa)	1/117
	76
Oil Grovity (ADI)	36.00
Oil Onavity (Kr/n)	844.2
Oil Density (kg/iii3)	7 26
Oil Viscosity (CP)	7.50
Oil Viscosity @ 11 (cp)	2.39
Dresspage of Netural Freetures	137231
Presence of Natural Fractures	No
	NO
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	31
Primary Recovery Factor (fraction)	0.225
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.04
Total Recovery Factor (fraction)	0.265
QOIP (E3m3)	501
Remaining Oil in-Place (F3m3) after Primary & FOR Recovery	434
Remaining Recoverable Reserves (F3m3)	

Field	Zama
Pool Name	Keg River NNN
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Zama
Number of Wells	3
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1967
Secondary Recovery	
EOR 1	Solvent Flood
EOR 2	
EOR 3	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1532.2
Average Pay Thickness (m)	69.5
Average Permeability (md)	60.95
Average Porosity	0.07
Water Saturation	0.15
Lithology	Carbonate
Initial Pressure (kPa)	15283
Initial Temperature (C)	80
Oil Gravity (API)	36.09
Oil Density (kg/m3)	844.3
Oil Viscosity (cp)	7.36
Oil Viscosity @ Tr (cp)	2.48
Salinity of Formation Water (ppm)	Not Available
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	17
Primary Recovery Factor (fraction)	0.3
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.05
Total Recovery Factor (fraction)	0.35
OOIP (E3m3)	562
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	365
Remaining Recoverable Reserves (E3m3)	

Field	Zama
Pool Namo	Kog Divor DDD
Foundation	Keg River
	Salvant Elaad
	Solvent Flood
Elocd Type	Vertical
Group	Zama
Group	Zallia
Number of Wells	3
Number of FOR Injectors	1
Number of EOR Broducers	
Date	
Diagoveru	1007
Discovery	1967
	Oskurat Fland
	Solvent Flood
EOR 2	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
	1550.5
Average Pay Thickness (m)	50.31
	50.51
Average Porosity	0.1
Water Saturation	0.15
Lithology	Carbonate
Initial Pressure (kPa)	15250
Initial Temperature (C)	73
Oil Gravity (API)	39.11
Oil Density (ka/m3)	829.4
Oil Viscosity (cp)	4 76
Oil Viscosity @ Tr (cp)	2 22
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	25
Primary Recovery Factor (fraction)	0.25
Incremental WF Recovery Factor (fraction)	0
Incremental EOR Recovery Factor (fraction)	0.05
Total Recovery Factor (fraction)	0.3
OOIP (E3m3)	748
Remaining Oil in-Place (E3m3) after Primary & EOR Recoverv	524
Remaining Recoverable Reserves (E3m3)	

Field	Zama
Pool Name	Keg River X2X
Formation	Keg River
ERCB Approval Nos.	
EOR Type	Solvent Flood
EOR Sub Type	
Flood Type	Vertical
Group	Zama
Number of Wells	3
Number of EOR Injectors	1
Number of EOR Producers	
Date	
Discovery	1968
Secondary Recovery	1300
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1497.9
Average Pay Thickness (m)	31.39
Average Permeability (md)	2994.26
Average Porosity	0.075
Water Saturation	0.16
Lithology	Dolomite
Initial Pressure (kPa)	12536
Initial Temperature (C)	76
Oil Gravity (API)	36.09
Oil Density (kg/m3)	844.3
Oil Viscosity (cp)	7.36
Oil Viscosity @ Tr (cp)	2.59
Salinity of Formation Water (ppm)	223460
Presence of Natural Fractures	No
Presence of Gas Cap	No
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	34
Primary Recovery Factor (fraction)	0.275
Incremental WF Recovery Factor (fraction)	0.212
Incremental EOR Recovery Factor (fraction)	
Total Recovery Factor (fraction)	0.487
OOIP (E3m3)	538
Remaining Oil in-Place (E3m3) after Primary & EOR Recovery	
Remaining Recoverable Reserves (E3m3)	
(

Field	Zama
Real Nama	Muskog I
Foormation	Muskeg L
EBCB Approval Nos	Widskey
	Solvent Flood
	Solvent Flood
Elond Type	Vertical
Group	Venical
Group	Zalila
Number of Wells	4
Number of EOP Injectors	4
Number of EOR Injectors	I
Pata	
Date	4007
	1967
Secondary Recovery	
EOR	Solvent Flood
EOR 2	
EOR 4	
Reservoir Fluid Properties and Reservoir Parameters	
Donth (m)	1510.0
Average Pay Thickness (m)	1312.0
Average Pay Thickness (III)	27.95
Average Porosity	0.1
Motor Soturation	0.1
	0.10 Evenorite
Initial Pressure (kPa)	12005
Initial Flessure (KFa)	77
	26.00
Oil Gravity (AFT)	30.09
	7.26
Oil Viscosity (CP)	7.50
Oil Viscosity @ 11 (cp) Salinity of Formation Water (npm)	2.30 Not Available
	No.
Presence of Gas Can	No
	NO
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	22
Primary Recovery Factor (fraction)	0.2
Incremental WF Recovery Factor (fraction)	0.2
Incremental EOR Recovery Factor (fraction)	0.05
Total Recovery Factor (fraction)	0.25
QOIP (E3m3)	429
Remaining Oil in-Place (E3m3) after Primary & FOR Recovery	
Remaining Recoverable Reserves (F3m3)	

```
Table 73
```

Tiola .	Deiste all Eistald Laws stail	
Field	Brintnell Field Horsetail	
Foormation	Upper Wabiskaw Sand	
EPCR Approval Nos		
	9073/9407/10147/10423/10787	
EOR Type	Bolymor	
	FOIYITIEI	
Number of Wells (Pilot)	HTI P.6 Polymor Pilot - 5 Wells	
Number of FOR Injectors (Pilot)	HTLP 6 - 2 Wells	
Number of EOR Producers (Pilot)	HTLP 6 - 3 Wells	
Date		
Discovery		
Secondary Recovery		
	Ammenual 40447 Delumer Dilet Wells LITLD C Delumer Flood	
EOR 1	(May 2005)	
EOR 2	Approval 10423 - 1st area expanded after the pilot, polymer started 2007, expanded through 2010	
EOR 3	Approval 10797 - Small area of polymer started in 2007 - 1st area to have multilateral well flooded by several injectors	
EOR 4	Approval 9673	
EOR 5	Approval 9467	
Reservoir Fluid Properties and Reservoir Parameters		
Depth (m)	300 to 425 TVD	
Average Pay Thickness (m)	1 to 9	
Average Permeability (md)	300 to 3000	
Average Porosity	0.28 to 0.32	
Water Saturation	0.30 to 0.40	
Lithology	Sandstone	
Initial Pressure (kPa)	1900 to 2600	
Initial Temperature (C)	15	
Oil Gravity (API)	10	
Oil Density (kg/m3)	1000 0	
Oil Viscosity (cp)	144543.98	
Oil Viscosity @ Tr (cp)	144544.78	
Salinity of Formation Water (ppm)		
Presence of Natural Fractures		
Presence of Gas Cap		
·		
Oil Reserves (as of Dec 31, 2010)		
Area of Project (ha)		
Primary Recovery Factor (fraction)		
Incremental EOR Recovery Factor (fraction)		
OOIP (E3m3)		
Pool Cumulative Production (E3m3)		
Total Remaining Reserves Including EOR (E3m3)		

```
Table 74
```

Field	Oractand	
Field Beel Neme	Cessford	
Pool Name	Cessiona Basal Colorado A Pool	
Formation	Basal Colorado	
ERCB Approval Nos. (Wf = #2604)	9673/9467/10147/10423/10787	
EOR Type	Chemical	
EOR Sub Type - Experimental	AP	
Number of Wells	26	
Number of EOR Injectors	7	
Number of EOR Producers	19	
Date		
Discovery	1958	
Secondary Recovery		
EOR 1	Waterflood 81/02	
EOR 2	Inject Preflush 83/12-84/07 North & Central Areas	
EOR 3	Alkali Flood North & Central Area 84/07 - 85/05	
EOR 4	Alkali/Polymer Flood in South 85/01	
EOR 5	Alkali/Polymer Flood in North & Central Patterns 85/05	
Reservoir Fluid Properties and Reservoir Parameters		
Depth (m)	920	
Average Pav Thickness (m)	3 to 8	
Average Permeability (md)	350	
Average Porosity	0.24	
Water Saturation	0.30	
Lithology	Sandstone	
Initial Pressure (kPa)	8784	
Initial Temperature (C)	26	
Oil Gravity (API)	20	
Oil Density (kg/m3)	915.9	
Oil Viscosity (cp) - Initial	110.95	
Oil Viscosity @ Tr (cp)	1.00	
Salinity of Formation Water (ppm)		
Presence of Natural Fractures		
Presence of Gas Cap (OGIP 650 BCE)	Ves	
Oil Reserves (as of Dec 31, 2010)		
Area of Project (ba)	303.5	
Primary Recovery Eactor (fraction)	Undescernable	
Incremental EOR Recovery Factor (fraction)	Not Specified	
OOIP (E3m3)	17400	
Pool Cumulative Production (E3m3)	1/400	

```
Table 75
```

	Chauvin South	
Pool Name	Sparky E	
Formation	Sparky E	
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787	
EOR Type	Chemical	
EOR Sub Type - Experimental	Polymer	
Number of Wells	14	
Number of EOR Injectors	3	
Number of EOR Producers	11	
Date		
Discovery		
Secondary Recovery		
EOR 1	Waterflood	
EOR 2	Polymer Flood	
EOR 3		
EOR 4		
EOR 5		
Pesanyair Fluid Properties and Pesanyair Perameters		
Depth (m)		
Average Pay Thickness (m)		
Average Permeability (md)		
Average Porosity		
	Orandatara a	
Litthology	Sandstone	
	24	
	21.1	
	927.3	
	204.95	
Oli viscosity @ Ir (cp)	115.27	
Salinity of Formation Water (ppm)	87000	
Presence of Natural Fractures		
Presence of Gas Cap		
UII Reserves (as of Dec 31, 2010)	461.07	
Area of Project (na) (3 patterns)	194.25	
Primary Recovery Factor (fraction)		
Pool Cumulative Production (E3m3)		
LIOTAL REMAINING RESERVES INCLUDING EOR (E3m3)		

Field	Countess
Pool Name	Lipper Mannville H
Formation	
FRCB Approval Nos	9673 / 9467 / 10147 / 10423 / 10787
FOR Type	Chemical
EOR Sub Type	Polymer
	rolymei
Number of Wells	18
Number of FOR Injectors	7
Number of EOR Producers	l
Date	
Discovery	1068
Secondary Recovery	1908
EOR 1	Polymer Flood
EOR 2	
EOR 3	
EOR 4	
EOR 5	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1062.5
Average Pay Thickness (m)	5.28
Average Permeability (md)	945
Average Porosity	0.218
Water Saturation	0.22
Lithology	Sandstone
Initial Pressure (kPa)	8234
Initial Temperature (C)	32
Oil Gravity (API)	26
Oil Density (kg/m3)	898.4
Oil Viscosity (cp)	49.34
Oil Viscosity @ Tr (cp)	23.00
Salinity of Formation Water (ppm)	9704
Presence of Natural Fractures	no
Presence of Gas Cap	no
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	710
Primary Recovery Factor (fraction)	0.105
Incremental EOR Recovery Factor (fraction)	0.36
OOIP (E3m3)	0.36 5725
Incremental EOR Recovery Factor (fraction) OOIP (E3m3) Pool Cumulative Production (E3m3)	0.36 5725 2471.3

Та	b	le	7	7
		-	-	-

	1
Field	Countess
Pool Name	
Formation	Upper Mannville H
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type - Experimental ASP	
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	
EOR 1	
EOR 2	
FOR 2	
EOR 3	
EOR 4	
FOR 5	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	1060
Average Pay Thickness (m)	
Average Permeability (md)	945
Average Porosity	0.218
Water Saturation	
Lithology	Sandstone
Initial Pressure (kPa)	11911
Initial Temperature (C)	
Oil Gravity (API)	15
Oil Density (kg/m3)	965.9
Oil Viscosity (cp)	3308.18
Oil Viscosity @ Tr (cp)	18209.34
Salinity of Formation Water (ppm)	29411
Presence of Natural Fractures	no
Presence of Gas Cap	no
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha) (3 patterns)	
Primary Recovery Factor (fraction)	
Incremental EOR Recovery Factor (fraction)	
OOIP (E3m3)	
Pool Cumulative Production (E3m3)	
Total Remaining Reserves Including EOR (E3m3)	

Та	bl	е	7	8
	~	•		v

	1	
Field	Edgerton	
Pool Name		
Formation	Woodbend A	
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787	
EOR Type	Chemical	
EOR Sub Type - Commercial Polymer		
Number of Wells		
Number of EOR Injectors		
Number of EOR Producers		
Date		
Discovery		
Secondary Recovery		
EOR 1		
EOR 2		
EOR 3		
EOR 4		
EOR 5		
Reservoir Fluid Properties and Reservoir Parameters		
Depth (m)	697.4	
Average Pay Thickness (m)	3.75	
Average Permeability (md)		
Average Porosity	0.2	
Water Saturation	0.25	
Lithology	Carbonate	
Initial Pressure (kPa)	4831	
Initial Temperature (C)	25	
Oil Gravity (API)	16.82	
Oil Density (kg/m3)	954.0	
Oil Viscosity (cp)	1227.60	
Oil Viscosity @ Tr (cp)	536.99	
Salinity of Formation Water (ppm)		
Presence of Natural Fractures		
Presence of Gas Cap		
Oil Reserves (as of Dec 31, 2010)		
Area of Project (ha) (3 patterns)		
Primary Recovery Factor (fraction)	0.07	
Incremental EOR Recovery Factor (fraction)	0	
OOIP (E3m3)	8789	
Pool Cumulative Production (E3m3)	360.0	
	255.0	

Field	Entice	
Pool Name	Lower Mannville B	
Formation	Lower Mannville B	
FRCB Approval Nos	9673 / 9467 / 10147 / 10423 / 10787	
FOR Type		
EOR Sub Type		
Lok Sub Type		
Number of Wells		
Number of FOR Injectors		
Number of EOR Producers		
Date		
	1095	
Secondary Recovery	1965	
EOR 1	Waterflood Incremental RF	
EOR 2	ASP Flood	
EOR 3		
EOR 4		
EOR 5		
Reservoir Fluid Properties and Reservoir Parameters		
Depth (m)	1782.8	
Average Pay Thickness (m)	2.56	
Average Permeability (md)		
Average Porosity	0.16	
Water Saturation	0.31	
Lithology	Sandstone	
Initial Pressure (kPa)	13645	
Initial Temperature (C)	64	
Oil Gravity (API)	34	
Oil Density (kg/m3)	855.0	
Oil Viscosity (cp)	10.22	
Oil Viscosity @ Tr (cp)	3.55	
Salinity of Formation Water (ppm)		
Presence of Natural Fractures		
Presence of Gas Cap		
Oil Reserves (as of Dec 31, 2010)		
Area of Project (ha)	Not Reported	
Primary Recovery Factor (fraction)	Not Reported	
Incremental EOR Recovery Factor (fraction)	Not Reported	
OOIP (E3m3)	2596	
Pool Cumulative Production (E3m3)	773.1	
Total Remaining Reserves Including EOR (E3m3)		

```
Table 80
```

