INTRODUCTION

DEVELOPMENT OVERVIEW

SUBSURFACE

- Geoscience
- 4-D Seismic & Monitoring
- Well Design & Instrumentation
- Scheme Performance
- Future Plans

SURFACE OPERATIONS & COMPLIANCE

- Facilities
- Measurement & Reporting
- Facility Performance
- Water Production, Injection & Uses
- Sulphur Production
- Future Plans
- Compliance
PROJECT DETAILS

- First steam September 2010
- Approved processing capacity 40,000 bbl/d
- 7 producing pads
 - 40 horizontal well pairs
 - 13 infill wells
- Approved for development
 - Pad 8 (14 well pairs)
 - Pad 6 infills (4 infills)
 - L7P6 (1 well pair)

INFRASTRUCTURE

- Fuel gas from TransCanada Pipeline (TCPL)
- Dilbit export to Enbridge Cheecham Terminal
- Diluent supply from Enbridge Cheecham Terminal
SURFACE DATA OVERVIEW

GEOSCIENCE DATA ACQUIRED ON 4 WELLS DURING THE REPORTING PERIOD

- Core and petrophysics completed on 4 wells in Pad 7 drainage area

<table>
<thead>
<tr>
<th>Area</th>
<th>Area (km²)</th>
<th>Cored Wells</th>
<th>Image Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lease Area</td>
<td>326</td>
<td>370</td>
<td>625</td>
</tr>
<tr>
<td>Development Area</td>
<td>37.4</td>
<td>145</td>
<td>244</td>
</tr>
</tbody>
</table>
STRATIGRAPHY AND REFERENCE WELL

AOC Lease Area
Development Area
Pad Drainage Area
Type Well (00/09-33-078-10W4)
SAGD Well-Pair
Infill Well

SAGD PRODUCING WELLPAIRS

UNDIFFERENTIATED QUATERNARY GLACIAL DRIFT & TILL

GRAND RAPIDS FM
- Lower Grand Rapids
- Clearwater Sand
- Upper Grand Rapids

CLEARWATER FM
- Wabiskaw
- Upper Clearwater
- Middle Clearwater
- Lower Clearwater

MCMURRAY FM
- Upper Mcmurray
- Middle Mcmurray
- Lower Mcmurray

BEAVERHILL LAKE GROUP
- Devonian

FACIES
- Sand
- Sandy IHS
- Muddy IHS
- Mudstone
- Limestone

DEPTH (m SSTVD)
SEISMIC
PEAK
TROUGH
HIGH
LOW
RESISTIVITY
HIGH
LOW

Left-Gamma Ray
Right-Resistivity

Depth (m SSTVD)

100/09-33-078-10
Wabiskaw
McMurray

GBIP Base
GBIP Top

Limestone
Mudstone
Muddy IHS
Sandy IHS
Sand

1:130009
GROSS BITUMEN IN PLACE (GBIP)

- GBIP represents the total pay interval accessible via SAGD
- Petrophysical criteria:
 - Gamma Ray (GR) \(\leq 75 \) API
 - Resistivity (RT) \(\geq 40 \text{ ohm-m} \)
 - Porosity (DPSS) \(\geq 27\% \)
- Non-reservoir lithofacies (F6–F7) excluded if greater than 2m

ELEVATION RANGE

- 202 - 241 masl
DEVELOPABLE BITUMEN IN PLACE (DBIP)

- DBIP has the same petrophysical properties as GBIP but is restricted to higher quality lithofacies:
 - F1: Shale-Clast Breccia (if <5m)
 - F2: Trough Cross-Beded Sand
 - F3: Current-Ripple Laminated Sand
 - F4A-B: Sand with 5–10% Mud Interbeds

ELEVATION RANGE

- 202 - 237 masl
TOP STRUCTURE MAP

Elevation Range 202 - 241 masl
BASE STRUCTURE MAP

Elevation Range 193 - 231 masl
BOTTOM WATER THICKNESS MAP

Elevation Range 191 - 213 masl
TOP GAS THICKNESS MAP

MINIMAL GAS THICKNESS AND LIMITED DISTRIBUTION WITHIN DEVELOPMENT AREA

Elevation Range 221-253 masl
2019
o No new caprock core, mini-frac or tri-axial testing completed during the reporting period

