Suncor MacKay River In Situ Project 2021 AER Scheme Performance Report Commercial Scheme Approval No. 8668

Reporting Period: January 1, 2020 to December 31, 2020

Introduction

4.1

MacKay River Project Overview

- The MacKay River Project is a commercial Steam Assisted Gravity Drainage (SAGD) scheme;
- It is the shallowest SAGD project currently in operation within Alberta;
- From January 2020 to December 2020 MacKay River averaged 2651 m³/day (16,683 bpd) of bitumen production. The Design rate for MacKay River is 38,000 bpd @ 2.8 SOR.

MacKay River Project Overview

- Suncor's first operated SAGD facility located 60 km NW of Fort McMurray;
- Current Approved Bitumen Production Rate of 11,600 m³/d (73 kbpd);
- Adjacent to Suncor Dover (Underground Test Facility (UTF) / AOSTRA) Project;
- Horizontal production wells are placed in the McMurray Formation at a depth ranging from 98 to 145 m from surface;
- No extensive gas over bitumen or underlying water in current development area;
- Initial development had 25 well pairs with first steam in September 2002 and first production in November 2002 (Phase 1);
- 112 producers have been subsequently added.

Producing Well Pairs	125
Non-Producing Well Pairs	10
Abandoned or Planned for Abandonment – Well Pairs	2
Total Well Pairs	137

Project Area and Project Site

• Current Project Area (PA) approximately 24 ½ sections.

Surface View

Subsurface View

Subsurface

4.2

Summary of Operating Wells

Pad	Pattern	Phase	# Well Pairs	First Steam to Pad		Pad	Pattern	Phase	# Well Pairs	First Steam to Pad	
20	А		7			24	824	6	2	2015	
20	С	1	6	2002			750N	7A/D	8	2016	
21	В	'	7	2002		750	750S	7A/B/C	8	2016 - 2019	
	D		5				751W	8A/B	6	2020	
22	E	0	7	2006		751	751N	8C	1	2020	
22	G	2	7	2000			751S	8B/C	5	2020	
23	F	3	7	2007	Г	N					
24		4	3	2008 - 2009			 Operating Operating 	Well Pairs Well Patterns		Sec 16	
	00	00	5B-1	6	2012			Surface Pa	ads	Pa	
		5DF	6	2014							
	Н	4	4	2009 - 2010				324		QQ-(5B2)	
		4	2	2008					NN (SDE) Pad 25	(4/5A)	
	QQ	5A	2	2011		7	51N 750	i i i i	Pad 24		
		5B-2	5	2013				l II 🕴	NN (582)	T9	
05		5DF	6	2014					NN (4/5A)		
25		4	1	2008	*P.	ad 751 West Pad 75	1.751W Pad/750	A C	Pad 23		
	NN	5A	4	2011						Pad 21	
		5B-2	5	2013					H	Pad 20	
		5DF	6	2014		7	751S	S			
7											

4.2 a) b)

Producing Well Count

4.2 a) b)

Producing Well Count - 2020

4.2 a) b)

Scheme Performance – Fluid Rates

Scheme Performance – Fluid Rates 2020

Scheme Performance – Cumulative Fluid Volumes

Scheme Performance – Cumulative Fluid Volumes (2020)

Reservoir Facies

Facies:

• Defined by Visual Mud Index (VMI).

Cutoffs:

- F1 (Sandstone) <5% VMI;
- F2 (Sandy IHS) 5-15% VMI;
- F3 (IHS) 15-30% VMI;
- F4 (Muddy IHS) 30-70% VMI;
- F5 (Mudstone) 70-100% VMI;
- F10 (Breccia) Variable. IHS – Inclined Heterolithic Strata
- Reservoir includes Facies F1, F2, and F10, but can include F3-F5, if < 2m thick.
- Weight percent bitumen > 6%;
- Porosity (generally) > 30%;
- Continuous reservoir thickness> 10m for OBIP volumetric calculation.