Field	Horsefly Lake	
Pool Name	Lower Mannville	
Formation		
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787	
EOR Type	Chemical	
EOR Sub Type	АР	
	_	
Number of Wells	9	
Number of EOR Injectors	4	
Number of EOR Producers (4 outside pilot area)	5	
Date		
Discovery		
Secondary Recovery		
EOR 1	Waterflood Incremental RF	
EOR 2	Alkali Polymer Flood Incremental RF	
EOR 3		
EOR 4		
EOR 5		
Peneriveir Eluid Properties and Penerveir Peremeters		
Denth (m)		
Average Dev Thickness (m)		
Average Pay Thickness (m)		
Average Permeability (md)		
Average Porosity		
Lititology		
Oil Gravity (API)	055.4	
Oil Density (kg/iiis)	955.4	
	1372.14	
Colinity of Formation Water (nnm)	439.23	
Dreephon of Natural Freetures		
Presence of Gas Can	INO No	
riesence of Ods Cap	INU	
Qil Reserves (as of Dec 31, 2010)		
Area of Project (ba)	13	
Primary Recovery Eactor (fraction)	13	
Incremental FOR Recovery Factor (fraction)		
Pool Cumulative Production (E3m3)		
Total Remaining Reserves Including FOR (F3m3)		

Field	Mooney
Pool Name	Bluesky A
Formation	Bluesky A
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type	ASP
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	1986
Secondary Recovery	
EOR 1	Waterflood
FOR 2	ASP Flood
EOR 3	
FOR 4	
EOR 5	
Pesserveir Eluid Prenerties and Pesserveir Peremeters	
	010
	913
Average Pay Thickness (m)	2.5
	3000
Average Porosity	0.26
Water Saturation	0.35
Lithology	Sandstone
Initial Pressure (kPa)	5790
Initial Temperature (C)	29
Oil Gravity (API)	16.6
Oil Density (kg/m3)	955.4
Oil Viscosity (cp)	1372.14
Oil Viscosity @ Tr (cp)	439.23
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	Not Reported
Primary Recovery Factor (fraction)	Not Reported
Incremental EOR Recovery Factor (fraction)	Not Reported
OOIP (E3m3)	7883
Pool Cumulative Production (E3m3)	442.7
Total Remaining Reserves Including EOR (E3m3)	

Field	Provost
Pool Name	
Formation	
ERCB Approval Nos	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type	Bolymor
	rolymen
Number of Wells	
Number of FOR Injectors	
Number of EOP Broducers	
Date	
Discovery	1060
Secondary Receivery	1909
EOR 1	Polymer Flood
EOR 2	
EOR 3	
EOR 4	
EOR 5	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	778.3
Average Pay Thickness (m)	3.96
Average Permeability (md)	
Average Porosity	0.3
Water Saturation	0.25
Lithology	Sandstone
Initial Pressure (kPa)	4125
Initial Temperature (C)	30
Oil Gravity (API)	15.09
Oil Density (kg/m3)	965.3
Oil Viscosity (cp)	3137.40
Oil Viscosity @ Tr (cp)	825.22
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	1252
Primary Recovery Factor (fraction)	0.03
Incremental EOR Recovery Factor (fraction)	0.12
OOIP (E3m3)	13190
Pool Cumulative Production (E3m3)	609.4
Total Remaining Reserves Including EOR (E3m3)	1369.1

EOR Project Assessment	Table 83
David Lloydminster	A
Field	David
Pool Name	Lloydminster A
Formation	
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type - Experimental	AP
The second se	
Number of Wells (7 patterns)	28
Number of FOR Injectors	20
Number of EOR Producers	7
Date	
	1005
	1985
Secondary Recovery	
FOR 1	Waterflood Nov 1978
	Waternood Nov 1370
EOR 2	Pre Flush March 1986 to Feb 1987, 1 year
FOR 3	Alkali Polymer Flood May 1987
LONG	
EOR 4	Alkali Polymer Flood May 1987
FOR 5	Alkali Polymer Flood May 1987
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	760
Average Pay Thickness (m)	
Average Permeability (md)	1400
Average Porosity	0.29
Water Saturation	0.23
Lithology	Sandstono
Lititology	Sandstone
	00.0
	30.6
Oil Gravity (API)	22.6
	918.2
Oil Viscosity (cp)	125.32
Oil Viscosity @ Tr (cp)	52.58
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Primary Recovery Factor (fraction)	0.057
Incremental EOR Recovery Factor (fraction)	0.463
OOIP (E3m3)	1486
Pool Cumulative Production (E3m3)	
Total Remaining Reserves Including EOR (E3m3)	

Та	b	le	84
	-	-	•

Field	Provost
Pool Name	
Formation	Cummings I
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type - Experimental Polymer	
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	
EOR 1	
EOR 2	
EOR 3	
EOR 4	
EOR 5	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	763.3
Average Pay Thickness (m)	4.83
Average Permeability (md)	
Average Porosity	0.28
Water Saturation	0.23
Lithology	
Initial Pressure (kPa)	5430
Initial Temperature (C)	30
Oil Gravity (API)	23.99
Oil Density (kg/m3)	910.0
Oil Viscosity (cp)	83.31
Oil Viscosity @ Tr (cp)	38.51
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha) (3 patterns)	
Primary Recovery Factor (fraction)	0.35
Incremental EOR Recovery Factor (fraction)	0.15
OOIP (E3m3)	12430
Pool Cumulative Production (E3m3)	5694.0
Total Remaining Reserves Including EOR (E3m3)	648 9

Field	Suffield
Pool Name	UpperMannville UU
Formation	UpperMannville UU
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type	ASP
Number of Wells	Unknown
Number of EOR Injectors (2)	2 Hz Chemical Injection Wells
Number of EOB Broducere (5)	4 Hz production wells
Number of EOR Froducers (5)	3 Vertical Production / Observation Wells
Date	
Discovery	1996
Secondary Recovery	
	Vvaterniood
EOR 2	ASP Flood
EOR 3	
502.4	
EOR 4	
EOR 5	
Pasaryair Eluid Proportios and Pasaryair Parameters	
Depth (m)	020.0
Average Bay Thickness (m)	928.0
Average Pay Mickness (III)	1.9
Average Permeability (md)	0.2
Water Seturation	0.3
	U.28
	Sandstone
Initial Pressure (KPa)	/538
Cil Crovity (ADI)	33
Oil Gravity (API)	14.08
Oil Density (kg/m3)	972.0
	5837.84
Oil Viscosity @ Tr (cp)	1092.19
Salinity of Formation Water (ppm)	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	139
Primary Recovery Factor (fraction)	01
Incremental EOR Recovery Factor (fraction)	0.25
OOIP (E3m3)	531
Pool Cumulative Production (E3m3)	125.5

	0 // 11
	Suffield
Pool Name	Upper Manville U
Formation	Upper Manville U
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type	Polymer
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	1980
Secondary Recovery	
EOR 1	Waterflood
FOR 2	Polymer Flood
	r olymor riodu
EOR 3	
FOR 4	
EOR 5	
Personalize Fluid Proportion and Personalize Personators	
Reservoir Fluid Properties and Reservoir Parameters	077 /
	957.4
Average Pay Thickness (m)	5.15
Average Permeability (md)	
Average Porosity	0.26
Water Saturation	0.18
Lithology	Sandstone
Initial Pressure (kPa)	10703
Initial Temperature (C)	21
Oil Gravity (API)	17.29
Oil Density (kg/m3)	951.0
Oil Viscosity (cp)	974.82
Oil Viscosity @ Tr (cp)	593.38
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	193
Primary Recovery Factor (fraction)	0.15
Incremental EOR Recovery Eactor (fraction) includes WE	0.10
	0.2
Dol Cumulative Production (E3m2)	3009
	0/0.0
LI OTAL REMAINING RESERVES INCLUDING EUR (E3M3)	384.6

Field	Taber
Pool Name	Glauconitic K
Formation	Glauconitic K
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type	ASP
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	1942
Secondary Recovery	
EOR 1	ASP Flood
EOR 2	
FOR 2	
EOR 3	
EOR 4	
EOR 5	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	963.6
Average Pay Thickness (m)	6.86
Average Permeability (md)	
Average Porosity	0.26
Water Saturation	0.15
Lithology	Sandstone
Initial Pressure (kPa)	7719
Initial Temperature (C)	36
Oil Gravity (API)	19.03
Oil Density (kg/m3)	940.0
Oil Viscosity (cp)	449.05
Oil Viscosity @ Tr (cp)	111.40
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
UII Reserves (as of Dec 31, 2010)	
Area of Project (ha)	308
Primary Recovery Factor (fraction)	0.18
Incremental EOR Recovery Factor (fraction)	0.38
OOIP (E3m3)	4529
Pool Cumulative Production (E3m3)	2047.3
Total Remaining Reserves Including EOR (E3m3)	488.9

Field	Fast Taber
Pool Name	Mannville D
Formation	5077 (WE) & 5078 (P)
ERCB Approval Nos	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	
EOR Sub Type - Experimental	Polymer
Lon oub Type - Experimental	roiyinei
Number of Wells	
Number of FOR Injectors	2
Number of EOR Producers	2
	0
Date	
Secondary Recovery	
EOR 1	Waterflood Incremental RF
EOR 2	Polymer Flood Incremental RF
EOR 3	Waterflood Incremental RF
EOR 4	Waterflood Incremental RF
EOR 5	Waterflood Incremental RF
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	
Average Pay Thickness (m)	
Average Permeability (md)	
Average Porosity	
Water Saturation	
Lithology	
Initial Pressure (kPa)	
Initial Temperature (C)	
Oil Gravity (API)	
Oil Density (kg/m3)	1076.0
	1.3586E+12
Oil Viscosity @ Tr (cp)	2.0199E+14
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ba)	
Primary Recovery Factor (fraction)	
Incremental FOR Recovery Factor (fraction)	
	2 5/
Pool Cumulative Production (E3m3)	2.07
Total Remaining Reserves Including FOR (F3m3)	

Field	Tabor South
Pielu Beel Name	Tabel South
Fool Name	
ERCB Approval Nos.	9673/9467/10147/10423/10787
	Chemical
EOR Sub Type	ASP
Number of Wells	
Number of EOR Injectors (2)	
Number of EOR Producers (5)	
Date	
Discovery	1963
Secondary Recovery	
EOR 1	Waterflood
EOR 2	ASP Flood
EOR 3	
EOR 4	
EOR 5	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	983.3
Average Pay Thickness (m)	3.31
Average Permeability (md)	
Average Porosity	0.22
Water Saturation	0.39
Lithology	Sandstone
Initial Pressure (kPa)	7821
Initial Temperature (C)	31
Oil Gravity (API)	19.1
Oil Density (kg/m3)	939.6
Oil Viscosity (cp)	436.30
Oil Viscosity @ Tr (cp)	145.64
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	Not Reported
Primary Recovery Factor (fraction)	Not Reported
Incremental EOR Recovery Factor (fraction)	Not Reported
OOIP (E3m3)	6843
Pool Cumulative Production (E3m3)	3032.5
Total Remaining Reserves Including EOR (E3m3)	

Field	Viking-Kinsella
Pool Name	Wainwright B
Formation	Sparky
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
FOR Type	Chemical
EOR Sub Type	Polymer
	l'olymon
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	
EOR 1	Waterflood
FOR 2	Polymer Flood
505.0	
EOR 3	
EOR 4	
EOP 5	
LONG	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	649
Average Pay Thickness (m)	2.92
Average Permeability (md)	
Average Porosity	0.29
Water Saturation	0.28
Lithology	Sandstone
Initial Pressure (kPa)	4392
Initial Temperature (C)	26
Oil Gravity (API)	21.08
Oil Density (kg/m3)	927.4
Oil Viscosity (cp)	206.38
Oil Viscosity @ Tr (cp)	103.09
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	450
Primary Recovery Factor (fraction)	0.14
Incremental EOR Recovery Factor (fraction) includes WF	0.35
OOIP (E3m3)	23099
Pool Cumulative Production (E3m3)	7874.1
Total Remaining Reserves Including EOR (E3m3)	3444.4

Field	Viking-Kinsella
Pool Name	Wainwright B
Formation	Sparky B
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type	Polymer
Number of Wells	36
Number of EOR Injectors	13
Number of EOR Producers	23
Date	
Discovery	
Secondary Recovery	
EOP 1 (Polymor Flood incremental PE)	
EOR 2	N/A
EOR 3	N/A
EOR 4	N/A
EOR 5	N/A
Deserve in Fluid Dreventing and Deserve in Deserve tare	
Reservoir Fluid Properties and Reservoir Parameters	
	675
Average Pay Thickness (m)	3.5
Average Permeability (md)	300
Average Porosity	0.30
Water Saturation	0.28
Lithology	Quartzose Sandstone & Siltstone with Interbedded Shale
Initial Pressure (KPa)	4,825
Initial Temperature (C)	27
Oil Gravity (API)	21.1
Oil Density (kg/m3)	927.3
	204.95
	96.74
Salinity of Formation Water (ppm)	Not Specified
Presence of Natural Fractures	Not Specified
Presence of Gas Cap	None
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	
Area of Project (ha) Primary Recovery Factor (fraction)	
Area of Project (ha) Primary Recovery Factor (fraction) Incremental FOR Recovery Factor (fraction) includes WF	
Area of Project (ha) Primary Recovery Factor (fraction) Incremental EOR Recovery Factor (fraction) includes WF OOIP (F3m3)	19400
Area of Project (ha) Primary Recovery Factor (fraction) Incremental EOR Recovery Factor (fraction) includes WF OOIP (E3m3) Pool Cumulative Production (E3m3)	19400

Field	Wildmore
Pool Name	
Formation	Sparky Lloydminster A
EPCB Approval Nos	0673 / 0467 / 10147 / 10423 / 10787
	Chemical
	Bolymor
	rolymen
Number of Wells	
Number of FOR Injectors	
Number of EOR Producers	
Date	
Discovery	
Secondary Recovery	
EOR 1	Waterflood
FOR 2	Polymer Flood
EOR 3	
EOR 4	
EOR 5	
Reservoir Fluid Properties and Reservoir Parameters	
Depth (m)	569 7
Average Pay Thickness (m)	8 54
Average Permeability (md)	
Average Porosity	0.3
Water Saturation	0.21
Lithology	Sandstone
Initial Pressure (kPa)	3672
Initial Temperature (C)	23
Oil Gravity (API)	18.09
Oil Density (ka/m3)	945.9
Oil Viscosity (cp)	672.66
Oil Viscosity @ Tr (cp)	361.83
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	164
Primary Recovery Factor (fraction)	0.11
Incremental EOR Recovery Factor (fraction) includes WF	0.12
OOIP (E3m3)	51700
Pool Cumulative Production (E3m3)	6633.1
	5057.0