HISTORICAL
o Caprock defined as the Clearwater Formation
 • Includes regionally continuous shale of the Wabiskaw Member
 • Mini-frac tests completed at two locations (01-04-079-10W4, 01-28-078-10W4)
o Approved maximum operating pressure is 5,500 kPag
o All injectors operating at ~ 3,000 - 3,300 kPag

SURFACE HEAVE MONITORING
o No new data acquired during reporting period
RESERVOIR PROPERTIES

- Original Reservoir Pressure: 2,300 to 2,600 kPa
- Original Reservoir Temperature: 14°C
- Average Horizontal Permeability: 5 to 6 D
- Average Vertical Permeability: 4 to 5 D
- Depth: 410 to 444 m TVD (-230 to -216 m subsea)
SUBSURFACE
4D SEISMIC & MONITORING
SEISMIC ACQUISITION HISTORY

2020
- Pads 1-6 4D seismic acquisition conducted in Q1

2019
- No new data acquired during the reporting period

HISTORICAL
- Q1 2016: 2.0 km² first 4D survey for Pad 5
- Q1 2015: 9.0 km² 3D survey
 - Third 4D repeat survey (2.2 km² active SAGD Pads 1 & 2)
 - Repeat 3D seismic for higher resolution data
- Q1 2014: 2.1 km² 4D survey (active SAGD Pads 3 & 4)
- Q1 2013: 4.5 km² 3D survey
 - Second repeat survey (4.9 km² of active SAGD Pads 1–4)
- Q1 2012: 8.6 km² 3D survey
 - First 4D survey (4.9 km² of active SAGD Pads 1–4)
 - New baseline survey for Pads 5 and 6 (3.7 km²)
- Q1 2009: 4.9 km² baseline survey (pre-steam) Pads 1–4
RESERVOIR SATURATION LOGGING

2020

- Repeat saturation logs conducted in Q1
 - Pads 1-6 (8 total)
 - Pad 8 (7 total)

2019

- 1 baseline saturation log acquired (Pad 7) during reporting period

HISTORICAL

- Baseline acquired in 2010 - 23 wells
- 2011 - 18 wells
- 2012 - 7 wells
- 2013 - 12 wells
- 2014 - 11 wells
- 2015 - 6 wells
- 2018 - 13 wells
- Saturation log results show steam chamber thickness correlates with observation well temperature profiles
2019
- 5 SAGD well pairs and 4 observation wells drilled on Pad 7 during reporting period

HISTORICAL
- The Leismer project includes a Central Processing Facility (CPF) and seven well pads, with 40 well pairs and 13 infill wells
ARTIFICIAL LIFT

All wells completed with ESP’s with the exception of two infill wells
 - Rod pumps installed on infills L5N3 and L5N4

Typical artificial lift operating conditions:
 - Bottomhole pressure (BHP) range: 2,500-3,300 kPag
 - BHP temperature range: 180-235 °C

<table>
<thead>
<tr>
<th>Artificial Lift Performance</th>
<th>ESP</th>
<th>Rod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Minimum Rate (m³/d)</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>Typical Maximum Rate (m³/d)</td>
<td>1,200</td>
<td>300</td>
</tr>
</tbody>
</table>
TYPICAL COMPLETION: PADS 1–4

PADS 1-4 COMPLETIONS

- Pads 1-4 injection wells completed with parallel tubing strings
- In production wells, instrumentation carried within a 1.75” coiled tubing
TYPICAL COMPLETION: PADS 5-6

PADS 5-6 COMPLETIONS

- Pads 5-6 injection wells completed with concentric tubing strings
- In production wells, instrumentation carried within a 1.5” coiled tubing (coil runs inside a 2-3/8” guide string)
- 5 of 7 injectors on Pad 5 completed with Vacuum Insulated Tubing (VIT) on long tubing string

Diagram details:
- 9-5/8” intermediate casing
- 2-3/8” guide string
- 3-½” production tubing
- 1.5” Instrumentation coil (10 thermocouples, 2 bubble tubes)
- 6-5/8” WWS with FCDs; or 7” WWS
TYPICAL COMPLETION: PADS 7