Continuous Reservoir Isopach

4.2.3 b)

Base of Reservoir Structure Map

4.2.3 b)

Top of Reservoir Structure Map

Reservoir Gas Isopach

18 Gas zones shown above are inconsequential to SAGD operations at Mackay River but are included for reference

Bottom Water Isopach

Cumulative Heave: From 2002 - 2020

- Maximum heave of 80 cm observed over C Pattern / Pad 21:
 - Mature area of the field
- Monitor subsurface safety and investigate areas which appear anomalous;
- There are no geomechanical anomalies in the MacKay River development area;
- Heave data is used to calibrate geomechanical models;
- Note: 2020 heave mapping only covers the western area of Mackay River. The most recent heave survey for the eastern section of Mackay River was acquired in 2019.

Uncertainty with manual heave monuments +/- 5mm

MacKay River Coupled Geomechanics / Reservoir Workflow

1 - Data Gathering

- SAGD well operations (Rate/Pressure)
- Ob well pressure (Piezometer)
- Ob well temperature (Thermocouple/Fiber)
- Surface heave (Monuments)
- Cores and borehole image log analysis
- Rock geo-mechanical properties (Lab tests)
- In situ stress (mini-frac tests)

4 - Learnings

- Sensitize key variables within uncertainty range
- Quantify geomechanical risks
- Verify and update MOP
- Recommend/Design further
 measurements / lab tests

Geomechanics analysis for safe optimal MacKay River operations

3 - Coupled Reservoir Geomechanics

- Update pressures and temperature
- Update stress state
- Recalibrate models using history match to field data
- Forecast/Design for safe development

2 – Data Interpretation Reservoir Physics

- Well performance
- Pressure Leak-off
- Heat transfer

Geomechanics

- Stress state
- Rock behavior
 - Shear failure conditions
 - Tensile failure conditions
 - Permeability change
- Thermal expansion
- Reservoir level deformations

Reservoir Fracture Closure Gradients

- Two new Mini-Frac wells in 2020; 6-17 and 7-36;
- No changes recommended to the MacKay River bottomhole MOPs currently approved; using the following methodology:
 - Fracture gradient of 21 kPa/m X based of the caprock (Wab D) in pattern X 80% (20% safety factor).

Well	Formation						
Date Collected	Clearwater	Wabiskaw D	Wabiskaw C	McMurray			
Dover 7-36 AB/07-36-092-13W4 2020	22.8	23.1	23.7	19.8			
Dover 6-17 AB/06-17-093-12W4 2020	22.2	22.8	24.2	21.5			
OB23 100/11-20-093-12W4 2017	20.4	19.5	-	19.0			
JK-9 1AA/16-04-093-12W4 2014	22.3	21.1	22.1	-			
LQ2 100/05-34-092-12W4 2011	21.3	21.2	22.6	21.1			
SST3 100/09-06-093-12W4 2008	24.1	-	24.3	19.9			
kPa/m: unit of fracture gradient							

Caprock Integrity Assurance

- Two new Mini-Frac wells in 2020;
 6-17 and 7-36;
- Fracture gradient of the caprock within the operating area is at or above 21 kPa/m;
- Geomechanical simulations are developed to assess all new pad startups;
- These activities confirm that operating at the approved MOPs does not impact the caprock integrity at MacKay River.

location of Mini-Frac Wells

Monitoring: Wabiskaw C Pressure & Temperature

- Average pressure increase of ~22 kPa in original producing area; pressure increase of ~19 kPa in Pad 750 area:
- Pressures are below fracture pressures

24

- 14 wells with elevated temperatures (>30°C) directly above mature SAGD operations:
- 5 wells between 90°C and 145°C; 9 wells between 30°C and 90°C

- Elevated temperatures are within the expected range

MacKay River – 3D / 4D Seismic Activity

 In 2020, 3D and 4D seismic data were collected in the west region of the field;

2020 4D Seismic – Time Delay (ms)

4.2.3 e)

26

4.2.4 a) b)

MacKay River Regional Structure

27

4.2.4 a) b)

MacKay River Stratigraphy

4.2.4 a) b) c)

4.2.4 a) b) c)

Representative well cross-section: Phases 2, 3 and 4

4.2.4 a) b) c)

Exploitable Bitumen in Place (EBIP)