Field	Wrentham
Pool Name	Lower Mannville B
Formation	Lower Mannville B
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type	Polymer
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	1967
Secondary Recovery	
EOR 1	Polymer Flood
FOR 2	
EOR 3	
FOR 4	
EOR 5	
Peservoir Eluid Prenertics and Peservoir Peremeters	
	040.5
Depth (m)	943.5
Average Pay Thickness (m)	7.41
Average Permeability (md)	
Average Porosity	0.23
Water Saturation	0.26
Lithology	Sandstone
Initial Pressure (kPa)	7614
Initial Temperature (C)	31
Oil Gravity (API)	20.08
Oil Density (kg/m3)	933.5
Oil Viscosity (cp)	296.62
Oil Viscosity @ Tr (cp)	105.52
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	99
Primary Recovery Factor (fraction)	0.15
Incremental EOR Recovery Factor (fraction) includes WF	0.3
OOIP (E3m3)	1224
Pool Cumulative Production (E3m3)	511.2
	011.2

Field	Wrentham
Pool Name	Lower Mannville C
Formation	Lower Mannville C
ERCB Approval Nos.	9673 / 9467 / 10147 / 10423 / 10787
EOR Type	Chemical
EOR Sub Type	Polymer
Number of Wells	
Number of EOR Injectors	
Number of EOR Producers	
Date	
Discovery	1967
Secondary Recovery	
EOR 1	Polymer Flood
FOR 2	
EOR 3	
FOR 4	
EOR 5	
Percentrair Eluid Properties and Percentrair Percenters	
	953
Average Pay Thickness (m)	4.01
Average Permeability (md)	
Average Porosity	0.21
Water Saturation	0.32
Lithology	Sandstone
Initial Pressure (kPa)	9591
Initial Temperature (C)	31
Oil Gravity (API)	20.08
Oil Density (kg/m3)	933.5
Oil Viscosity (cp)	296.62
Oil Viscosity @ Tr (cp)	105.52
Salinity of Formation Water (ppm)	
Presence of Natural Fractures	
Presence of Gas Cap	
Oil Reserves (as of Dec 31, 2010)	
Area of Project (ha)	379
Primary Recovery Factor (fraction)	0.15
Incremental EOR Recovery Factor (fraction) includes WF	0.3
OOIP (E3m3)	2127
Pool Cumulative Production (E3m3)	809.3
	147.0
SOLVENT FLOODS IN ALBERTA

Field Code	Field Name	Pool Code	Pool Name	Producing Formation	Recovery Factor	Recovery Factor		Туре
					Primary	Enhanced		
AB0009	ACHESON	AB00090720001	LEDUC A	LEDUC	54.0%	31.0%	Leduc	Vertical
	ANTE CREEK		BEAVERHILL LAKE	BEAVERHILL LAKE	16.0%	22.0%	BHL	Horizontal
AB0126	BIGORAY	AB01260696002	NISKU B	NISKU	31.0%	35.8%	Pembina	Vertical
AB0126	BIGORAY	AB01260696006	NISKU F	NISKU	40.0%	47.5%	Pembina	Vertical
AB0168	BRAZEAU RIVER	AB01680696001	NISKU A	NISKU	40.5%	41.5%	Pembina	Vertical
AB0168	BRAZEAU RIVER	AB01680696004	NISKU D	NISKU	50.0%	15.0%	Pembina	Vertical
AB0168	BRAZEAU RIVER	AB01680696005	NISKU E	NISKU	45.0%	40.0%	Pembina	Vertical
AB0194	CAROLINE	AB01940176005	CARDIUM E	CARDIUM SAND	9.0%	21.0%	sandstone	Horizontal
AB0214	CHIGWELL		VIKING E	VIKING	8.0%		sandstone	Horizontal
AB0214	CHIGWELL	AB02140218009	VIKING I	VIKING	3.0%	12.0%	sandstone	Horizontal
AB0336	ENCHANT	AB03360800560	CMG POOL 005 - ARCS F,G	NISKU	22.0%	17.0%		Horizontal
AB0336	ENCHANT	AB03360801760	CMG POOL 017 - ARCS A,B	NISKU	25.0%	23.0%		Horizontal
	FENN-BIG VALLEY		NISKU	NISKU	46.8%	5.2%		Horizontal
	GOLDEN SPIKE		D-3A	LEDUC	53.0%	5.0%	LEDUC	Vertical ?
AB0425	GOOSE RIVER	AB04250744001	BEAVERHILL LAKE A	BEAVERHILL LAKE	16.0%	30.0%	BHL	Vertical
AB0505	JOFFRE	AB05050720002	LEDUC B	LEDUC	33.0%	24.0%	Leduc	Vertical
AB0505	JOFFRE	AB05050218000	VIKING	VIKING	16.0%	44.0%	sandstone	Horizontal
AB0509	JUDY CREEK	AB05090744001	BEAVERHILL LAKE A	BEAVERHILL LAKE	16.0%	34.0%	BHL	Vertical ?
AB0509	JUDY CREEK	AB05090744002	BEAVERHILL LAKE B	BEAVERHILL LAKE	20.0%	29.0%	BHL	Vertical ?
AB0513	KAYBOB	AB05130744001	BEAVERHILL LAKE A	BEAVERHILL LAKE	16.0%	30.5%	BHL	Horizontal
AB0514	KAYBOB SOUTH	AB05140500001	TRIASSIC A	MONTNEY	15.0%	30.0%		Horizontal
	LEDUC		D-2A	NISKU	25.0%	25.0 + 9.0%		Horizontal
AB0615	MITSUE	AB06150765501	GILWOOD A	GILWOOD	25.0%	37.0%		Horizontal
AB0644	NIPISI	AB06440765501	GILWOOD A	GILWOOD	26.0%	28.4%		Horizontal
AB0685	PEMBINA	AB06850696001	NISKU A	NISKU	40.5%	42.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696004	NISKU D	NISKU	35.0%	35.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696006	NISKU F	NISKU	35.0%	45.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696833	NISKU G2G	NISKU	35.0%	28.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696007	NISKU G	NISKU	40.8%	50.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696834	NISKU H2H	NISKU	40.0%	47.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696011	NISKU K	NISKU	40.0%	48.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696012	NISKU L	NISKU	25.0%	63.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696013	NISKU M	NISKU	40.0%	45.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696015	NISKU O	NISKU	40.0%	40.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696842	NISKU P2P	NISKU	40.0%	45.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696016	NISKU P	NISKU	35.0%	45.0%	Pembina	Vertical
AB0685	PEMBINA	AB06850696017	NISKU Q	NISKU	40.0%	29.0%	Pembina	Vertical

Table 95 (continued)

SOLVENT FLOODS IN ALBERTA

Field Code	Field Name	Pool Code	Pool Name	Producing Formation	Recovery Factor	Recovery Factor		Туре
					Primary	Enhanced		
AB0753	RAINBOW	AB07530772101	KEG RIVER A	RAINBOW MEMBER	50.0%	25.0%	Rainbow	Vertical
AB0753	RAINBOW	AB07530772102	KEG RIVER B	KEG RIVER UPPER	40.0%	23.0%	Rainbow	Vertical
AB0753	RAINBOW	AB07530772104	KEG RIVER D	KEG RIVER	40.0%	28.0%	Rainbow	Vertical
AB0753	RAINBOW	AB07530772105	KEG RIVER E	KEG RIVER	29.1%	20.0%	Rainbow	Vertical
AB0753	RAINBOW	AB07530772205	KEG RIVER EEE	KEG RIVER	39.9%	9.8%	Rainbow	Vertical
AB0753	RAINBOW	AB07530772106	KEG RIVER F	KEG RIVER	38.0%	15.0%	Rainbow	Vertical
AB0753	RAINBOW	AB07530772132	KEG RIVER FF	KEG RIVER	21.0%	15.0%	Rainbow	Vertical
AB0753	RAINBOW	AB07530772107	KEG RIVER G	KEG RIVER	43.4%	41.8%	rainbow	Vertical
AB0753	RAINBOW	AB07530772108	KEG RIVER H	KEG RIVER	39.2%	20.0%	rainbow	Vertical
AB0753	RAINBOW	AB07530772135	KEG RIVER II	KEG RIVER	45.0%	15.5%	rainbow	Vertical
AB0753	RAINBOW	AB07530772115	KEG RIVER O	KEG RIVER	40.0%	27.7%	rainbow	Vertical
AB0753	RAINBOW	AB07530772126	KEG RIVER Z	KEG RIVER	32.0%	33.0%	rainbow	Vertical
AB0753	RAINBOW	AB07530772127	KEG RIVER AA	KEG RIVER	45.0%	22.3%	rainbow	Vertical
AB0754	RAINBOW SOUTH	AB07540772102	KEG RIVER B	KEG RIVER	44.0%	21.0%	rainbow	Vertical
AB0754	RAINBOW SOUTH	AB07540772105	KEG RIVER E	KEG RIVER UPPER	26.0%	10.0%	rainbow	Vertical
AB0754	RAINBOW SOUTH	AB07540772107	KEG RIVER G	KEG RIVER	20.0%	12.0%	rainbow	Vertical
	REDWATER	D-3	D-3	LEDUC	65.0%		leduc	Horizontal
	RICH	D-3A	D-3A	LEDUC	46.0%		leduc	Vertical
AB0844	SIMONETTE	AB08440720000	LEDUC	LEDUC	40.0%	6.0%	Leduc	Vertical
	SUFFIELD		LOWER MANNVILLE J	LOWER MANNVILLE	12.0%		SANDSTONE	Horizontal
	SUFFIELD		UPPER MANNVILLE N	UPPER MANNVILLE	12.0%	1.0%	SANDSTONE	Horizontal
AB0887	SWAN HILLS	AB08870800160	CMG POOL 001 - BEAVERHILL LAKE A,B	SWAN HILLS	17.0%	36.0%	BHL	Horizontal
AB0889	SWAN HILLS SOUTH	AB08890800160	CMG POOL 001 - BEAVERHILL LAKE A,B	SWAN HILLS	17.0%	28.0%	BHL	Horizontal
	TURNER VALLEY		RUNDLE	RUNDLE	12.0%	2.0%	RUNDLE	Vertical
AB0925	VIRGINIA HILLS	AB09250744000	BEAVERHILL LAKE	SWAN HILLS	23.0%	22.0%	BHL	Horizontal
AB0942	WESTPEM	AB09420696004	NISKU D	NISKU	40.0%	40.0%	pembina	Vertical
AB0985	WIZARD LAKE	AB09850720001	LEDUC A	LEDUC	66.0%	19.0%	Leduc	Vertical
AB0997	ZAMA	AB09970772106	KEG RIVER F	KEG RIVER	33.1%	5.0%	zama	Vertical
AB0997	ZAMA	AB09970772233	KEG RIVER G2G	KEG RIVER	22.5%	4.0%	zama	Vertical
AB0997	ZAMA	AB09970772214	KEG RIVER NNN	KEG RIVER	30.0%	5.0%	zama	Vertical
AB0997	ZAMA	AB09970772218	KEG RIVER RRR	KEG RIVER	25.0%	5.0%	zama	Vertical
AB0997	ZAMA	AB09970768512	MUSKEG L	MUSKEG	20.0%	5.0%	zama	Vertical

EXPERIMENTAL SOLVENT FLOODS IN ALBERTA

APPROVAL_NO	OPERATOR	FIELD	POOL	RECOVERY METHOD	Start Year	End Year
5229	Gulf	Fenn - Big Valley	Nisku A	Nitrogen Injection ¹	1987	1989
4674A/B	Esso	Leduc-Woodbend		Solvent/Chase Gas/Water Inject	1985	1988
6098	Petro-Canada	Provost	Cummings I	Gas Injection	1989	1991
4309E	Esso	Redwater	Leduc A	Solvent/Chase Gas/Water Inject	1984	1991
7809	Gulf	Rich	Leduc A	Sour Gas Injection	1995	1996
5023	AEC	Suffield	Upper Mannville N	Cyclic Injection	1986	1988
9540B	EnCana	Suffield	Upper Mannville N	Solvent Injection	2003	2005
TVU 4	Talisman	Turner Valley	Rundle	Nitrogen Injection	2001	2005
7939	Pennzoil	Zama		Sour Gas Injection	1996	1998

•

Units	Property	Flood Type	Min	Max	# Recovery Processes In
					Reserves Database
m	Average_Pay	VERTICAL	17.5	103.2	46
md	Average_Permeability	VERTICAL	61	9850	46
fraction	Average_Porosity	VERTICAL	0.06	0.15	46
fraction	Water_Saturation	VERTICAL	0.07	0.28	46
kPa	Initial_Pressure	VERTICAL	11790	46019	46
kg/m3	Oil Density	VERTICAL	792.3	857.0	46
ср	Oil Viscosity	VERTICAL	1.3	3.6	46
E3m3	OOIP	VERTICAL	429	63900	46
percent	Incremental RF	VERTICAL	1.5	63.0	46
percent	Total RF	VERTICAL	25.0	90.8	46
ha	Project Area	VERTICAL	15.0	1501.0	46
m	Average_Pay	HORIZONTAL	3.3	17.9	6
md	Average_Permeability	HORIZONTAL	10	20	6
fraction	Average_Porosity	HORIZONTAL	0.08	0.14	6
fraction	Water_Saturation	HORIZONTAL	0.14	0.27	6
kPa	Initial_Pressure	HORIZONTAL	10374	35550	6
kg/m ³	Oil Density	HORIZONTAL	805.9	898.0	6
ср	Oil Viscosity	HORIZONTAL	1.4	20.2	6
E3m3	OOIP	HORIZONTAL	723	16880	6
percent	Incremental RF	HORIZONTAL	5.0	23.0	6
percent	Total RF	HORIZONTAL	39.0	46.0	6
ha	Project Area	HORIZONTAL	149.0	3453.0	6
m	Average_Pay	COMBINATION	18.9	135.7	10
md	Permeability	COMBINATION	18	1411	10
fraction	Porosity	COMBINATION	0.03	0.10	10
fraction	Water_Saturation	COMBINATION	0.10	0.26	10
kPa	Initial_Pressure	COMBINATION	7824	31820	10
kg/m3	Oil Density	COMBINATION	811.0	844.3	10
ср	Oil Viscosity	COMBINATION	1.5	5.0	10
E3m3	OOIP	COMBINATION	28370	208700	10
percent	Incremental RF	COMBINATION	2.0	36.0	10
percent	Total RF	COMBINATION	14.0	62.0	10
ha	Project Area	COMBINATION	590.0	9169.0	10

RANGES OF RESERVOIR DATA FOR SOLVENT FLOODS IN ALBERTA

RANGES OF RESERVOIR DATA FOR SOLVENT FLOODS IN ALBERTA

Units	Property	Enhanced_Type	Min	Max	# Recovery Processes In
					Reserves Database
m	Average_Pay	SANDSTONE	2.0	4.8	8
md	Average_Permeability	SANDSTONE	41	385	8
fraction	Average_Porosity	SANDSTONE	0.12	0.28	8
fraction	Water_Saturation	SANDSTONE	0.15	0.44	8
kPa	Initial_Pressure	SANDSTONE	5430	33807	8
kg/m3	Oil Density	SANDSTONE	796.8	971.0	8
ср	Oil Viscosity	SANDSTONE	1.5	1093.9	8
E3m3	OOIP	SANDSTONE	625	8215	8
percent	Incremental RF	SANDSTONE	3.0	30.0	8
percent	Total RF	SANDSTONE	1.2	82.5	8
ha	Project Area	SANDSTONE	1467.0	4465.0	8