PAD 7 COMPLETIONS
- Pads 7 injection wells completed with concentric tubing strings
- In production wells, thermocouple string inside a 2-7/8” to 2-3/8” guide string
- Downhole pump installed with a heel bubble tube and 2 thermocouples
TYPICAL COMPLETION: INFILL WELL

16" x 13-3/8" surface casing

casing gas

3-½" production tubing

2-3/8" x 3-½" guide string

Instrumentation string

11-¾" x 9-5/8" intermediate casing

7" liner (WWS)
INSTRUMENTATION

TEMPERATURE

- Mixture of thermocouples (TC) and fiber measurements
- Both systems adequate for temperature management along the wellbore

PRESSURE

- Injector BHP is measured with blanket gas
- Producer and infill BHP is measured using optical gauges and/or bubble tubes
OBSERVATION WELLS

- Instrumentation used to monitor reservoir pressure and temperature
- 30 thermocouples spaced at 1 m above, below, and within SAGD pay
- 4 OBS wells drilled and instrumented with piezometers and thermocouples in Pad 7 in 2019
- Pad 8 observation wells (4) drilled Q1 2020 (to be instrumented with piezometers and thermocouples)
FLOW CONTROL DEVICES

2019
- 5 liner deployed FCDs installed in Pad 7
- 1 tubing deployed FCD installed in L4P4
- Continue to evaluate tubing deployed FCD opportunities

HISTORICAL
- Liner deployed and tubing deployed FCD configurations have been used to optimize asset performance
- Able to operate at lower subcool with positive impact on temperature conformance

L3P4 TEMPERATURE PROFILES

- **Pre-FCD Install**
- **16 months after FCD Install**

SAGD PRODUCING WELLPAIRS

- **Pad Drainage Area**
- **Development Area**
- **SAGD Well-Pair**
- **Infill Well**
- **Liner Deployed Producer FCD**
- **Liner Deployed Injector FCD**
- **Tubing Deployed Injector FCD**
- **Tubing Deployed Producer FCD**
- **Liner Deployed Producer FCD and Injector FCD**
- **Liner Deployed Producer FCD and Tubing Deployed Injector FCD**
SUBSURFACE SCHEME PERFORMANCE
REPORTING YEAR HIGHLIGHTS

- 7 producing pads (40 SAGD well pairs and 13 infill wells)
- Pad 7 began steaming in summer 2019
- Increased NCG co-injection on Pads 1-4 for SOR management
- Increased field steam capacity to 91,000 bbl/d in Q4 2019
- Initiated disposal into the Clearwater B formation in Q4 2019
PAD RECOVERY FACTOR

<table>
<thead>
<tr>
<th>Pad</th>
<th>Well Pairs</th>
<th>Infills</th>
<th>Cumulative Production (10^3 m^3)</th>
<th>Lateral Length (m)</th>
<th>Area (10^3 m^2)</th>
<th>Oil Saturation (frac)</th>
<th>Porosity (frac)</th>
<th>Net Pay DBIP Above Producer (m)</th>
<th>GBIP (10^3 m^3)</th>
<th>EUR (10^6 m^3)</th>
<th>Recovery Factor (%)</th>
<th>EUR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2,621</td>
<td>775</td>
<td>526</td>
<td>0.89</td>
<td>0.33</td>
<td>22.5</td>
<td>2,590</td>
<td>26.7</td>
<td>3,914</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1,752</td>
<td>745</td>
<td>498</td>
<td>0.86</td>
<td>0.32</td>
<td>19.2</td>
<td>2,857</td>
<td>24.5</td>
<td>3,344</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1,763</td>
<td>690</td>
<td>411</td>
<td>0.87</td>
<td>0.34</td>
<td>23.6</td>
<td>2,650</td>
<td>29.1</td>
<td>3,443</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1,206</td>
<td>695</td>
<td>389</td>
<td>0.86</td>
<td>0.33</td>
<td>19.6</td>
<td>1,747</td>
<td>22.4</td>
<td>2,433</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>1,194</td>
<td>900</td>
<td>708</td>
<td>0.87</td>
<td>0.33</td>
<td>17.6</td>
<td>2,739</td>
<td>24</td>
<td>4,479</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0</td>
<td>923</td>
<td>860</td>
<td>571</td>
<td>0.86</td>
<td>0.33</td>
<td>25.3</td>
<td>2,914</td>
<td>28.9</td>
<td>3,836</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>0</td>
<td>105</td>
<td>1,250</td>
<td>639</td>
<td>0.86</td>
<td>0.33</td>
<td>15.0</td>
<td>2,766</td>
<td>21.2</td>
<td>3,654</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>13</td>
<td>9,204</td>
<td>18,263</td>
<td>25,103</td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
- Cumulative production as of February 29, 2020
- Volumetrics include 50 m at heel and toe of well pair
- EUR = Estimated Ultimate Recovery
PAD PERFORMANCE DEPENDS ON GEOLOGY AND OPERATING PARAMETERS