- Exploitable Bitumen in Place (EBIP) is defined in each well by the top and base of Continuous Reservoir. It is selected at the base of a continuous sand unit either developed or most likely to be developed.
 - Continuous Reservoir base: lowest portion of the continuous reservoir sandstone with BMFO cut off of 6%, <3m of >50% mud/breccia in the lower portion.
 - Continuous Reservoir top: 2m of mudstone, no BMFO or porosity cut offs.
- Upper Lean, Middle Lean, and Gas Zones that are in pressure communication with the continuous reservoir are included with no thickness cutoffs.
- Observation wells and 4D seismic will take precedence over pre-operations core and log based picks.

Exploitable Bitumen in Place & Average Reservoir Properties

Pattern	HC area (m²)	Continuous Reservoir Thickness (m)	Porosity	Permeability (mD)	Oil Saturation	EBIP (e ³ m ³)	EBIP (MMbbls)
Α	466,561	21.7	0.34	1000-6000	0.72	2,449	15.40
В	476,917	26.8	0.34	1000-7000	0.82	3,596	22.62
С	475,673	33.1	0.34	1000-7000	0.82	4,399	27.67
D	362,305	28.1	0.34	1000-6000	0.82	2,806	17.65
E	523,590	28.7	0.34	1000-6000	0.82	4,180	26.29
F	475,138	29.4	0.34	1000-7000	0.83	3,913	24.61
G	584,365	28.3	0.34	1000-6000	0.78	4,341	27.30
н	405,338	21.9	0.34	1000-6000	0.79	2,367	14.89
NN	1,059,073	26.2	0.34	1000-6000	0.78	7,351	46.24
00	769,362	27.7	0.34	1000-6000	0.76	5,482	34.48
QQ	1,014,944	26.3	0.34	1000-6000	0.76	6,833	42.98
824	181,530	19.6	0.33	1000-6000	0.81	946	5.95
750N	795,880	22.9	0.33	1000-6000	0.79	4,446	27.96
750S	711,080	18.1	0.34	1000-6000	0.74	3,197	20.11
751W	639,111	20.2	0.34	1000-6000	0.78	3,359	21.13
751N	522,977	22	0.33	1000-5000	0.77	2,930	18.43
751S	410,219	17.3	0.34	1000-6000	0.76	1,846	11.61
Combined Active Well Pattern Area	9,874,062	24.6	0.34	N/A	0.78	64,441	405.32
* Project Development Area	41,230,470	20.78	0.33	N/A	0.73	208,798	1,313

34 **EBIP:** Exploitable Bitumen In Place. Without modification this generally stands for SAGD EBIP or producible bitumen in place. **HC:** Hydrocarbon

SUNC

* Project area and Development area are the same.

Performance Summary by Pattern

Pattern	EBIP (e ³ m ³)	Cum. Oil (e ³ m ³)	Recovery (%)	CSOR (m ³ /m ³)	iSOR (m³/m³)	Ultimate Recovery (%)
А	2,449	1,178	48%	4.30	3.84	56%
В	3,596	2,863	80%	2.71	4.61	88%
С	4,399	3,900	89%	2.28	1.97	95%
D	2,806	2,108	75%	2.61	1.95	84%
E	4,180	2,715	65%	1.83	2.66	74%
F	3,913	2,739	70%	2.67	3.20	80%
G	4,341	2,219	51%	2.45	2.78	63%
Н	2,367	747	32%	3.24	2.52	43%
NN	7,351	3,204	44%	2.77	2.36	70%
00	5,482	1,487	27%	2.87	4.09	47%
QQ	6,833	2,059	30%	2.54	2.47	52%
824	946	178	19%	3.10	3.37	40%
750	7,643	1,284	17%	3.14	2.72	69%
751	8,135	3	0%	50.40	19.03	67%
Combined Active Well Pattern Area	64,441	26,684	41%	2.65	2.99	67%