CHEMICAL FLOODS IN ALBERTA

Field Code	Field Name	Pool Code	Pool Name	Producing Formation	Recovery Factor	Recovery Factor	Туре
					Primary	Enhanced	
AB0339	ENTICE	AB03390310002	LOWER MANNVILLE B	ELLERSLIE	10.0%	25.0%	ASP Flood
AB0902	MOONEY	AB09020304001	BLUESKY A	BLUESKY	7.0%	12.0%	ASP Flood
AB0877	SUFFIELD	AB08770250047	UPPER MANNVILLE UU	GLAUCONITIC	10.0%	25.0%	ASP Flood
AB0893	TABER	AB08930300011	GLAUCONITE K	GLAUCONITIC	18.0%	38.0%	ASP Flood
AB0895	TABER SOUTH	AB08950248002	MANNVILLE B	MANNVILLE GRP	10.0%	42.0%	ASP Flood
AB0259	COUNTESS	AB02590250008	UPPER MANNVILLE H	GLAUCONITIC	10.5%	36.0%	Polymer Flood
AB0318	EDGERTON	AB03180294018	WOODBEND A	WOODBEND	6.0%	3.0%	Polymer Flood
AB0750	PROVOST	AB07500250001	UPPER MANNVILLE A	MANNVILLE UPPER	3.0%	12.0%	Polymer Flood
AB0877	SUFFIELD	AB08770250021	UPPER MANNVILLE U	MANNVILLE UPPER	15.0%	20.0%	Polymer Flood
AB0923	VIKING-KINSELLA	AB09230278002	WAINWRIGHT B	WAINWRIGHT	14.0%	35.0%	Polymer Flood
AB0963	WILDMERE	AB09630800360	CMG POOL 003 - SPARKY E,LLOYDMINSTER A	LLOYDMINSTER SS/SPARKY	11.0%	12.0%	Polymer Flood
AB0992	WRENTHAM	AB09920310002	LOWER MANNVILLE B	SUNBURST SS	15.0%	30.0%	Polymer Flood
AB0992	WRENTHAM	AB09920310003	LOWER MANNVILLE C	MANNVILLE LOWER	15.0%	30.0%	Polymer Flood

EXPERIMENTAL CHEMICAL FLOODS IN ALBERTA

APPROVAL_NO	OPERATOR	FIELD	POOL	RECOVERY METHOD	Start Year	End Year
3884	Dome	Viking-Kinsella	Wainwright B	Alkaline Flood ²	1983	
4357A/3692A	Amoco	Cessford	Mannville C	Alkaline Flood ²	1982	1992
4065	PanCanadian	Horsefly Lake		Water/Polymer/Alkaline Flood ²	1984	1987
10640	EnCana	Countess	Upper Mannville H	Water, Alkaline, and Polymer Injection ²	2006	2008
5353F/4263	Amoco	Provost	Lloydminster	Polymer/Alkaline Flood ²	1984	1992
10626B	EnCana	Upper Mannville UU	Upper Mannville UU	Water, Alkaline, Polymer, and Surfactant	2006	2008
5379	BP	Chauvin South	Sparky E	Polymer Flood ²	1987	1993
6097	Petro-Canada	Provost	Cummings I	Polymerized Water ²	1989	1991
5078C	Chevron	Taber		Water/Polymer ²	1986	1993

RANGES OF RESERVOIR DATA FOR CHEMICAL FLOODS IN ALBERTA

Units	Property	Flood Type	Min	Max	# Recovery Processes In
					Reserves Database
m	Average_Pay	ALKALI-POLYMER	3.0	8.0	3
md	Average_Permeability	ALKALI-POLYMER	350	1400	3
fraction	Average_Porosity	ALKALI-POLYMER	0.24	0.29	3
fraction	Water_Saturation	ALKALI-POLYMER	0.30	0.30	3
kPa	Initial_Pressure	ALKALI-POLYMER	8784	8784	3
kg/m ³	Oil Density	ALKALI-POLYMER	915.9	955.4	3
ср	Oil Viscosity	ALKALI-POLYMER	1.0	439.2	3
E3m3	OOIP	ALKALI-POLYMER	1486	17400	3
percent	Incremental RF	ALKALI-POLYMER	46.3	46.3	3
percent	Total RF	ALKALI-POLYMER	N/A	N/A	3
ha	Project Area	ALKALI-POLYMER	13.0	303.5	3
m	Average_Pay	ALKALI-SURFACTANT-POLYMER	1.9	6.9	5
md	Average_Permeability	ALKALI-SURFACTANT-POLYMER	3000	3000	5
fraction	Average_Porosity	ALKALI-SURFACTANT-POLYMER	0.16	0.30	5
fraction	Water_Saturation	ALKALI-SURFACTANT-POLYMER	0.15	0.39	5
kPa	Initial_Pressure	ALKALI-SURFACTANT-POLYMER	5790	13645	5
kg/m3	Oil Density	ALKALI-SURFACTANT-POLYMER	855.0	972.0	5
ср	Oil Viscosity	ALKALI-SURFACTANT-POLYMER	3.6	1092.2	5
E3m3	OOIP	ALKALI-SURFACTANT-POLYMER	531	7883	5
percent	Incremental RF	ALKALI-SURFACTANT-POLYMER	25.0	38.0	5
percent	Total RF	ALKALI-SURFACTANT-POLYMER	N/A	N/A	5
ha	Project Area	ALKALI-SURFACTANT-POLYMER	139.0	308.0	5
m	Average_Pay	POLYMER	1.0	9.0	11
md	Average_Permeability	POLYMER	300	3000	11
fraction	Average_Porosity	POLYMER	0.21	0.32	11
fraction	Water_Saturation	POLYMER	0.18	0.40	11
kPa	Initial_Pressure	POLYMER	1900	10703	11
kg/m3	Oil Density	POLYMER	898.4	1076.0	11
ср	Oil Viscosity	POLYMER	23.0	2.02E+14	11
E3m3	OOIP	POLYMER	2.54	51700	11
percent	Incremental RF	POLYMER	12.0	36.0	11
percent	Total RF	POLYMER	N/A	N/A	11
ha	Project Area	POLYMER	99.0	1252.0	11

EXPERIMENTAL THERMAL RECOVERY PROJECTS IN ALBERTA (NON OILSANDS DESIGNATION)

APPROVAL NO	OPERATOR	FIELD	LOCATION	RECOVERY METHOD	ACTIVE PERIOD
6373 (5789)	AEC	Suffield	3-20-8 W4M	Hot-water Injection	1988-1991
3537E	PanCanadian	Countess	9-19-16 W4M	Combustion	1982-1995
7156	Petro Canada	Shekilie	5-5-118-08 W6M	Combustion	1993-1996

OILSANDS EXPERIMENTAL PROJECTS IN "CONVENTIONAL OIL" AREAS OF ALBERTA

APPROVAL NO.	OPERATOR	FIELD	LOCATION	RECOVERY METHOD	ACTIVE PERIOD
4632C	CNRL	Lindbergh	13-55-6-W4M	Central Processing Facility	1985-2003
3105D	Amoco	Morgan	35-51-4 W4M	CTD/Steam Stimulation	1980-1992
788	Husky	Lloydminster	20/28/29-50-1 W4M	Steam Flood	1965-1970
805	Forgotson & Burk	Wizard Lake	11,13 & 14-48-28 W4M	Injection Program Various Fluids	1965-1966
840	Husky	Wainwright	20 & 21 46-6 W4M	Steam Stimulation	1965-1966
845	Husky	Lloydminster	14A-35-49-2 W4M	Steam Stimulation	1966-1967
847	Kodiak Petroleums Ltd.	Lloydminster	11/14-50-2 W4M	Steam Stimulation	1966-1967
1316	Canadian Hidrogas	Lloydminster	12-50-2 W4M	Combustion	1970-1975
2145	Tesoro	Provost	19-37-1 W4M	Steam Stimulation	1975-1976
2707	Tesoro	Provost	32-36-1 W4M	Steam Stimulation	1978-1979
3086	AEC	Suffield	10-20-08 W4M	Fireflood Combustion	1980-1985
3341	Dome	Chauvin South	26-42-3 W4M	Steam Stimulation	1981-1982
3342	Dome	Hayter	26-40-1 W4M	Steam Stimulation	1981-1982
3374	Esso	Joarcam	6/7-48-20 W4M	Combustion	1979-1984
3402	Hudson's Bay	Lloydminster	23-49-1 W4M	Steam Stimulation	1981-1982
3417	Dome	Rivercourse	36-47-1 W4M	Steam Stimulation	1981-1984
3424	Husky	Lloydminster	13-50-3 W4M	Steam Stimulation	1982
3635	Koch	Wildmere	23-47-5 W4M	Combination Thermal Drive	1982-1987
3646	Husky	Wainwright	32-45-6 W4M	Steam Stimulation	1982-1984
3720	Dome	Atlee-Buffalo	18-21-5 W4M	Combination Thermal Drive	1982-1987
3991	Koch	Wildmere	13/14-47-5 W4M	Steam Stimulation	1983-1984
4561	Dome	Morgan	35-51-4 W4M	Steam Stimulation	1985-1986
4567	Canadian Occidental	Morgan	34-51-4 W4M	Combustion	1985-1990
4780	AEC	Suffield	10-20-8 W4M	Combustion	1980-1990
4943	Can. N.W. Energy	Wildmere	4-30-48-4 W4M	Electrical Stimulation	1986-1990
5802	PanCanadian	Medicine Hat	35-12-5 W4M	Steam Stimulation	1988-1991
7173	Koch	Wildmere	9-23-47-5 W4M	Electromagnetic Stimulation	1993-1994
7516	Probe Exploration	Lloydminster	2-51-2 W4M	Steam Assisted Gravity Drainage	1994-1997
7810	ELAN	Provost	33-36-1W4M	Steam Assisted Gravity Drainage	1995-1998
7919	Norcen	Provost	20-37-1W4M	Single Well Steam Assisted Gravity Drainage	1996-1999
8040	ELAN	Fort Kent	13&14-62-4W4M	Single Well Steam Assisted Gravity Drainage	1996-1999
8059	PanCanadian	Provost	4-21-38-1 W4M	Water & Gas Injection	1996-1997
2531B	Husky	Lloydminster	30-50-1 W4M	Steam Stimulation	1977-1981
2768D	Petro-Canada	Viking-Kinsella	30-48-8 W4M	Fireflood	1978-1985
3002A	Dome	Morgan	35-51-4 W4M	Steam Injection	1980

Table 102 (continued)

OILSANDS EXPERIMENTAL PROJECTS IN "CONVENTIONAL OIL" AREAS OF ALBERTA

APPROVAL NO.	OPERATOR	FIELD	LOCATION	RECOVERY METHOD	ACTIVE PERIOD
3250G	Home	Lloydminster	2-51-2 W4M	Steam Stimulation/Flood	1981-1992
3293A	Mobil-GC	Morgan	27-51-4 W4M	Steam Stimulation	1981-1982
3418B (2057,3132)	Norcen	Provost	17-37-1 W4M	Combustion	1981-1987
3638A	Husky	Lloydminster	13-50-3 W4M	Steam Stimulation	1982
3918B	Petro-Canada	Viking-Kinsella	24-48-9 W4M	Combustion	1983-1987
4414C	Norcen	Provost	20-37-1 W4M	Steam Stimulation/Drive	1984-1995
4449A	Mobil	Morgan	36-51-4 W4M	Steam Stimulation	1984-1986
4459 (2144)	Mobil	Lloydminster	18-51-2 W4M	Steam Stimulation	1975-1988
4460B	Mobil	Lloydminster	12-49-1 W4M	Combination Thermal Drive	1975-1987
(3229, 2142)					
5844B	PanCanadian	Provost	21-38-1 W4M	Steam Stimulation	1988-1991
6010B	Canada Energy N.W.	Atlee-Buffalo	19-21-5 W4M	Steam Stimulation	1985-1992
(5387, 4686,11X,					
15X)					
6968A (3105D)	CNRL	Morgan	35-51-4 W4M	CTD/Steam Stimulation	1980-1995
6975A	PanCanadian	Provost	4-21-38-1 W4M	Horizontal Well/Steam Flood	1992-1995
8006D	AEC	Fisher	21&22-70-4-W4M	Steam Assisted Gravity Drainage	1996-2002

Units	Property	Flood Type	Min	Max
m	Average_Pay	VERTICAL	20.0	200.0
m	Depth	VERTICAL	1000.0	10000.0
md	Average_Permeability	VERTICAL	50	10000
fraction	Average_Porosity	VERTICAL	0.06	0.3
fraction	Water_Saturation	VERTICAL	0.07	0.28
kPa	Initial_Pressure	VERTICAL	10000	50000
kg/m3	Oil Density	VERTICAL	790.0	850.0
ср	Oil Viscosity	VERTICAL	0.1	5
E3m3	OOIP	VERTICAL	400	100000
ha	Project Area	VERTICAL	15.0	2000.0
	Lithology	VERTICAL	CARB.	CARB.
	Prior Waterflood	VERTICAL	None	None
	Gas cap	VERTICAL	None	None
m	Average_Pay	HORIZONTAL	3.0	20.0
m	Depth	HORIZONTAL	1000.0	10000.0
md	Average_Permeability	HORIZONTAL	10	10000
fraction	Average_Porosity	HORIZONTAL	0.06	0.3
fraction	Water_Saturation	HORIZONTAL	0.1	0.3
kPa	Initial_Pressure	HORIZONTAL	10000	50000
ka/m ³	Oil Density	HORIZONTAL	800.0	900.0
ср	Oil Viscosity	HORIZONTAL	0.1	20
E3m3	OOIP	HORIZONTAL	500	100000
ha	Project Area	HORIZONTAL	150.0	5000.0
	Lithology	HORIZONTAL	CARB.	CARB.
	Prior Waterflood	HORIZONTAL	None	None
	Gas cap	HORIZONTAL	None	None
m	Average_Pay	COMBINATION	18.0	1000.0
m	Depth	COMBINATION	1000.0	10000.0
md	Permeability	COMBINATION	20	2000
fraction	Porosity	COMBINATION	3.00	30.00
fraction	Water_Saturation	COMBINATION	0.10	0.30
kPa	Initial_Pressure	COMBINATION	7500	50000
kg/m3	Oil Density	COMBINATION	750.0	850.0
ср	Oil Viscosity	COMBINATION	0.1	5.0
E3m3	OOIP	COMBINATION	25000	1000000
ha	Project Area	COMBINATION	600.0	25000.0
	Lithology	COMBINATION	CARB.	CARB.
	Prior Waterflood	COMBINATION	None	None
	Gas cap	COMBINATION	None	None

SCREENING PARAMETERS FOR SOLVENT FLOODS IN ALBERTA

.