- Pads 7, 3 and 4 selected as examples of high, medium and low performing pads, respectively
 - Selection based on average monthly oil rate and iSOR
 - Differences in the productivity of the wells primarily due to geological variability and lateral length
PAD PERFORMANCE: HIGH PAD 7

PAD 7 SUMMARY

- **First steam June 2019**
- **Peak oil rate during reporting period:**
 \(~811 \text{ m}^3/\text{d} \ (625-1,450 \text{ bbl/d/wellpair})\)
- **iSOR ~2.7**
- **High reservoir quality**
 - *Mostly sandy reservoir*
 - *High oil saturation*
- **1,250 m wells equipped with FCDs**

PAD 7 PRODUCTION

![Graph showing production data for PAD 7]

- **Oil Rate**
- **Water Rate**
- **Steam Rate**
- **iSOR**
- **cSOR**

<table>
<thead>
<tr>
<th>Fluid Rate (m³/d)</th>
<th>Mar-19</th>
<th>May-19</th>
<th>Jul-19</th>
<th>Sep-19</th>
<th>Nov-19</th>
<th>Jan-20</th>
<th>Mar-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Rate</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td>1,000</td>
<td>1,500</td>
<td>2,000</td>
<td>2,500</td>
</tr>
<tr>
<td>Water Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iSOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cSOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PAD PERFORMANCE: MEDIUM PAD 3

PAD 3 SUMMARY
- First steam 2010
- Peak oil rate during reporting year: ~350 m3/d (100-675 bbl/d/wellpair)
- cSOR ~3.1
- Good reservoir quality
- Steam chamber development since last reporting period
- NCG co-injection started in Jun 2019 for SOR management

PAD 3 PRODUCTION

![Temperature Plots](image)

- **Oil Rate**
- **Water Rate**
- **Steam Rate**
- **iSOR**
- **cSOR**

L3P4M- 103/13-27-078-10W400 (14m from L3P4)

- **Injection**
- **Producer**
- **Res Top**
- **Res Base**
- **OWC**
- **Dev**

Temperature Plots
- Mar 1, 2019
- Mar 1, 2020

Fluid Rate (m3/d)

- 3,000
- 2,500
- 2,000
- 1,500
- 1,000
- 500
- 0

PAD PERFORMANCE: LOW PAD 4

PAD 4 SUMMARY

- First steam 2010
- Peak oil rate during reporting year: ~280 m³/d (300-540 bbl/d/wellpair)
- cSOR ~3.4
- Average reservoir quality
- NCG co-injection re-instated on this pad in June 2019

PAD 4 PRODUCTION

L4P3T- 102/16-28-078-10W400 (19m from L4P3)

Temperature Plots

- Mar 1, 2018
- Mar 1, 2019

- Thermocouple
FCD PERFORMANCE

TUBING DEPLOYED FCDS

- Oil production initially increased 125-150% per well
- Tubing deployed FCDs continue to perform above expectations
 - 100 – 200 bbl/d uplift still observed after 2 years
- Continue to evaluate opportunities across the field
SUMMARY

- Pads 1-4 NCG co-injection re-initiated Q2 2019
 - Steam reduced by ~1,500 m³/d (-25%) with an SOR improvement of ~1 (-22%)
 - NCG co-injection rates continue to increase based on reservoir performance
STEAM PRESSURE

- Steam upstream of pads 7,000–9,000 kPa
- Steam pressure let-down to 5,000–6,000 kPa at pads