Average Reservoir Properties

- Average reservoir properties for the operating portion of the scheme:
 - Initial reservoir pressure: 400kPa
 - Initial reservoir temperature: 6°C
 - Average reservoir thickness= 21.0 m
 - Average porosity = 0.337
 - Average oil saturation = 0.78
 - Horizontal permeability: 2 to 8 D
 - Vertical permeability: 1 to 4 D
 - Viscosity: ~ 1,000,000 cp @ 15°C

SAGD NCG Co-Injection Strategy

Pilot

- NCG co-injection into B pattern 2011
- Injection was based on steam availability

Phase 1

– NCG co-injection to A, B, C and D patterns – 2016

Phase 2 + 3

NCG co-injection to E, F and G patterns – 2018

Phase 4

 NCG co-injection to H Pattern, NN1 to NN10, OO1 to OO9 and QQ2 to QQ10 – Mar 2021 (Recently started)

<u>Phase 5</u>

 NCG co-injection to Pad 824, NN11 to NN16, OO10 to OO15 and QQ11 to QQ16 – 2022 / 2023

Received Regulatory Approval:

Co-Injection Strategy

- At MacKay, NCG (i.e. methane fuel gas) is co-injected with steam:
 - The primary purpose is to maintain production and chamber pressures while reducing steam usage.
- NCG injection targets are determined by:
 - Desired operating pressures;
 - Field wide strategies for steam reallocation;
 - Steam chamber maturity and current oil recovery;
 - NCG retention within the reservoir.
- Typical NCG to gas replacement ratios range between 15 40 Sm³/m³ CWE;
- Injected NCG does not exceed a maximum of 18 e³m³/d per well on a quarter year average basis;
- NCG returns have been challenging to measure precisely due to produced gas from gas lift usage.

Key Learnings

- NCG was used successfully after the extended 2019 outage to help rebuild pressures and optimize steam allocation to younger, more impacted patterns
- Phase 4 NCG co-injection was started as of March 2021
- Steam cuts were made while co-injecting less NCG than anticipated to sustain target chamber pressures
- Overall, NCG has helped reduce SOR where it has been applied
- No negative impacts to oil rates, wellbore integrity, or ultimate recovery have been observed

Lessons Learned from 2019-2020 Outage

Start-Up- Potential for High Consequence Events

- Plant startups and shutdowns are significantly more hazardous than normal facility operations;
- The Center for Chemical Process Safety (CCPS):
- Process safety incidents occur five times more often during startup than during normal operations;
- 50 percent of process safety incidents occur during startups, shutdowns, and other events that infrequently occur (specific to the refining industry).
- Why?
- Startup and shutdown periods involve many non-routine procedures, and these periods can result in unexpected and unusual situations.

For a Success Start Up

- Communication is key!
- Regular communication during planning and execution is crucial to start up and adapt safely;
- Providing the right amount of detail to the right people (a detailed plan can still be flexible).
- Take a proactive approach to safety and risk:
- Considerations for well integrity, surface facilities, reservoir/caprock integrity;
- Slow and steady wins the race.
- Cross-discipline integration is necessary for constraint planning:
- Balance between produced water, make-up source water, and steam generation;
- Gas lift setpoints and handling limits tied to steam generation.
- Expect the unexpected and be flexible:
 - COVID-19, Fort McMurray floods, third party facilities;
 - Have the right tools beforehand, so swift changes to the plan can be made.
- Find the silver lining:
 - Take advantage of downtime and lower pressures to do otherwise expensive/difficult work (valve replacements, wellhead inspections, fluid sampling).

Planning for Start-up

- Comprehensive production & plant start-up plan including:
 - Risk assessment;
 - Operations start-up plan including applicable procedures;
 - Communication plan and daily meetings;
 - What If? Scenarios;
 - Well by well ramp-up forecast;
 - Training sessions on the start-up plan with Operations;
 - Reviews with the Cross Function Team (CFT), "Cold Eyes Review", peer review;
 - Tools to adapt the plan and address changes;
 - Dashboards to track deviations from the plan and monitor ramp-up.