Table 103 (continued)

Units	Property	Enhanced_Type	Min	Max
m	Average_Pay	SANDSTONE	2.0	20.0
m	Depth	SANDSTONE	1000.0	10000.0
md	Average_Permeability	SANDSTONE	40	2000
fraction	Average_Porosity	SANDSTONE	0.1	0.3
fraction	Water_Saturation	SANDSTONE	0.15	0.44
kPa	Initial_Pressure	SANDSTONE	5400	35000
kg/m3	Oil Density	SANDSTONE	750.0	975.0
ср	Oil Viscosity	SANDSTONE	0.1	15
E3m3	OOIP	SANDSTONE	600	25000
ha	Project Area	SANDSTONE	1000.0	25000.0
	Lithology	SANDSTONE	SAND.	SAND.
	Prior Waterflood	SANDSTONE	None	None
	Gas cap	SANDSTONE	None	None

SCREENING PARAMETERS FOR SOLVENT FLOODS IN ALBERTA

POOLS WITH POTENTIAL FOR SOLVENT FLOODING

EOR TYPE	NUMBER OF POOLS	OOIP (10 ³ m ³)	INITIAL ESTALISHED RESERVES (10 ³ m ³)	REMAINING ESTABLISHED RESERVES (10 ³ m ³)	RECOVERY FACTOR TO 2010 (%)
Solvent Vertical	200	62051.1	8714.8	805.6	12.75
Solvent Horizontal	734	182776.0	37602.2	3920.1	18.43
Solvent Combination	382	95242.8	13630.4	1256.7	12.99
Solvent Sandstone	1701	460548.6	62552.3	8018.8	11.84

FIVE LARGEST POOLS WITH VERTICAL SOLVENT FLOOD POTENTIAL

Field and Pool		Oil In Blass	In Place Recovery Initial			Reservoir Pa	rameters								Other Pool In	nformation
				Primary	Cumulative	Area	Average				Initial		_		Mean	
Field	ΡοοΙ	Pool	Primary	Pool	Production	Pool	Pay Thickness	Porosity	Water Saturation	Shrinkage	Solution GOR	Density	Temperatur e	Initial Pressure	Formation Depth	Discovery Year
		10 ³ m ³	Fraction	10 ³ m ³	10 ³ m ³	ha	m	Fraction	Fraction	Fraction	m ³ m ³	kg/m ³	°C	kPa	m KB	
MEDICINE RIVER	D-3 F	1169.0	0.35	409.0	284.5	95	24.00	0.080	0.11	0.72	127	810	85	16699	2992.6	2003
RICH	D-3 A	1333.0	0.46	613.0	611.2	15	103.20	0.110	0.10	0.87	64	857	65	13616	1818.7	1982
MOOSE	RUNDLE C	1587.0	0.25	397.0	239.5	247	30.38	0.060	0.25	0.47	450	838	48	14190	2475.6	1994
FENN WEST	COMMINGLED POOL 001	1883.0	0.341	642.0	625.5	85	48.60	0.067	0.16	0.81	73	865	62	12570	1726.8	1983
RAINBOW SOUTH	KEG RIVER N	3000.0	0.13	390.0	345.8	172	36.55	0.073	0.14	0.76	159	796	69	18191	1999.0	1978

FIVE LARGEST POOLS WITH HORIZONTAL SOLVENT FLOOD POTENTIAL

Field and Pool		Oil In Blaca	Recovery	Initial		Reservoir Pa	arameters								Other Pool In	nformation
		On in Trace		Primary	Cumulative	Area	Average				Initial		_		Mean	
Field	Pool	Pool	Primary	Pool	Production	Pool	Pay Thickness	Porosity	Water Saturation	Shrinkage	Solution GOR	Density	Temperatur e	Initial Pressure	Formation Depth	Discovery Year
		10 ³ m ³	Fraction	10 ³ m ³	10 ³ m ³	ha	m	Fraction	Fraction	Fraction	m ³ m ³	kg/m ³	°C	kPa	m KB	
EVI	COMMINGLED POOL 005	5494.0	0.6	3296.0	3256.2	888	5.58	0.180	0.30	0.88	53	824	38	15810	1503.2	1985
GARRINGTON	COMMINGLED POOL 008	4230.0	0.08	338.0	320.2	2560	3.00	0.107	0.22	0.66	152	843	82	17861	2232.3	1982
SLAVE	SLAVE POINT S	3888.0	0.5	1944.0	1770.1	1170	6.23	0.081	0.26	0.89	32	827	50	17164	1702.8	1980
SWALWELL	D-1 A	9562.0	0.1	956.0	574.1	3791	6.74	0.070	0.19	0.66	170	828	85	18216	2189.3	1996
WAYNE-ROSEDALE	NISKU A	5636.0	0.35	1973.0	1788.0	957	9.50	0.090	0.16	0.82	78	851	54	13606	1754.4	1993

FIVE LARGEST POOLS WITH SANDSTONE SOLVENT FLOOD POTENTIAL

Field and Pool		Oil In Blaca	In Place Recovery		Reservoir Pa	rameters								Other Pool Information		
Field	Pool	Pool	Primary	Cumulative Production	Area Pool	Average Pay Thickness	Porosity	Water Saturation	Shrinkage	Initial Solution GOR	Density	Temperatur e	Initial Pressure	Mean Formation Depth	Discovery Year	
		10 ³ m ³	Fraction	10 ³ m ³	ha	m	Fraction	Fraction	Fraction	m ³ m ³	kg/m ³	°C	kPa	m KB		
EDSON	COMMINGLED POOL 003	12950.0	0.045	530.9	5264	4.95	0.100	0.28	0.69	220	813	83	20730	1786.9	1962	
JAYAR	COMMINGLED POOL 001	8218.0	0.052	354.2	2090	7.10	0.120	0.29	0.65	185	752	66	15275	1935.4	1979	
PINE CREEK	COMMINGLED POOL 005	10170.0	0.05	416.3	4201	3.70	0.110	0.15	0.70	167	805	68	13020	1899.4	1974	
WAPITI	COMMINGLED POOL 001	19560.0	0.07	1068.2	3761	7.98	0.110	0.25	0.79	98	810	40	9337	1274.5	1969	
WILSON CREEK	COMMINGLED POOL 002	10650.0	0.1	788.6	4539	3.48	0.140	0.42	0.83	62	833	68	6844	1253.1	1979	

Sproule

PEMBINA NISKU REEFS WITH NO MISCIBLE FLOOD

BRAZEAU RIVER	NISKU C
BRAZEAU RIVER	NISKU G
PEMBINA	BANFF L
PEMBINA	NISKU AA
PEMBINA	NISKU AAA
PEMBINA	NISKU B2B
PEMBINA	NISKU BBB
PEMBINA	NISKU CCC
PEMBINA	NISKU DDD
PEMBINA	NISKU FF
PEMBINA	NISKU GGG
PEMBINA	NISKU JJJ
PEMBINA	NISKU OO
PEMBINA	NISKU PPP
PEMBINA	NISKU QQQ
PEMBINA	NISKU TTT
PEMBINA	NISKU U
PEMBINA	NISKU VVV
PEMBINA	NISKU W
PEMBINA	NISKU X

RAINBOW KEG RIVER REEFS WITH NO MISCIBLE FLOOD

RAINBOW	KEG RIVER A2A
RAINBOW	KEG RIVER B4B
RAINBOW	KEG RIVER B5B
RAINBOW	KEG RIVER C3C
RAINBOW	KEG RIVER D3D
RAINBOW	KEG RIVER D5D
RAINBOW	KEG RIVER E4E
RAINBOW	KEG RIVER F4F
RAINBOW	KEG RIVER G3G
RAINBOW	KEG RIVER H4H
RAINBOW	KEG RIVER I2I
RAINBOW	KEG RIVER K2K
RAINBOW	KEG RIVER K4K
RAINBOW	KEG RIVER L2L
RAINBOW	KEG RIVER L3L
RAINBOW	KEG RIVER M4M
RAINBOW	KEG RIVER O2O
RAINBOW	KEG RIVER P4P
RAINBOW	KEG RIVER Q2Q
RAINBOW	KEG RIVER R3R
RAINBOW	KEG RIVER S2S
RAINBOW	KEG RIVER T4T
RAINBOW	KEG RIVER V3V
RAINBOW	KEG RIVER WWW
RAINBOW	KEG RIVER X4X
RAINBOW	KEG RIVER XXX
RAINBOW	KEG RIVER Y2Y
RAINBOW	KEG RIVER Y3Y
RAINBOW	KEG RIVER Y4Y
RAINBOW	KEG RIVER Z3Z
RAINBOW	KEG RIVER Z4Z
RAINBOW	KEG RIVER ZZZ
RAINBOW SOUTH	KEG RIVER BB
RAINBOW SOUTH	KEG RIVER M
RAINBOW SOUTH	KEG RIVER N
RAINBOW SOUTH	KEG RIVER P
RAINBOW SOUTH	KEG RIVER S
RAINBOW SOUTH	KEG RIVER V
RAINBOW SOUTH	KEG RIVER X
RAINBOW SOUTH	KEG RIVER Y
RAINBOW SOUTH	KEG RIVER Z

Units	Property	Flood Type	Min	Max	
m	Average_Pay	ALKALI-POLYMER	3.0	25.0	
md	Average_Permeability	ALKALI-POLYMER	350	5000	
fraction	Average_Porosity	ALKALI-POLYMER	0.24	0.35	
fraction	Water_Saturation	ALKALI-POLYMER	0.10	0.30	
kPa	Initial_Pressure	ALKALI-POLYMER	1000	15000	
kg/m ³	Oil Density	ALKALI-POLYMER	900.0	960.0	
ср	Oil Viscosity	ALKALI-POLYMER	1.0	500.0	
E3m3	OOIP	ALKALI-POLYMER	1400	100000	
ha	Project Area	ALKALI-POLYMER	13.0	303.5	
	Lithology	ALKALI-POLYMER	SAND	SAND	
m	Average Pay	ALKALI-SURFACTANT-POLYMER	1.0	25.0	
md	Average Permeability	ALKALI-SURFACTANT-POLYMER	500	5000	
fraction	Average Porosity	ALKALI-SURFACTANT-POLYMER	0.16	0.35	
fraction	Water_Saturation	ALKALI-SURFACTANT-POLYMER	0.10	0.39	
kPa	Initial_Pressure	ALKALI-SURFACTANT-POLYMER	1000	14000	
kg/m3	Oil Density	ALKALI-SURFACTANT-POLYMER	850.0	975.0	
ср	Oil Viscosity	ALKALI-SURFACTANT-POLYMER	3.0	1100.0	
E3m3	OOIP	ALKALI-SURFACTANT-POLYMER	500	100000	
ha	Project Area	ALKALI-SURFACTANT-POLYMER	100.0	25000.0	
	Lithology	ALKALI-SURFACTANT-POLYMER	SAND	SAND	
m			1.0	25.0	
md	Average Permeability	POLYMER	300	5000	
fraction	Average Porosity	POLYMER	0.15	0.35	
fraction	Water Saturation	POLYMER	0.10	0.40	
kPa	Initial Pressure	POLYMER	1000	15000	
ka/m3	Oil Density	POLYMER	875.0	1075.0	
CD	Oil Viscosity	POLYMER	20.0	1.00E+04	
E3m3	OOIP	POLYMER	500	100000	
ha	Project Area	POLYMER	100.0	25000.0	
	Lithology	POLYMER	SAND	SAND	

SCREENING PARAMETERS FOR CHEMICAL FLOODS IN ALBERTA

POOLS WITH POTENTIAL FOR CHEMICAL FLOODING

EOR TYPE	NUMBER OF POOLS	OOIP (10 ³ m ³)	INITIAL ESTALISHED RESERVES (10 ³ m ³)	REMAINING ESTABLISHED RESERVES (10 ³ m ³)	RECOVERY FACTOR TO 2010 (%)
ASP	1396	443177.6	88274.8	8655.7	17.97
POLYMER	935	424882.4	66385.2	8200.5	13.69

FIVE LARGEST POOLS WITH ASP FLOOD POTENTIAL

Field and Pool	Oil In Pla		Recovery Factor	Initial Established Reserves	Cumulative	Reservoir Para	meters								Other Pool In	nformation
Field	Pool	Pool	Primary	Primary Pool	Production	Area Pool	Average Pay Thickness	Porosity	Water Saturation	Shrinkage	Initial Solution GOR	Density	Temperatur e	Initial Pressure	Mean Formation Depth	Discovery Year
		10 ³ m ³	Fraction	10 ³ m ³	10 ³ m ³	ha	m	Fraction	Fraction	Fraction	m ³ m ³	kg/m ³	°C	kPa	m KB	
LLOYDMINSTER	COMMINGLED POOL 010	9231.0	0.07	646.0	532.9	927	4.16	0.310	0.22	0.99	10	958	28	3518	552.8	1980
PROVOST	DINA N	8067.0	0.50	4034.0	3459.3	517	6.45	0.290	0.14	0.97	10	934	31	5969	834.9	1957
PROVOST	BASAL QUARTZ C	9937.0	0.43	4273.0	4113.2	648	7.02	0.280	0.17	0.94	25	921	33	6501	881.1	1975
SUFFIELD	UPPER MANNVILLE TTT	9234.0	0.03	277.0	185.7	659	9.10	0.260	0.37	0.94	26	956	34	9236	946.7	2002
WILDMERE	LLOYDMINSTER MM	8172.0	0.01	81.7	52.3	444	7.00	0.330	0.17	0.96	14	956	24	4761	629.1	1999

FIVE LARGEST POOLS WITH POLYMER FLOOD POTENTIAL

Field and Pool			Oil In Place	Recovery Factor	Initial Established Reserves	Cumulative	Reservoir Pa	arameters								Other Pool II	nformation
					Primary	Production	Area	Average		Water	a	Initial		Temperatur	Initial	Mean	Discovery
Field		Pool	Pool	Primary	Pool		Pool	Pay Thickness	Porosity	Saturation	Shrinkage	Solution GOR	Density	e	Pressure	Formation Depth	Year
			10 ³ m ³	Fraction	10 ³ m ³	10 ³ m ³	ha	m	Fraction	Fraction	Fraction	m ³ m ³	kg/m ³	°C	kPa	m KB	
LLOYDM	INSTER	LLOYDMINSTER M	17740.0	0.004	71.0	70.3	1042	6.57	0.310	0.17	0.99	10	983	27	4192	685.7	1977
LLOYDM	INSTER	COMMINGLED POOL 014	20620.0	0.100	2062.0	1329.0	1929	4.36	0.320	0.21	0.97	8	981	22	2985	478.4	1994
PROVOS	ST	BASAL QUARTZ C	9937.0	0.430	4273.0	4113.2	648	7.02	0.280	0.17	0.94	25	921	33	6501	881.1	1975
SUFFIEL	D	UPPER MANNVILLE TTT	9234.0	0.030	277.0	185.7	659	9.10	0.260	0.37	0.94	26	956	34	9236	946.7	2002
WILDME	RE	SPARKY O	9427.0	0.010	94.3	27.6	1836	2.45	0.290	0.27	0.99	10	973	28	4186	659.0	1982

POOLS WITH POTENTIAL FOR THERMAL RECOVERY

EOR TYPE	NUMBER OF POOLS	OOIP (10 ³ m ³)	INITIAL ESTALISHED RESERVES (10 ³ m ³)	REMAINING ESTABLISHED RESERVES (10 ³ m ³)	RECOVERY FACTOR TO 2010 (%)
Cyclic Steam	196	275185.3	29661	8655.7	7.63
Steam Flood	214	279257.8	29922.3	3621.3	9.42
SAGD	196	275185.3	29661	3423.5	9.53
In-Situ Combustion	1434	528507.6	97448.1	10485	16.45

ASTM Correlation for Four Alberta Oil Samples

Figure 1
Sproule

Oil Viscosity at 15°C vs Oil Density

Figure 2

Sproule =

Acheson D-3A - Well Locations

Figure 3
Sproule

Acheson D-3A - Production/Injection History

Figure 4
Sproule

Acheson D-3A - Approval 10003 Area

Sproule _____

Acheson D-3A – Area 2 Production History

Figure σ

Acheson D-3A – Reservoir Pressure Map at January 2011

Sproule _____

Figure 8

Ante Creek Beaverhill Lake - Well Locations

Ante Creek Beaverhill Lake - Production/Injection History

Bigoray Nisku B - Production/Injection History

Bigoray Nisku F - Production/Injection History

Figure 14
Sproule

Brazeau River Nisku A (aka Nisku X2X) – Well Locations

Brazeau River Nisku D - Production/Injection History

Figure 18
Sproule

Brazeau River Nisku E - Production/Injection History

Figure 20

Caroline Cardium E - Well Locations

Caroline Cardium E - Production/Injection History

Figure 22
Sproule

Chigwell Viking E - Well Locations

Figure 23
Sproule

Chigwell Viking E - Production/Injection History

Chigwell Viking I - Well Locations

Figure 25
Sproule

Chigwell Viking I - Production/Injection History

GLENCOE RESOURCES LTD.