STEAM QUALITY

- Steam quality decreases during transportation to well pads due to heat losses
 - Estimated at 95% for Pads 1–4, 6 & 7
 - Estimated at 90% at Pad 5 due to longer, larger diameter pipe line
WELL INTEGRITY

- No wellbore integrity failures during the reporting period (liner or casing)

ABANDONMENTS

- 1 producer/injector well pair abandoned February 2020
 - *L2P1 (106/11-27-078-10W4/00)*
 - *L2I1 (100/06-27-078-10W4/00)*
- No near term plans for well pad abandonments
LEISMER FUTURE DEVELOPMENT PLANS

SUBSURFACE DEVELOPMENT PLANS

- Evaluating opportunities for tubing deployed FCDs into producer wells on Pads 1-6
- Pad 8 observation wells (4) drilled Q1 2020
- Pad 6 infills (4) approved September 2018
- Pad 7 additional well pair (1) approved August 2019
- Pad 8 well pairs (14) approved September 2019

PAD ABANDONMENTS

- No pad abandonments anticipated within next five years
MAJOR ACTIVITIES

- Boiler maintenance on three OTSGs (May 2019)
- Well Pad 7 start-up (June 2019)
- Heat Integration and additional water treatment capacity (WAC) installed for OTSG 5 (August 2019)
- Increased field steam capacity to 91,000 bbl/d (Q4 2019)
- 14-28-078-10W4 Injection Facility construction for water disposal (November 2019)
- Pipeline construction to water injection location at 16-10-078-10W4 (winter 2019/2020)
ADDITIONAL HEAT INTEGRATION AND WATER HANDLING ADDED FOR 5TH OTSG
NO CHANGES TO FACILITY SCHEMATIC
SURFACE
MEASUREMENT, ACCOUNTING AND REPORTING PLAN (MARP)
CPF
- MARP updated to reflect asset sale of downstream Cheecham Terminal

WELL TESTING
- Well tests used to calculate daily bitumen and water production
- Six hour test with 1 hr. purge to improve oil calculation accuracy
- Pads 1, 3, 5 and equipped with full test headers and test separators
- Pad 4 equipped with full test header and Multi-Phase Flow Meters (MPFM)
- Pad 2/7 and 4 equipped with MFPM
- MARP updated to reflect addition of Well Pad 7 and tie into existing infrastructure on Well Pad 2

FQI – flow quantity indicator
AE – analyzer element
OR - orifice plate
Pad 7 start up: challenges with measuring bitumen rates during circulation.

Field ramp down May: quick ramp ups and downs impact proration due to the lag time in testing.

Oct – Dec: field wide sampling program to improve proration.
SURFACE FACILITY PERFORMANCE
SITE RELIABILITY HAS REMAINED HIGH

- CPF availability was 98% for 2019 (facility design 93%)
- Availability calculated based on steam capacity
- Facility down-time mainly associated with boiler repair work (May 2019)
PRODUCTION & ELECTRICITY CONSUMPTION

Bitumen Production

- Produced Bitumen (m3)
- OTSG Maintenance

Electricity Consumption

- Electricity Consumption (MWh)

Graphs showing production and consumption trends for Athabasca 2015.
PURCHASED & PRODUCED GAS VOLUMES

Purchased Gas

Produced Gas

Increased rates for Well Pad 7 lift gas
Note: D060 revision to flare volume calculation (inclusion of purge gas) effective January 1, 2020
SURFACE
WATER PRODUCTION, INJECTION & USES
SOURCE WATER NETWORK

SOURCE WATER WELLS

- 5 Lower Grand Rapids non-saline wells
 - 1F1/16-09-079-10W4/00
 - 1F1/07-10-079-10W4/00
 - F1/04-09-079-10W4/00,
 - 1F1/16-04-079-10W4/00
 - 1F1/03-04-079-10W4/00

- 3 well source water monitoring network
 - 100/03-05-079-10 W4/00
 - 100/11-02-078-10 W4/00
 - 100/03-22-081-08 W4/00
 - Regional monitoring well located outside of mapped area
Increased water use for Pad 7 start up
WATER USE

SOURCE WATER USE
- Water Act license allocation 317,915 m³/year (871 m³/day)
- Total non-saline water use from source wells during reporting period 199,000 m³ (545 m³/d)
 - 55% of license allocation
 - ~98.5% for process use at CPF
 - ~1.5% for domestic use at CPF
- No saline water use