Start Up Learnings

- Pad sequencing is important for a successful startup:
 - Target the guaranteed volumes first to get the fluid flowing to the plant and the water required for steam generation;
 - Mature wells were reliable volumes for MacKay River.
- Bottomhole pressure is the most important factor for artificial lift to work well:
 - Very low bottomhole pressures is challenging for a gas lift system.
- Plugged gas lift coils; 6% of coils were plugged, check ahead if gas is available to minimize production losses
- Well testing was not functional during the initial start up:
 - Therefore, it is difficult to understand how much volume is coming for part of the field;
 - Challenging to set production expectations, understand if the well were flowing.
- Lower water cuts and less emulsion led to challenges with steam production:
 - Higher gas lift required;
 - Less water to produce steam led to issues with produced gas system & steam generation.

Reservoir Pressure Learnings

- Pressure losses due to extended shut-in without injection:
 - Average pressure loss of ~250 kPa across the field; ranging from ~100-850 kPa/pattern;
 - Greater pressure loss in less mature areas, edge patterns, and wells with no NCG co-injection.
- Areas with higher pressure loss, bullheading was more efficient to rebuild pressure, than circulation
- Able to regain 400-500 kPa over 2 months (~50% of pressure loss) by bullheading
- Rapid re-pressurization also due to smaller size of steam chamber
- NCG co-injection useful to support re-pressurization and flexibility to divert steam where needed

Well Integrity during Outage and Restart

- Incorporating well integrity into the operations startup discussions and plan:
- Completed field wide checks for bonnet gaps & leaking valves.
- Regular communication throughout shut down and ramp up period on well integrity observations
- Shut in was an opportune time to perform preventative maintenance work on wellheads & subsurface:
 - No kill fluid required due to decline in bottomhole pressures, allowing for cost savings.
- Steam Warm-up plan:
 - Similar warm-up plan to new wells in circulation;
 - 3-5 day warm up;
 - Completions support on start-up to address any additional wellhead issues, plugged gas lift coils.
- SCVF monitoring
- Completed baseline testing on all wells with SCVA's with AGAT;
- Follow up testing scheduled.

Surface

Overview of Surface Infrastructure

Aerial Photo of MacKay River

AER Project & Approved Development Areas

MacKay River Central Processing Plant Modifications

 There were no modifications to the CPF over the last reporting period that required AER approval

MacKay River; Built and Planned Surface Infrastructure

Updates to the AER

On January 29, 2020 (File No. 4101-00254465-02-0202), the AER approved a water transfer from the PetroChina Canada Ltd MacKay River project to the Suncor MacKay River project:

- Water from the PetroChina MacKay River project used to support start-up activities at the Suncor MacKay River project.
- Pad 826:
 - Project is at site clearing stage;
 - Injector and Producer well head positioning were swapped in relation to the inlet modules;
 - No subsurface change.
- Four 400 bbl (64 m³) tanks added to the MacKay River tank farm
 - Tanks will store leachate from the MacKay River landfill:
 - Allows Suncor to fill tanker trucks for transport to third-party disposal site.
 - Landfill approval allows for transfer of leachate out of the landfill;
 - Directive 055 conditions will be met for placement of the four tanks.

Annual Rates-Bitumen; January 1, 2020 to December 31, 2020

From January 2020 to December 2020 MacKay River averaged 2,651 m³/day (16,683 bpd) of bitumen production. The Design rate for the MacKay River CPF is 6,041 m³/day (38,000 bpd) @ 2.8 SOR.

Annual Rates- Steam; January 1, 2020 to December 31, 2020

- From January 2020 to December 2020 MacKay River injected on average 9,331 m³/day of steam into the wells.
- The steam injection design rate for the MacKay River CPF is 18,432 standard m³/d.

Historical and Upcoming Activity

4.4

Suspension and Abandonment Activity

- Well Abandonment:
 - For the reporting period from January 1, 2020 to December 31, 2020, no wells were abandoned in the MacKay River project.
- Pad Abandonment:
 - For the reporting period from January 1, 2020 to December 31, 2020, no pads were abandoned in the MacKay River project.