Chigwell Viking I CO₂ Flood Historical Production Calander Daily vs. Cumulative

Figure 28

GLENCOE RESOURCES LTD.

Chigwell Viking I ER Scheme Historical Production

Calander Daily vs. Time

Figure 32

Enchant Arcs A & B - Well Locations

Figure 34
Sproule

Enchant Arcs A & B - Production/Injection History

Figure 35
Sproule

Enchant Arcs F & G - Well Locations

Figure 36

Enchant Arcs F & G - Production/Injection History

Fenn-Big Valley Nisku A - Well Locations

Figure 38

Sproule =

Fenn-Big Valley Nisku A - Production/Injection History

Golden Spike D-3A - Well Locations

Golden Spike D-3A - Production/Injection History

Figure 41
Sproule _____

Goose River Beaverhill Lake A - Well Locations

Goose River Beaverhill Lake A - Production/Injection History

Joffre D-3B - Production/Injection History

Figure 45
Sproule

Joffre Viking - Production/Injection History

Joffre Viking – CO₂ Miscible Area

Figure 48
Sproule

Joffre Viking – CO₂ Miscible Area Production History

Figure 49

Sproule

Figure 50

Judy Creek Beaverhill Lake A - Well Locations

Judy Creek Beaverhill Lake A - Production/Injection History

"A" Pool Rate Versus Cumulative Plot

Judy Creek BHL Unit Gross Production

\mathfrak{O} Judy Creek "A" Pool CO₂ EOR Pilot

Judy Creek-Schematic Cross Section

- Pilot centered on injector 07-02-064-11W5
- Pattern Area: 80 acres
 - Small pattern
 - Large banksize
 - Quick response
- Target R5A/B
 - R5: 42% of Judy Ck. OOIP
- Four producers
- All vertical wells
- 4 of 5 pattern wells 'Recent'
 - (02-02 is 1960's vintage)
- Historical HC Solvent injection:
 - Feb '02 Aug '03

Judy Creek CO₂ Pilot: Description

- Full R5A & B reef development
- Good bottom seal & near up-dip culmination
- 07-02 porosity
 - ∼20m >3%Ø
 - Ave. ~8% Ø
 - Max ~ 15% Ø
- No 'hot streaks' (minimizes risk of early gas break through)
- Injection profiles
 - Solvent: 87% into R5A/B
 - Water: 82% into R5A/B
- HC flood response primarily to SW producers (02-02 and 06-02-064-11W5)

Sproule

Regulatory Compliance Highlights

Did not exceed maximum H2S concentration of 7% at any time

Figure 56

Sproule

"A" Pool Solvent Banksize & Performance

CO₂ Pilot Performance to Date (Dec. 31-10)

Figure 58

W Voidage Replacement Ratio Averages 0.99

- 100% of the produced water is re-injected (no SWD)
- Freshwater makeup injection utilized to balance voidage
- Improved on 2009 VRR (0.98)

Judy Creek 'A' Pool ERCB Presentation, January 27th 2011

Sproule

Pattern Injection & Recovery Data

- Injected Banksize 26.2% HCPV
 - CO₂ 34,500e³m³ or 118,500Rm³
- Oil recovery 9,450m³ (2.95% OOIP)
 - 10-02-064-11 Acid Frac 5,300m³
 - Target: 10,000m³ (3.0% OO P)
 - Outlook 11,000m³ (3.3%OOIP)
- Hydrocarbon Solvent Recovery
 - Methane recovery

 3.500e³m³ or 17.000Rm³
 - 3,500e²m² or 17,000Rm²
 - Ethane recovery

 2,800e³m³ or 10,600 Em³
 (~20% of retained HC solvent)

CO, recovery

- 8,700e³m³ or 29,900Rm³ (25.2% of injection)

CO₂ sequestered / unrecovered

25,800e³m³ cr 88,600Rm³ (79.2%)

Data from Feb 14th, 2007 to Dec 31st, 2010

Sproule

Judy Creek Beaverhill Lake B - Well Locations

Judy Creek Beaverhill Lake B - Production/Injection History

Kaybob Beaverhill Lake A - Well Locations

Figure 63

Kaybob Beaverhill Lake A - Production/Injection History

Figure 64
Sproule

Sproule _____

18158

Leduc D-2A - Well Locations

Leduc D-2A - Production/Injection History

Figure 68
Sproule

Mitsue Gilwood A - Well Locations

Mitsue Gilwood A - Production/Injection History

Figure 70
Sproule

Nipisi Gilwood A - Well Locations

Nipisi Gilwood A - Production/Injection History

Figure 72
Sproule

Sproule _____

Location

Pembina 'A' Lease CO₂ Pilot

- Located adjacent to the Penn West's initial 'A' Lease vertical CO₂ pilot
- Targeting the residual oil in well flooded area (high watercut)
- CO₂ injection commenced on September, 2008

18158

Performance -02/12-11-048-09W5 2010 Response

Pembina 'A' Lease CO₂ Pilot

Performance Comparison

Pembina 'A' Lease CO₂ Pilot

Figure 76

Performance Comparison

Pembina 'A' Lease CO₂ Pilot

Figure 77

Pembina Nisku A - Well Locations

Figure 78
Sproule

Pembina Nisku A - Production/Injection History

Pembina Nisku D - Production/Injection History

Figure 81
Sproule

Pembina Nisku F - Well Locations

Figure 82

Pembina Nisku F - Production/Injection History

Figure 83
Sproule

Pembina Nisku G - Production/Injection History

Pembina Nisku G2G - Well Locations

Pembina Nisku G2G - Production/Injection History

Figure 87
Sproule

Pembina Nisku H2H - Well Locations

Pembina Nisku H2H - Production/Injection History

Pembina Nisku K - Production/Injection History

Figure 91
Sproule

Pembina Nisku L - Well Locations

Pembina Nisku L - Production/Injection History

Figure 93
Sproule

Pembina Nisku M - Production/Injection History

Figure 95
Sproule

Pembina Nisku O - Production/Injection History

Pembina Nisku P - Production/Injection History

Pembina Nisku P2P - Production/Injection History

Pembina Nisku Q - Production/Injection History

Provost Cummings I - Production/Injection History

Figure 105

Rainbow Keg River A – Production/Injection History

Rainbow Keg River AA – Production/Injection History

Rainbow Keg River B – Well Locations

Rainbow Keg River B – Production/Injection History

Rainbow Keg River D – Production/Injection History

Sproule _____

Rainbow Keg River E – Production/Injection History

Rainbow Keg River EEE – Production/Injection History

Rainbow Keg River F – Production/Injection History

Figure 122
Sproule

Figure 123

Figure 124

18158

Injected Solvent Composition

Injected Solvent Composition

Figure 126

Rainbow Keg River FF – Production/Injection History

Figure 129

Rainbow Keg River G – Production/Injection History

Rainbow Keg River H – Production/Injection History

Rainbow Keg River II – Production/Injection History

Rainbow Keg River O – Production/Injection History

Rainbow Keg River Z – Production/Injection History

Rainbow South Keg River B – Well Locations

Rainbow South Keg River B – Production/Injection History

Rainbow South Keg River E – Well Locations

Rainbow South Keg River E – Production/Injection History

Rainbow South Keg River G – Well Locations

Rainbow South Keg River G – Production/Injection History

Figure 145
Sproule

Redwater D-3 – Production/Injection History

Rich D-3A – Production/Injection History

Simonette D-3 – Production/Injection History

Figure 151

Suffield Lower Mannville J – Well Locations

Suffield Lower Mannville J – Production/Injection History

Suffield Upper Mannville N – Well Locations

Suffield Upper Mannville N – Production/Injection History

Figure 155
Sproule

Swan Hills Beaverhill Lake A&B – Well Locations

Swan Hills Beaverhill Lake A&B – Production/Injection History

Swan Hills South Beaverhill Lake A – Well Locations

Figure 158 _____

Swan Hills South Beaverhill Lake A – Production/Injection History

- CO₂ injection commenced on May 21, 2008
- \$6.4 MM in IETP funding

PennWest Exploration

Sproule _____

SSH CO2 Pilot Review

Performance - Injection

PennWest

SSH CO2 Pilot Review

Performance - Injection

PennWest Exploration

Figure 164

Performance: 02-30-065-10W5

ê 400 30

8

201 10

00

May-00

Aug-00

Nov-06

Feb-08

V YRW

Aug-09

Date

Nov-09

Feb-10

May-10

May-09

Figure 165

PennWest

Aug-10

Nov-10

Sproule

18158

Figure 166

18158

Sproule _____

Compliance: Voidage Replacement Ratio

Cum VRR Plot +- West Pattern + East Pattern 4.5 3.5 3 8 2.5 8 2.5 2 2 1.5 West Pattern SSHU Pliot Instantaneous VRR Plot East Pattern 0.5 10.00 9.00 0 May-05 27-Jul-10 8.00 26-Jan-10 28-Apr-10 06-Aug-08 04Nov+08 03-May-09 01-Aug-09 30-00-03 00-Feb-00 7.00 6.00 Date VRR 5.00 4 nn 3.00 2.00 1.00 0.00 CG May CB 01 10 12 25.04-10 06Aup-08 02 Feb-09 60-May-08 01Aug-09 30.00-00 28 Apr 10 2-1m-10 2-18-11 104 12 Date Sproule =

Figure 167

PennWest

18158

Figure 168

Sproule _____

SSH CO2 Pilot Review

Performance - Oil Recovery & CO₂ Injection (Dec. 2010)

	Parameter	CO2 Pilot Area		Unite	
	Farameters	West Pattern	East Pattern	Units	
	OOIP (Target Zones)	2.14	4.28	MMStb	
	OOIP (OOIP - Actual Flood)	0.78	3.45	MMStb	
	HCPV	1.11	4.90		
tual Flood					
	Cumulative CO2 Injected	403.0	873.0	MMScf	
	Cumulative CO2 Injected	237.8	515.1	E3 Rbbl	
	Cumulative CO2 Injected	21.5	10.5	%HCPVI	
	Cumulative CO2 Produced	32.1	32.5	MMScf	
Ac	Cumulative Oil Produced	39737.1	30653.0	STB ⊏	
	lincremental Recovery	5.1	0.9	% OOIP	allocated

Turner Valley Rundle – Well Locations

Turner Valley Rundle – Production/Injection History

Figure 171

Virginia Hills Beaverhill Lake – Well Locations

Virginia Hills Beaverhill Lake – Production/Injection History

Wizard Lake D-3A - Well Locations

Wizard Lake D-3A – Production/Injection History

Zama Keg River F – Production/Injection History

Zama Keg River G2G – Production/Injection History

Figure 179

Zama Keg River NNN – Production/Injection History

Zama Keg River RRR – Production/Injection History

Zama Keg River X2X – Production/Injection History

Zama Acid Gas Disposal – Proposed Pipeline Routes

Figure 186

18158

Keg River "X2X" Cross-Section

Figure 187
Sproule

NCL Plant Acid Gas Injection History

Figure 188

Sproule =

Pennzoil X2X Pool – Acid Gas Injection Scheme

Sproule _____

Pennzoil X2X Pool – Acid Gas Injection Scheme

Sproule _____

Acid Gas Properties

Sproule =

Zama Muskeg L – Well Locations

Zama Muskeg L – Production/Injection History

Sproule

Brintnell – Performance of Average Pattern under Polymer Flood

Brintnell – Approval 10147 – First Area Expanded After the Pilot

Brintnell – Approval 10147 – Polymer Flood Performance

Brintnell – Approval 10423 – Polymer Flood

Brintnell – Approval 10423 – Polymer Flood Performance

Brintnell – Approval 10787 – Polymer Flood

Brintnell – Approval 10787 – Polymer Flood Performance

18158

Brintnell – Approval 9467 – Waterflood/Polymer Flood

Brintnell – Approval 9467 – Polymer Flood Performance

Figure 205
Sproule

Brintnell – Approval 9673 – Waterflood/Polymer Flood

Brintnell – Approval 9673 – Polymer Flood Performance

Brintnell – Major Approval Area Recovery Factors

Sproule _____

Cessford Basal Colorado A – Well Locations

18158

Cessford Basal Colorado A - Production/Injection History

Cessford Basal Colorado A Pool – North, Central and South Patterns

Figure 212

Cessford Basal Colorado A Pool – Northern Patterns Caustic Polymer Flood

Figure 214

Sproule =

Figure 217

Chauvin South Sparky E – Well Locations

Chauvin South Sparky E – Production/Injection History

Chauvin South Sparky E – Production/Injection Pool Polymer Pilot History

Chauvin South Sparky E Pool – Pilot Area

Figure 225
Sproule

Chauvin South Sparky E Pool - Total Injection, Viscosity & HCOH Concentration (1988 - 1991)

🛛 Sproule =

31, 1993Figure 229
Sproule _____ Chauvin South Sparky E Pool - Injection Performance to Jan 31, 1993 02/03-25-042-03W4/0

Countess Upper Mannville H – Well Locations

Countess Upper Mannville H - Production/Injection History

Production Data to: November 30, 2011 Production Data to: November 30, 2011 Sproule

Edgerton Woodbend A – Well Locations

Edgerton Woodbend A - Production/Injection History

Entice Lower Mannville B - Production/Injection History

Sproule _____

Horsefly Lake Mannville – Well Locations

Created in AccuMapTM, a product of IHS 237

Horsefly Lake Mannville - Production/Injection History

Horsefly Lake - Mannville Pool - Pilot Area

Figure 239

Horsefly Lake - Mannville Pool – Incremental Oil Recovery

Sproule =

SUMMARY OF TOTAL FILOT INCREMENTAL OIL

HORSEFLY LAKE CAUSTIC-POLYMER PILOT

Year	Waterflood Forecast		Pilot Production		Incremental Oil			
	<u></u>	<u>m'/cd</u>	<u>B*</u>	m'/cd	<u>m'/cð</u>	<u> </u>	<u>Cum., m'</u>	
1984-12	188	6.1	501.0	16.2	10.1	313.8	31.3.8	
1985	1 632	4.5	5 572.6	15.3	14.8	3 940.6	4 254.4	
7886	1 442	3.9	5 465.0	13.9	10.0	3 623.0	7 877.4	
1987*	927	2.5	3 091.4	8.5	6.0	2 164.4	10 041.8	
1988**	689	1.9	1 155.0	3.2	1.3	467.0	10 508.8	
1989	372	1.0	512.0	1.4	0.4	140.0	10 648.8	
1990	230	0.6	256.0	0.8	0.2	26.0	10 674.8	
영향을 걸린 가격	5 480		16 194.8			10 674.8		

 To end of 1967 pilot incremental recovery represents 94% of the expected ultimate incremental oil.