SOURCE WATER MINIMIZATION
- Total source water use reduced by 12% from previous reporting period
- Source water intensity of 0.17 bbl water/bbl bitumen over the reporting period
- Balanced reservoir conditions minimize make-up water volume requirements
- High blowdown recycle rates minimize source water demand

TYPICAL WATER QUALITY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Non-Saline Water</th>
<th>Produced Water</th>
<th>Disposal Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS [mg/L]</td>
<td>1,575</td>
<td>1,900</td>
<td>29,200</td>
</tr>
<tr>
<td>pH [-]</td>
<td>8.2</td>
<td>6.9</td>
<td>11.9</td>
</tr>
<tr>
<td>Hardness [mg/L as CaCO₃]</td>
<td>4.3</td>
<td>21</td>
<td>0.9</td>
</tr>
<tr>
<td>Total Alkalinity [mg/L as CaCO₃]</td>
<td>825</td>
<td>245</td>
<td>4,900</td>
</tr>
<tr>
<td>SiO₂ [mg/L]</td>
<td>0</td>
<td>220</td>
<td>210</td>
</tr>
<tr>
<td>Cl [mg/L]</td>
<td>225</td>
<td>1100</td>
<td>13,500</td>
</tr>
</tbody>
</table>
STEAM INJECTION

Monthly Volume (m³)

Monthly Capacity

Monthly Volume

OTSG Maintenance
CLASS 1B DISPOSAL APPROVAL 11479C

- Approval for Clearwater B injection (September 2019)

- 2 Basal McMurray injection wells
 - 00/12-33-078-10W4/00
 - 00/13-33-078-10W4/00

- 2 Clearwater B injection wells
 - F2/01-10-078-10W4/00
 - F2/04-28-078-10W4/00

- Extensive monitoring network
 - Basal McMurray
 - Clearwater B
 - Lower Grand Rapids

CLEARWATER B

- Initiated injection at F2/04-28-078-10W4/00 (November 2019)

- F2/01-10-078-10W4/00 injection well operational after pipeline construction (March 2020)
DISPOSAL MONITORING

BASAL MCMURRAY MONITORING
- Disposal diverted from McMurray (March 2019)
- McMurray bottom water pressure has stabilized

CLEARWATER B MONITORING
- No pressure response observed at Clearwater B monitoring wells (2) since injection initiated

LOWER GRAND RAPIDS MONITORING
- Pressure response in Lower Grand Rapids monitoring wells (4) remains consistent with pumping rates of the Lower Grand Rapids source water wells

No unexpected responses have been observed at any of the monitoring wells during the reporting year.
Disposal water temperature measured at CPF disposal tank.

1 Disposal water temperature measured at CPF disposal tank.
Disposal limit calculated in accordance with D081. Calculation revised (Nov. 2019) with release of new D081.
SOLIDS DISPOSAL:

- Water treatment solids (lime softening) are pumped to settling pond
- Sludge pond dredged and 14,102 tonnes of solids disposed at offsite approved facility
SURFACE
SULPHUR PRODUCTION
SULPHUR & SULPHUR DIOXIDE REPORTING

- EPEA Approval No. 241311 limit is 2.0 t/d of SO₂ emissions
- Average daily SO₂ emissions over period was 1.22 t/d (61% of approval limit)
- SO₂ emissions are calculated based on analytical results of mixed gas samples
- There are no sulphur recovery facilities at Leismer
Sulphur Dioxide Emissions

Avg Quarterly Emissions
- Q1-2019: 1.23 t/d
- Q2-2019: 1.12 t/d
- Q3-2019: 1.29 t/d
- Q4-2019: 1.37 t/d
SO₂ DAILY AVERAGE