Regulatory Applications; January 1, 2020, to December 31, 2020

Approved Applications:

Application Number	Application Files	Approval Date
1931951	MacKay River In Situ Project; Approval 8668 FFF, Condition 31	2021/03/10
1928158	Amendment application by Suncor Energy to add sustaining pads 828, 829, 830 and 831	2020/08/07
1926052	Suncor Energy Inc. MacKay River Steam Assisted Gravity Drainage (SAGD) Application to Modify Producer and Injector Well Designs at Pad 819 AER Commercial Scheme Approval No. 8668	2020/01/13
1923682	Suncor Mackay River In Situ Project AER Approval No 8668BBB (as amended) Request for Approval Pad 751 Thermal Compatibility Assessment	2019/09/06

Future Applications:

- For the reporting period of January 1, 2021, to December 31. 2022:
 - Suncor to submit Water Act Licence application for use of surface water for industrial uses including dust suppression;
 - Suncor to amend Water Act Licence 188229 to delete WSW3 and add WSW3B.

Summary of Events

MR Ramp-Up

- First steam achieved late April with introduction of steam to Pads 20 & 21. Produced fluids flowed back to CPF early May and first oil sent to Enbridge mid May;
- Mature wells saw minimal pressure loss over the extended shut-in while wells in plateau or ramp-up phase required warm-up period;
- NCG supported re-pressurization and allowed for re-direct steam to pads in plateau and/or early life phase.

Produced Fluids Pipeline Failure

• In June 2020, a pressure surge from a plant trip led to a release from the Pad 22 emulsion pipeline on pad grounds.

Pad 751 Start-Up

 Start up schedule has been staggered to meet CPF capacity demand. Circulation started on eight Pad 751 wells with the first four starting in July 2020. Of the eight wells in circulation, four were converted to SAGD in December 2020 and four converted to SAGD in January 2021. Another four wells started circulation in January 2021 and were converted to SAGD in April 2021.

Summary of Key Learnings

MR Ramp-Up

- Regular communication during planning and execution of start-up was crucial to ramping up safely and being able to adapt to changes in the plan;
- NCG supported re-pressurization and allowed for flexibility to divert steam when needed to other areas of the field without any negative reservoir impacts.

Produced Fluids Pipeline Failure (June 2020)

- Metallurgical lab analysis determined the damage mechanism to the pipeline to be external. The damage mechanism appears to be a result of wet mineral wool insulation releasing leachate compounds that caused damage to carbon steel;
- Key learnings from this failure has led to implementation of effective inspection programs to detect cracks as well as improved insulation system design.

Pad 751 Start-Up

 Start up order driven by reservoir quality and applied learnings from recent start up of Pad 750.

Pilots / Technical Innovations - New Technology Update

- Electric Resistive Heater Pilot (750S9)
 - Project canceled; well location targeted for pilot will be made available for operation.
- In Situ Demonstration Facility (ISDF)
 - Project is temporarily on hold;
 - No updates for this reporting period.