** Forecast.

Horsefly Lake - Mannville Pool – Incremental Oil (1984 – 1990)

Sproule =

Mooney Bluesky A - Production/Injection History

Provost Upper Mannville A - Well Locations

18158

Provost Upper Mannville A - Production/Injection History

Provost Upper Mannville A – Production Profile of 14-15-37-01W4M

Provost Lloydminster DD - Production/Injection History

چ Sproule _____

Provost – (David) Lloydminster DD Pool Alkali/Polymer Project 2 & 11-41-3W4M Net Pay Isopach Figure 257

Sproule =

Provost – (David) Lloydminster DD Pool Alkali/Polymer Project 2 & 11-41-3W4M Pattern Configuration

Sproule =

Summary of Slug Size

4

David Project No. 1

Sec. 2. 1.

		1 <u>128-2</u>	2 <u>13A-2</u>	3 <u>14A-2</u>	4 4A-11	3A-11	2A-11	7 5A-1
Pre-Flush	m3	24261	33533	30194	31850	31548	25589	30335
	%	22	17	24	13	12	27	21
Alkali-Polyme	r m3	58623	55549	70883	62268	100816	40512	81220
	%	52	29	56	26	38	58	50
Polymer	m3	10986	17796	22057	21610	42247	2219	24917
	%	10	9	17	9	16	3	17
Post-Flush	m3	41767	40280	10997	56696	32690	21417	56854
(to 92-07)	%		20	9	23	12	31	39

Provost – (David) Lloydminster DD Pool Alkali/Polymer Summary of Slug Size for the 7 Patterns

Figure 259

Sproule =

Figure 260

Figure 261

Provost Cummings I - Production/Injection History

Suffield Upper Mannville UU - Production/Injection History

18158

Figure 267

Suffield Upper Mannville UU Water and Injection Pressure

• Resource Application No. 1660236 submitted on Sept 7, 2010 for an ASP flood of the Suffield UM YYY pool.

• OOIP = 15 MMSTB, a true commercial sized ASP flood.

Future Suffield Chemical Flooding – South Jenner Field – UM YYY Pool

YYY AREA GEOLOGICAL RELATIONSHIPS

Figure 275

Suffield Upper Mannville U - Well Locations

Suffield Upper Mannville U - Production/Injection History

Taber Mannville D – Well Locations

Taber Mannville D - Production/Injection History

Taber Mannville D Pool Unit No 1 Project Areas

Taber Mannville D Pool Unit 1 – Pilot Production Summary Plot

Sproule

Taber Mannville D Pool Unit 1 – Tapered Polymer Slug Design

Figure 284

Taber Mannville D Pool Unit 1 – Polymer Area Recovery Curves Actual vs Predicted Performance

Figure 285

Sproule =

Taber South Mannville B - Well Locations

Taber South Mannville B - Production/Injection History

POOL ORDER: 895 248002 2001-02-01

Taber South – Mannville B Pool – Pool Order

Figure 288

Sproule =

Taber South – Mannville B Pool Pilot

Taber South – Mannville B Net Oil Isopach

Figure 290
Sproule

Taber South – Mannville B Cumulative VRR

Taber South – Mannville B Production & Forecast

Figure 294

Sproule =

Well: 103/12-21-007-16W4/00

Taber South – Mannville B Well Graph Some of the Key Indicators Used to Monitor Wells Figure 296

Taber South – Mannville B Comparison of Production to Waterflood and ASP Production

Sproule =

Sproule =

Taber South – Mannville B Oil Production Based on ASP Volumes Injected

Taber South – Mannville B Oil Production and Oil Cut

Sproule =

Inj Rate and Pressure

Figure 300

Taber South – Mannville B (Warner) Region Map

Taber South – Mannville B (Warner) VRR by Area

Sproule _____

Warner ASP - Injection Fluid Chemical Concentration (Targets: 1200 ppm, 20~26 cp, 0.75 wt%, 1.5 wt%)

Taber South – Mannville B (Warner) Injection Fluid Chemical Concentration

Viking-Kinsella Wainwright B - Well Locations

Viking-Kinsella Wainwright B - Production/Injection History

VIKING-KINSELLA WAIN B Pool

Viking-Kinsella – Wainwright B Pool - Pool

Figure 306

Viking-Kinsella – Wainwright B Pool – Cross-Section

Figure 307
Sproule

Viking-Kinsella – Wainwright B Pool – Type Log

Figure 308
Sproule

Macroscopic-scale permeabilities will be significantly lower in Sparky A and B LOWER due to tortuosity of interbedded siltstone and shale, resulting in more rapid waterflood progress in the Sparky B UPPER.

Viking-Kinsella – Wainwright B Pool – Flow Unit

Viking-Kinsella – Wainwright B Pool – Production & Injection Performance Full Field

Figure 310

Voidage Replacement Ratio – Full Field

viking-Kinsella – Wainwright B Pool – Voidage Replacement Ratio Full Field یا Sproule _____

13 injectors and 23 producers

Figure 312

From the commencement of polymer injection

Viking-Kinsella – Wainwright B Pool – Production & Injection Performance Pilot Area

From the commencement of polymer injection

Production performance

	Timeline	Oil (m³/d)	Total Fluid (m³/d)	Water Cut (%)
	24 months ago	41	1562	97.4
	18 months ago	38	1458	97.4
Polymer flooding 12 months ago		36	1368	97.4
	April - Jun 2010	39	1260	96.9
	July 2010	43	1216	96.5
	Aug 2010	39	1235	96.8

Viking-Kinsella – Wainwright B Pool – Production Performance Pilot Area Figure 316

Well	Gamma Clean S and	Net Perfed Pay Upper Sparky	Max Porosity Upper Sparky	Additional Lower Perfs	Perf Type / SPM	Conversion and Prior Producer	Total Years of Inj.
B0/5-20*	60-Dirty	2.5 m	26%	No	6 SPM	Yes-1 Year	10
d0/1-19*	47-Clean	3.2 m	30%	Yes	12 SPM	Yes-16 year	13
b0/1-19	52-Mid	3.0 m	32%	Yes	12 SPM	No Production	15
d0/15-18*	30-V. Clean	1.7 m	30%	No	6 SPM	Yes-18 Years	15
d0/9-18**	45-Clean	3.3 m	33%	Yes	12 SPM	Yes	10
b0/13-17	45-Clean	3.6 m	30%	Yes	12 SPM	No Production	33
d0/13-17	60-Dirty	3.6 m	29%	No	12 SPM	Yes-21 Years	12
b0/3-20	52-Mid	3.6 m	31%	No	12 SPM	Yes 1 Year	32
d0/3-20	72-Dirty	1.7 m	27%	Yes	6 SPM	Yes- 20 Years	13
d0/5-17	60-Dirty	1.5 m	30%	Yes	6 SPM	No Production	33
bo/11-17	45-Clean	3.2 m	31%	Yes	6 SPM	No Production	33
do/11-17	52-Mid	3.6 m	31%	Yes	12 SPM	Yes- 19 Years	12
b0/15-17	80-Dirty	1.0 m	28%	Yes	12 SPM	No Production	20

ance Factors Viking-Kinsella – Wainwright B Pool – Polymer Injection Performance Factors Pilot Area

- Polymer concentrations were tested monthly to find trace amounts of Polymer through clay reaction testing for the first 10 months of the flood. (Until April 2010)
- Polymer Produced fluids were lab tested on the wells which tested positive for Polymer residual through clay reaction. (April 2010)
- Monthly lab testing on all producers is monthly (As of Aug 2010)

	PPM POL	MER PPM			
	Apr-10	Aug-10			
Well	РРМ	PPM			
1C0/01-19-48-08	31	33			
1B0/02-19-48-08	149	n/a			
1D0/02-19-48-08	98	n/a			
1A0/03-19-48-08	n/a	31			
1B0/08-19-48-08	38	33			
1D0/08-19-48-08	n/a	34			
1D0/08-18-48-08	n/a	33			
1D2/10-18-48-08	n/a	n/a			
1A0/16-18-48-08	n/a	31			
1B0/16-18-48-08	n/a	30			
1D0/16-18-48-08	n/a	33			
1B2/02-20-48-08	n/a	44			
1B0/04-20-48-08	n/a	49			
1D0/04-20-48-08	n/a	38			
1D2/04-20-48-08	n/a	45			
1B0/06-20-48-08	n/a	45			
1B0/06-17-48-08	n/a	30			
100/11-17-48-08	57	133			
1B0/12-17-48-08	n/a	30			
1D0/12-17-48-08	n/a	30			
1C0/13-17-48-08	n/a	45			
1A0/14-17-48-08	n/a	45			
1B0/14-17-48-08	n/a	46			
1D0/14-17-48-08	n/a	45			
1C0/15-17-48-08	n/a	46			

Viking-Kinsella – Wainwright B Pool Polymer Breakthrough Monitoring On Producers

Sproule

Wildmere Lloyd/Sparky - Well Locations

Wildmere Lloyd/Sparky - Production/Injection History

18158

Wrentham Lower Mannville B - Well Locations

Sproule

_

Wrentham Lower Mannville B - Production/Injection History

Wrentham Lower Mannville C - Well Locations

Sproule =

18158

Wrentham Lower Mannville C - Production/Injection History

Wrentham Lower Mannville B & C Pools – Etzikom Creek Facility Production

Production

Figure 326

Sproule =

18158

Wrentham Lower Mannville B and Lower Mannville C Injection Rate and Pressure

Figure 328

Sproule =

18158

Injection

18158

- AP injection until March 2003
- Polymer Taper began October 2003
- Polymer facility shut down March 2005

Target Polymer Concentration (ppm)	Target Solution Viscosity (cp)	Start Date	Completion Date	Target Pore Volume	8 Pool Actual Polymer PV injected	C Pool Actual Polymer PV injected
1800	39	Mar-03	Oct-03	7%	6%	7%
1575	33	Oct-03	Nov-03	9%	7%	9%
1350	26	Nov-03	Feb-04	11%	8%	11%
1200	21	Feb-04	Dun-04	13%	11%	14%
1050	17	3un-04	Aug-04	15%	13%	16%
850	13	Sep-04	Dec-04	17%	15%	19%
700	10	Dec-04	Jan-05	19%	17%	20%
525	7	Feb-05	Mar-05	21%	18%	21%
225	4	Mar-05	May-05	23%	20%	23%

Wrentham Lower Mannville B & C Pools – Etzikom Creek Facility Injection Sproule _____

Figure 330

IN THE O	Sanda													Bar				LAIC	Cum
eden.	Danie	H=	к	Con .	No.	Fe	01	ноод	500 ÷	003	OН	700	pH	62200	Polyr	m/OPD	mA FPD	6963	Tol Fluid
100	10,510	1978	45	82	25		16.13	20000		0	0	10.01	32	19		-	148	999	0
· 🚥	221.00101	2125			24		10.04	2122	2				3 ,4	1.2		23	1 40	222	227224
	 All Finals (CP) 	-		- 2	-	-	10112		-					·		-	·		a**0
100	2018-ban (0)	10000	40	31	-		1713	20000				87.80	3.1	1.1				100	Let let 1
100	SIGRATION	2100		4 0	24		0.050	2020	9	0	0		32	1.2		0 5	1 000	100	154.54
100	0.010	1000	343		22		10.25	1000	-			10 - 10	12	·	120	21		200	1.00
	1 School OF		- 2		-	-					•	- C				• =	. 34	-	211 22
	10.4401	2121	4.6		24		1110	20.04	-		•	100	3.4	1.3	24.	D 4.	203		247.54
•	*** U*** (B**	2124	43	30	25		· • • • • • •	1000	2		•	-	3 2	12	42	•	21		2/394
	*1 3 mg 8 m	200	-0	* 2	22	x	· a · a	2,000		-82			88	·	1		• •		221
	100-101	200	•	**	24		1044	2002	•		•	10 3	a .r	1.3			-	ar	000 60
	20 March 10	2020	4.5	F.3	77	2							30	1.1	10.7	1.3		ar	200.000
		20172		*2	22	x						and [100	a.,	1.2	201		-2		30110
	CO. Sen Marc	X, XX	-12	a -	-	*		20142	-				a a	· · ·	1221		200	-	2 ** B*
		200			2	-		0.04		-	-	14.100	30	1.1				-	000 100
· œ	12849122	2002		ā.	~	3	11gr	0.000	2	0	0	- C - C - C - C - C - C - C - C - C - C	30	12	44.9	3		-	2003 201
	 Application 	2.0.	•	85	2"			34.10				-C III	a 3	1.2	201-0-				400.00
	* 20 Malay (122			83	-	-			-		•	38	35				_		4.14.84
100	1.0.44402	24.000			21	2		0.000		121			38	1.0	100.2			99	422.01
	0.0002														8+ SI		20	999	
	20,0022	2104	-0	2'	-			201	x			12.000	a.,	1.2	25.0			-	404 70
		24.40	-	28	34			_	24		-	-12-				57	••		110 00
	211014100	21.02	4.3		21		10.00	2010					38	1.5					444.02
	13 PROVIDE	200	-9	-	20	*2	21 22	20000	•	-		10.30	30	12	-	29	• 2	-	44213
	100-002	2040		84	25		24 82			254		19.95	83	1.2	8° 2	59		50	
	1.0.100	2000			-					200		10×01			1 14.			100	4,600,000
	2 112	200					14.410						30					NG	-00 d-
		11.1	~		-	-	1010	-											400.00
	2 TABLE								-										
	Sea Many Inc.	34.01			-			0000	-		-				200				
	20,0903				*			3				220		2.4	100	12			
			-		-	-					-							-	471.04
	Line-see	1000			-			1000			-				1.71.0				400.00
	Contraction of the local division of the loc		-									101.2							2010.000
	ALC: NOTE: N	-			-	-	100.000	2011	1.74							54			217.2
	247.48	100			-	-	10.00	4370	-						B +		-		B128 D6
i an	201 State	200						1110	ĩ	÷.	ñ		34	0.0		77	70	n.	806.04
i i i i i i i i i i i i i i i i i i i	20 100105	200		37	-		1000	4000			ñ	301.01	39	0.3	1.150	i í	22		2003 444
	1 B Artille		100				19.00		5				20				<u></u>	-	241 000
	SI Audi Di	24.23		30			1100	4.0004	7			92 B T	34	1.2	81.2		-		549.00
00	150.00004	2001	47	90	20		19.99	300.000	i i	104	0	92.92	92	1.1	993-				200 20
_		_	-		_	-		_		-	-							-	200 22
-	"DFtw-D"	2012	- 10	84			1.791	-12-22				301*		0.3	1272		-5	-	004-40
	10 Juni Die	21.8.0		N			1900	31.55		an.		330.0	34	1.0	11.30				5/202
	20Feblich	2979	35	33	19		1.242	9212	3			8113	33	0.9	11225	82	22	12	5/8/82
	MATELING.	6 (Test		-			1.102	81.33		1.54		10.0070			12.025		-	-	1000 222
-	101 Anni 100	2.00	-		÷.	-	1.00	1.78	-			10.00	17	- 2	70.		<u> </u>		word rate
-	10 Arritigh		-		_	-				2.	-			-	2010		-	20	807.58
00	SI Audito	2240	44	40	12		1 782	59675	9	2.21	0	2346	33	0.9		40	24	250	0.010
	14,03,000,000	1000	51	-	15		1.07981	85.25		100		10.000		1.0	1122	1.9		99	PE01 100

helsens 2002/02/02 - Mail 2/00 Medicines / 00/10/01 / 01-06-01 //000 Mederar 2012979 - Walt 200 N Constant of the second of th 10000 2000 40000 . . 40000 100 Called C. Land Section Patel Flood (mm) - K -Ma 108 HERE 107 Party Canadity

Sample breakthrough data.