- Daily SO₂ Emissions for Q4 averaged 1.37 tonnes/day
LEISMER FUTURE PLAN

- CPF debottlenecking to support additional pads/production as required
- Implementation of NCG for SOR reduction
- Continue to evaluate heat integration opportunities for emissions reduction
- Pad facility design as required to support new development
APPROVALS AND AMENDMENTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Approval/Amendment</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2019</td>
<td>WA Licenses 00297242, 00322141, 00368609 & 00370676</td>
<td>Amendment clarifying data reporting requirements for water wells</td>
</tr>
<tr>
<td>August 2019</td>
<td>OSCA Approval No. 10935Y</td>
<td>Amendment Pad 7 – expand drainage area for additional well pair</td>
</tr>
<tr>
<td>September 2019</td>
<td>OSCA Approval No. 10935Z</td>
<td>Amendment Pad 8 - downhole spacing for 14 well pairs</td>
</tr>
<tr>
<td>September 2019</td>
<td>Disposal Approval No. 11479C</td>
<td>Approval for 1b disposal in the Clearwater B and McMurray</td>
</tr>
<tr>
<td>October 2019</td>
<td>D056 License F51680</td>
<td>Approval for Injection Facility at 14-28-078-10 W4</td>
</tr>
<tr>
<td>October 2019</td>
<td>D056 License P51231</td>
<td>Approval for disposal pipeline from CPF to 16-10-078-10 W4</td>
</tr>
<tr>
<td>February 2020</td>
<td>WA License No. 00364442</td>
<td>Renewal – CPF storm water use additional 5 year term</td>
</tr>
<tr>
<td>February 2020</td>
<td>EPEA Approval No. 241311</td>
<td>Submission - renewal application for additional 10 year term</td>
</tr>
</tbody>
</table>

Notes
- OSCA – Oil Sands Conservation Act (scheme approval)
- EPEA – Environmental Protection and Enhancement Act Approval
- WA - Water Act
INSPECTIONS

<table>
<thead>
<tr>
<th>Event</th>
<th>Location/License</th>
<th>Inspection ID</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AER Facility Inspection, April 25, 2019</td>
<td>08-02-079-10W4</td>
<td>486921</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>AER Pipeline Inspection, January 23, 2020</td>
<td>P51231</td>
<td>496631</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>AER Pipeline Inspection, February 5, 2020</td>
<td>P51231</td>
<td>498051</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>AER Wellsite Inspection, February 5, 2020</td>
<td>0496549</td>
<td>498030</td>
<td>Satisfactory</td>
</tr>
</tbody>
</table>
AUDITS

<table>
<thead>
<tr>
<th>Event</th>
<th>License</th>
<th>Activity ID</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reclamation Certificate, March, 13, 2019</td>
<td>MLL070189</td>
<td>159791</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Annual Conservation & Reclamation Report, May 1, 2019</td>
<td>241311</td>
<td>N/A</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Annual Groundwater Monitoring Report, June 26, 2019</td>
<td>241311</td>
<td>N/A</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Pipeline License Application, November 18, 2019</td>
<td>P51231</td>
<td>1645478</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Well License Application, December 10, 2019</td>
<td>W0496553</td>
<td>1703577</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Public Lands Act Applications, January 9, 2020</td>
<td>1630729</td>
<td>1649406 & 1649407</td>
<td>Satisfactory</td>
</tr>
</tbody>
</table>
NON-COMPLIANCE SUMMARY

- No Notices of Non-Compliance were received during the reporting period.
- One approval contravention was reported (Water Act License 00239880-02) for data loss due to failure of a water level transducer. Equipment was repaired and data collection restored.
- There were 6 reportable releases during the reporting period.
AIR QUALITY MONITORING

- Passive air monitoring – no exceedances (SO$_2$, NO$_2$, H$_2$S) of Ambient Air Quality Objectives
- Continuous ambient air monitoring
 - *WBEA air monitoring station onsite during Q4 2019 and Q1 2020*
 - *No exceedances (SO$_2$, NO$_2$, H$_2$S) of Ambient Air Quality Objectives*
- Leismer has 2 CEMS units (OTSG 4 and OTSG 5) reporting data
 - *No issues during reporting period*
COMPLIANCE - MONITORING PROGRAMS

NO\textsubscript{X} MONTHLY AVERAGE

- CEMS units installed on OTSG 4 and OTSG 5

OTSG 4 & 5 - Monthly Average NOx

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OTSG 4</td>
<td>8</td>
</tr>
<tr>
<td>OTSG 5</td>
<td>2</td>
</tr>
</tbody>
</table>