Compliance History

	Date Incident	AER - Edge# OneStop #	Type of Incident	Title & Description	Remediation or compliance efforts
	Feb-4-2020	363212	Contravention	MR - Passive Samples Over exposure	AMD Assurance Plan procedures were reviewed and incorporated.
	Apr-21-2020	30725872 30792059	Flaring > 4hrs	HP and LP Flaring event during the Plant Start up -	Flaring occurred during the start up mode of the plant. Once operations were able to stabilized the process, the flaring ceased
	Jun-14-2020	367663	Reportable	Pad 22 - Process fluids spill	Spill clean up completed on July 11-2020. After further investigation it was confirmed the failure mechanism as externally - initiated stress corrosion cracking . A more detailed response was provided to AER on August 06, 2020 File 4009.
	Jun-14-2020	30725884 30725879	Flaring > 4hrs	HP and LP Flaring event Plant at low rates due to P22/23 outage 9 Pipeline rupture	This was an emergency flaring event due to excess produced gas. Operations reduced loads to stabilized the process.
	Jun-17-2020	367810	Contravention	MR- Landfill - Leachate head Exceedance	Due to increased rain precipitation, Suncor increased efforts to bring down the leachate head and added more vacuum trucks for leachate removal.
	Jun-17-2020	367835	Contravention	WL-289164- Monthly water levels has not been reported in Annual basis not in monthly basis as required. (Section 4.7)	The Water Act license has been amended for reporting on a quarterly cycle rather than a monthly cycle.
020	Jul-29-2020	369605	Contravention	MR- Landfill - Leachate head Exceedance	Suncor continues to work diligently to manage the leachate in the landfill to avoid a similar contravention and, most importantly, to avoid any overflow.
ary 2020 to December 20	Aug-27-2020	370888	Reportable	Pad 25 to CPF - Pipeline spill - Pipeline 36367-010	The root cause of this event was similar to the Pad 22 spill. Suncor has implemented a full inspection/repair on all pipelines that are susceptible to have the same damage mechanism.
	Aug-28-2020	370911	Reportable	Blowdown lagoon overflow - August 28-2020	An alarm for high level was set up for the Blowdown Lagoon. Alarm to indicate if the valve is open in order to alert the control room operator that this valve is still open.
	Aug-12-2020	30794515	Flaring > 4hrs	Flaring event due to 02-PCV-501 failed causing excess sweep gas to enter T-293	Emergency flaring ceased when PCV -501 was repaired.
	Aug-31-2020	30792133	Flaring > 4hrs	HP Flaring event Cogen online, less demand for produced gas - Pad 25 pipeline header down.	Emergency Flaring due to low demand for produced gas.
	Sep-02-2020	371118	Reportable	DVL seepage - Southeast corner	An assessment was conducted to identify the leak. The initial smoke test did not indicate any problem. Operations decide to operate the DVL 20" until the next opportunity to perform further investigation of the liner.
Janu	Sep-08-2020	371299	Contravention	MR- Landfill - Leachate head Exceedance	Suncor continues to work diligently to manage the leachate in the landfill to avoid a similar contravention and, most importantly, to avoid any overflow.
1	Sep-16-2020	n/a	VSD	Liner Tear MR Phase III East SW corner	Temporary repair was put in place until the permanent repair was completed on October 22, 2020
	Oct-16-2020	30838077	Flaring > 4hrs	HP Flaring due Pad 750-751 shutdown	Flaring due to excess produced gas. Flaring continued until Pad 750/751 came back online.
	Nov-16-2020	373741	Reportable	Drain valve leak in the Pad 21 pipeline - 36366-001	Maintenance torqued the bolts of the bonnet, which halted the leak . The bonnet was injected with sealant to avoid any further failures.
	Nov-30-2020	374100	Contravention	Duplicate H2S passive sample from October destroyed	The hood that holds the samples, was replaced to ensure that the sample cartridges are secured in place.
	Nov-24-2020	30993220	Flaring > 4hrs	Duct burners off line causing HP flaring	Flaring ceased after duct burners were replaced
	Dec 09-2020	31016443 - 31016454 - 31055848	Flaring > 4hrs	Plant Trip - Loss of Power	Flaring stopped after plant came back online.
	Dec 31-2020	31055893	Flaring > 4hrs	HPBFW Offspecs - Silica Excursion, Duct Burners taken offline	BFW was brought to specs and duct burners were put back in operation.

Future Plans

- The following horizontal drilling activities are expected to commence within the next five years:
 - Brownfield Program potentially 6 wells 2022;
 - Pad 819 9 well pairs 2022;
 - Pad 826 6 well pairs 2022 2023;
 - Pad 829 9 well pairs 2023 2024.
- The following first steam dates are planned to occur within the next five years:
 - Pad 819 Q1-2 2023;
 - Pad 826 Q1 2024;
 - Pad 829 Q4 2025.
- Coreholes and observation wells will be drilled as necessary to:
 - Adequately delineate the resource;
 - Monitor SAGD operations;
 - Further caprock integrity analysis;
 - Allow land retention.
- Development plans are evaluated annually and are subject to change.

4.4.12 b)

Future Plans

- First steam dates planned to occur within the next five years:
 - Pad 819 Q1-2
 2023;
 - Pad 826 Q1 2024;
 - Pad 829 Q4 2025.

(Regulatory approval in place for these pads)

 Development plans evaluated annually and are subject to change.