Standard water analysis.

Polymer concentration measured by operators.

Monthly water analysis were submitted in the final report for the project.

Wrentham Lower Mannville B & C Pools – Performance - Etzikom Creek Facility Breakthrough

Wrentham Lower Mannville B Pool – Performance Well Response and Breakthrough

Figure 332
Sproule

18158

Wrentham Lower Mannville B Pool – Performance Well Response and Breakthrough

Figure 333

Sproule =

Wrentham Lower Mannville C Pool – Performance Well Response and Breakthrough

Figure 334

Sproule =

Wrentham Lower Mannville C Pool – Performance Well Response and Breakthrough

Figure 335

Sproule _____

Wrentham Lower Mannville C Pool – Performance Well Response and Breakthrough

Figure 336

Figure 337

Sproule

Wrentham Lower Mannville C Pool – Performance Well Response and Breakthrough

Wrentham Lower Mannville C Pool – Performance Well Response and Breakthrough

Figure 338

Sproule

18158

Wrentham Lower Mannville C Pool – Performance Well Response and Breakthrough

Figure 339

Sproule =

Baytex Cliffdale Type Log

18158

Harmon 100/16-17-084-18W5M

using estimates for Aug-2010

Harmon Valley Cyclic Steam Performance

Figure 342

Sproule =

Cliffdale 100/05-16-084-17W5M

Figure 343 Sproule _____

APPENDIX A

ABBREVIATIONS, UNITS AND CONVERSION FACTORS

4208.18158.AMC.smr

P:\ERCB_EOR_18158\Report\Phase 2\Appendix A_Title Sheet.doc

Appendix A — Abbreviations, Units and Conversion Factors

This appendix contains a list of abbreviations found in Sproule reports, a table comparing Imperial and Metric units, and conversion tables used to prepare this report.

Abbreviations

AFE	authority for expenditure
AOF	absolute open flow
APO	after pay out
ASP	alkaline surfactant polymer
Bg	gas formation volume factor
Bo	oil formation volume factor
bopd	barrels of oil per day
bfpd	barrels of fluid per day
BPO	before pay out
BS&W	basic sediment and water
BTU	British thermal unit
bwpd	barrels of water per day
CF	casing flange
CGR	condensate gas ratio
CSS	cyclic steam stimulation
CTD	combination thermal drive
D&A	dry and abandoned
DCQ	daily contract quantity
DSU	drilling spacing unit
DST	drill stem test
EOR	enhanced oil recovery
EPSA	exploration and production sharing agreement
FVF	formation volume factor
GOR	gas-oil ratio
GORR	gross overriding royalty
GWC	gas-water-contact
HCPV	hydrocarbon pore volume
HPAI	high pressure air injection
ID	inside diameter
IOR	improved oil recovery
IPR	inflow performance relationship
IRF	incremental recovery factor
IRR	internal rate of return

Sproule

ISC	in-situ combustion
k	permeability
KB	kelly bushing
LKH	lowest known hydrocarbons
LNG	liquefied natural gas
LPG	liquefied petroleum gas
md	millidarcies
MDT	modular formation dynamics tester
MEOR	microbial enhanced oil recovery
MPR	maximum permissive rate
MRL	maximum rate limitation
NGL	natural gas liquids
NORR	net overriding royalty
NPI	net profits interest
NPV	net present value
OD	outside diameter
OGIP	original gas in place
OOIP	original oil in place
ORRI	overriding royalty interest
OWC	oil-water-contact
P1	proved
P2	probable
P3	possible
P&NG	petroleum and natural gas
PI	productivity index
ppm	parts per million
PSU	production spacing unit
PSA	production sharing agreement
PSC	production sharing contract
PVT	pressure-volume-temperature
Rf	recovery factor
RFT	repeat formation tester
RT	rotary table
SAGD	steam assisted gravity drainage
SCAL	special core analysis
SS	subsea
THAI	toe to heel air injection
TVD	true vertical depth
WGR	water gas ratio
WI	working interest
WOR	water oil ratio

2Dtwo-dimensional3Dthree-dimensional4Dfour-dimensional1Pproved2Pproved plus probable3Pproved plus probable plus possible°APIdegrees API (American Petroleum Institute)

Imperial and Metric Units

	Imperial Units			Metric Units
M (10 ³)	one thousand	Prefixes	k (10 ³)	one thousand
MM (10 ⁶)	Million		M (10 ⁶)	million
B (10 ⁹)	one billion		T (10 ¹²)	one billion
T (10 ¹²)	one trillion		E (10 ¹⁸)	one trillion
			G (10 ⁹)	one milliard
in.	Inches	Length	cm	centimetres
ft	Feet		m	metres
mi	Mile		km	kilometres
ft ²	square feet	Area	m²	square metres
ac	Acres		ha	hectares
cf or ft ³	cubic feet	Volume	m ³	cubic metres
scf	Standard cubic feet			
gal	Gallons		L	litres
Mcf	Thousand cubic feet			
Mcfpd	Thousand cubic feet per day			
MMcf	million cubic feet			
MMcfpd	million cubic feet per day			
Bcf	billion cubic feet (10 ⁹)			
bbl	Barrels		m ³	cubic metre
Mbbl	Thousand barrels			
stb	stock tank barrel		stm ³	stock tank cubic metres
bbl/d	barrels per day		m³/d	cubic metre per day
bbl/mo	barrels per month			
Btu	British thermal units	Energy	J	joules
			MJ/m ³	megajoules per cubic metre (10^6)
			TJ/d	terajoule per day (10 ¹²)
oz	ounce	Mass	g	gram
lb	pounds		kg	kilograms
ton	ton		t	tonne
lt	long tons			

Mlt	thousand long tons			
psi	pounds per square inch	Pressure	Ра	pascals
			kPa	kilopascals (10 ³)
psia	pounds per square inch absolute			
psig	pounds per square inch gauge			
° _F	degrees Fahrenheit	Temperatu re	۰ _C	degrees Celsius
° _R	degrees Rankine		к	Kelvin
M\$	thousand dollars	Dollars	k\$	thousand dollars

Imperial and Metric Units (Cont'd)

	Imperial Units			Metric Units
sec	second	Time	s	second
min	minute		min	minute
hr	hour		h	hour
day	day		d	day
wk	week			week
mo	month			month
yr	year		а	annum

Sproule

Conversion Tables

Conversion Factors — Metric to Imperial				
cubic metres (m ³) (@ 15 ^o C)	x 6.29010	= barrels (bbl) (@ 60 ^o F), water		
m³ (@ 15 [°] C)	x 6.3300	= bbl (@ 60 ^o F), Ethane		
m³ (@ 15 [°] C)	x 6.30001	= bbl (@ 60 ^o F), Propane		
m³ (@ 15 [°] C)	x 6.29683	= bbl (@ 60 ^o F), Butanes		
m³ (@ 15°C)	x 6.29287	= bbl (@ 60°F), oil, Pentanes Plus		
m ³ (@ 101.325 kPaa, 15 ^o C)	x 0.0354937	= thousands of cubic feet (Mcf) (@ 14.65 psia, 60°F)		
1,000 cubic metres (10 ³ m ³) (@ 101.325 kPaa,	x 35.49373	= Mcf (@ 14.65 psia, 60 ^o F)		
15°C)				
hectares (ha)	x 2.4710541	= acres		
1,000 square metres (10 ³ m ²)	x 0.2471054	= acres		
10,000 cubic metres (ha·m)	x 8.107133	= acre feet (ac-ft)		
m³/10³m³ (@ 101.325 kPaa, 15 ^o C)	x 0.0437809	= Mcf/Ac.ft. (@ 14.65 psia, 60°F)		
joules (j)	x	= Btu		
	0.000948213			
megajoules per cubic metre (MJ/m³) (@ 101.325	x 26.714952	= British thermal units per standard cubic foot (Btu/scf)		
kPaa, 15 ^o C)		(@ 14.65 psia, 60 ^o F)		
dollars per gigajoule (\$/GJ)	x 1.054615	= \$/Mcf (1,000 Btu gas)		
metres (m)	x 3.28084	= feet (ft)		
kilometres (km)	x 0.6213712	= miles (mi)		
dollars per 1,000 cubic metres (\$/10 ³ m ³)	x 0.0288951	= dollars per thousand cubic feet (\$/Mcf) (@ 15.025 psia)		
		B.C.		
(\$/10 ³ m ³)	x 0.02817399	= \$/Mcf (@ 14.65 psia) Alta.		
dollars per cubic metre (\$/m³)	x 0.158910	= dollars per barrel (\$/bbl)		
gas/oil ratio (GOR) (m³/m³)	x 5.640309	= GOR (scf/bbl)		
kilowatts (kW)	x 1.341022	= horsepower		
kilopascals (kPa)	x 0.145038	= psi		
tonnes (t)	x 0.9842064	= long tons (LT)		
kilograms (kg)	x 2.204624	= pounds (lb)		
litres (L)	x 0.2199692	= gallons (Imperial)		
litres (L)	x 0.264172	= gallons (U.S.)		
cubic metres per million cubic metres (m ³ /10 ⁶ m ³)	x 0.177496	= barrels per million cubic feet (bbl/MMcf) (@ 14.65 psia)		
(C ₃)				
m³/10 ⁶ m³ (C₄)	x 0.1774069	= bbl/MMcf (@ 14.65 psia)		
m³/10 ⁶ m³ (C ₅₊)	x 0.1772953	= bbl/MMcf (@ 14.65 psia)		
tonnes per million cubic metres (t/10 ⁶ m ³)	x 0.0277290	= LT/MMcf (@ 14.65 psia)		
(sulphur)				
millilitres per cubic meter (mL/m ³) (C ₅₊)	x 0.0061974	= gallons (Imperial) per thousand cubic feet (gal (Imp)/Mcf)		
(mL/m ³) (C ₅₊)	x 0.0074428	= gallons (U.S.) per thousand cubic feet (gal (U.S.)/Mcf)		

_ Sproule

Kelvin (K)	x 1.8	= degrees Rankine (^o R)
millipascal seconds (mPa·s)	x 1.0	= centipoise

Sproule

Conversion Tables (Cont'd)

Conversion Factors — Imperial to Metric			
barrels (bbl) (@ 60 ^o F)	x 0.15898	= cubic metres (m ³) (@ 15 ^o C), water	
bbl (@ 60 [°] F)	x 0.15798	= m ³ (@ 15 [°] C), Ethane	
bbl (@ 60 [°] F)	x 0.15873	= m ³ (@ 15 ^o C), Propane	
bbl (@ 60 [°] F)	x 0.15881	= m ³ (@ 15 ^o C), Butanes	
bbl (@ 60 [°] F)	x 0.15891	= m ³ (@ 15 ^o C), oil, Pentanes Plus	
thousands of cubic feet (Mcf) (@ 14.65 psia, 60 ^o F)	x 28.17399	= m ³ (@ 101.325 kPaa, 15 ^o C)	
Mcf (@ 14.65 psia, 60 ^o F)	x	= 1,000 cubic metres (10 ³ m ³) (@ 101.325 kPaa,	
	0.02817399	15°C)	
acres	x 0.4046856	= hectares (ha)	
acres	x 4.046856	= 1,000 square metres $(10^3 m^2)$	
acre feet (ac-ft)	x 0.123348	= 10,000 cubic metres $(10^4 m^3)$ (ha·m)	
Mcf/ac-ft (@ 14.65 psia, 60 ^o F)	x 22.841028	= 10 ³ m ³ /m ³ (@ 101.325 kPaa, 15 ^o C)	
Btu	x 1054.615	= joules (J)	
British thermal units per standard cubic foot (Btu/Scf) (@	x	= megajoules per cubic metre (MJ/m ³) (@	
14.65 psia, 60°F)	0.03743222	101.325 kPaa,	
		15°C)	
\$/Mcf (1,000 Btu gas)	x 0.9482133	= dollars per gigajoule (\$/GJ)	
\$/Mcf (@ 14.65 psia, 60 [°] F) Alta.	x 35.49373	= \$/10 ³ m ³ (@ 101.325 kPaa, 15 ^o C)	
\$/Mcf (@ 15.025 psia, 60 ^o F), B.C.	x 34.607860	= \$/10 ³ m ³ (@ 101.325 kPaa, 15 ^o C)	
feet (ft)	x 0.3048	= metres (m)	
miles (mi)	x 1.609344	= kilometres (km)	
\$/bbl	x 6.29287	= $/m^3$ (average for 30°-50° API)	
GOR (scf/bbl)	x 0.177295	= gas/oil ratio (GOR) (m ³ /m ³)	
horsepower	x 0.7456999	= kilowatts (kW)	
psi	x 6.894757	= kilopascals (kPa)	
long tons (LT)	x 1.016047	= tonnes (t)	
pounds (lb)	x 0.453592	= kilograms (kg)	
gallons (Imperial)	x 4.54609	= litres (L) (.001 m ³)	
gallons (U.S.)	x 3.785412	= litres (L) (.001 m ³)	
barrels per million cubic feet (bbl/MMcf) (@ 14.65 psia) (C_3)	x 5.6339198	= cubic metres per million cubic metres	
		(m ³ /10 ⁶ m ³)	
bbl/MMcf (C ₄)	x 5.6367593	$= (m^3/10^6 m^3)$	
bbl/MMcf (C ₅₊)	x 5.6403087	$= (m^3/10^6 m^3)$	
LT/MMcf (sulphur)	x 36.063298	= tonnes per million cubic metres (t/10 ⁶ m ³)	
gallons (Imperial) per thousand cubic feet (gal (Imp)/Mcf)	x 161.3577	= millilitres per cubic meter (mL/m ³)	
(C ₅₊)			
gallons (U.S.) per thousand cubic feet (gal (U.S.)/Mcf) (C_{5+})	x 134.3584	$= (mL/m^3)$	

Sproule

4208.18158.AMC.smr P:\ERCB_EOR_18158\Report\Phase 2\Appendix A -International Abbrev and Conv Factors.doc

degrees Rankine (^o R)	x 0.555556	= Kelvin (K)
centipoises	x 1.0	= millipascal seconds (mPa·s)

Sproule