Limits:
- OTSG 4 Limit: 18 kg/hr
- OTSG 5 Limit: 18 kg/hr
NO\textsubscript{x} \textbf{HOURLY RATES}

- Hourly NOx rates for three months (Dec 2019 to March 1, 2020)
COMPLIANCE – MONITORING PROGRAMS

INDUSTRIAL RUN-OFF MONITORING

- All discharges completed in compliance with EPEA approval conditions

<table>
<thead>
<tr>
<th>Date</th>
<th>pH</th>
<th>Cl (mg/L)</th>
<th>Oil & Grease (Y/N)</th>
<th>Lab & Sample ID</th>
<th>Discharge Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/19/2019</td>
<td>7.99</td>
<td>5.7</td>
<td>N</td>
<td>Maxxam B920260</td>
<td>N/A (initial sample of year)</td>
</tr>
<tr>
<td>04/09/2019</td>
<td>8.12</td>
<td>10</td>
<td>N</td>
<td>Maxxam B927574</td>
<td>5,723</td>
</tr>
<tr>
<td>04/29/2019</td>
<td>7.84</td>
<td>5</td>
<td>N</td>
<td>Maxxam B933465</td>
<td>47.6</td>
</tr>
<tr>
<td>06/28/2019</td>
<td>8.07</td>
<td>13</td>
<td>N</td>
<td>Bureau Veritas B952565</td>
<td>2,510</td>
</tr>
<tr>
<td>06/29/2019</td>
<td>8.15</td>
<td>12</td>
<td>N</td>
<td>Bureau Veritas B952565</td>
<td>2,180</td>
</tr>
<tr>
<td>08/13/2019</td>
<td>8.28</td>
<td>12</td>
<td>N</td>
<td>Bureau Veritas B967021</td>
<td>2,725</td>
</tr>
<tr>
<td>08/17/2019</td>
<td>8.1</td>
<td>12</td>
<td>N</td>
<td>Bureau Veritas B969157</td>
<td>6,350</td>
</tr>
<tr>
<td>09/04/2019</td>
<td>8.27</td>
<td>11</td>
<td>N</td>
<td>Bureau Veritas B976168</td>
<td>275</td>
</tr>
<tr>
<td>09/05/2019</td>
<td>8.22</td>
<td>9</td>
<td>N</td>
<td>Bureau Veritas B976168</td>
<td>2,180</td>
</tr>
<tr>
<td>09/22/2019</td>
<td>8.17</td>
<td>10</td>
<td>N</td>
<td>Bureau Veritas B980441</td>
<td>5,450</td>
</tr>
<tr>
<td>09/23/2019</td>
<td>8.06</td>
<td>11</td>
<td>N</td>
<td>Bureau Veritas B983854</td>
<td>2,180</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL PROTECTION & ENHANCEMENT ACT (EPEA) APPROVAL

- EPEA monitoring programs and reports completed during the reporting period:
 - Monthly and annual air emissions
 - Industrial wastewater and runoff
 - Groundwater
 - Soil Management Program authorized by the AER and field program completed
 - Conservation and Reclamation
 - Air Emissions Inventory Report
 - Wildlife Monitoring Program – Amendment approved to reduce field cameras

WATER ACT

- All diversions below license limits, monthly and annual reporting requirements completed
 - Groundwater licenses (0239880, 0029742, 00368609)
 - Surface water licenses (00273542, 00364442, 00364731)

RECLAMATION

- AOC has received reclamation certificates for all OSE programs at Leismer
AOC IS A FUNDING MEMBER OF

- Oil Sands Environmental Monitoring
- Wood Buffalo Environmental Association (WBEA) – air shed monitoring
- Regional Industry Caribou Collaboration (RICC)
- Industrial Footprint Reduction Options Group (iFROG) – wetland reclamation industry collaboration

AOC PARTICIPATION

- Various CAPP Committees
 - Oil Sands Environmental Policy and Regulatory Committee
 - NE Alberta Caribou Working Group
 - Indigenous Affairs Committee
 - Air Issues Committee
ATHABASCA OIL CORPORATION LEISMER PROJECT IS IN COMPLIANCE WITH AER APPROVALS AND REGULATORY REQUIREMENTS

- For the period of March 1, 2019 to February 29, 2020 AOC has no unaddressed non-compliant events