Cenovus Energy Inc.
Foster Creek In-situ Progress Report
Scheme 8623
2019 update

September 30, 2020

Oil & gas and financial information

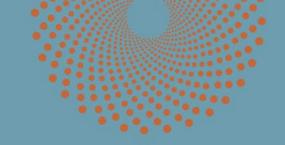
Oil & gas information

The estimates of reserves were prepared effective December 31, 2019. All estimates of reserves were prepared by independent qualified reserves evaluators, based on definitions contained in the Canadian Oil and Gas Evaluation Handbook and in accordance with National Instrument 51-101 Standards of Disclosure for Oil and Gas Activities. Additional information with respect to pricing and additional reserves and other oil and gas information, including the material risks and uncertainties associated with reserves estimates, is contained in our AIF and Form 40-F for the year ended December 31, 2019 available on SEDAR at www.sedar.com, EDGAR at www.sec.gov and on our website at cenovus.com.

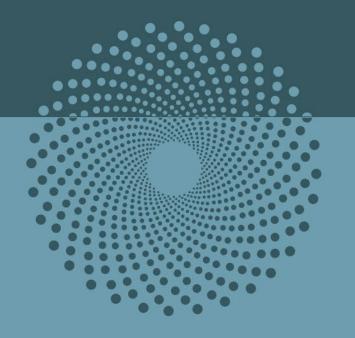
Certain natural gas volumes have been converted to barrels of oil equivalent (BOE) on the basis of one barrel (bbl) to six thousand cubic feet (Mcf). BOE may be misleading, particularly if used in isolation. A conversion ratio of one bbl to six Mcf is based on an energy equivalency conversion method primarily applicable at the burner tip and does not represent value equivalency at the well head.

[™] denotes a trademark of Cenovus Energy Inc.

© 2020 Cenovus Energy Inc.



Advisory


This presentation contains information in compliance with:

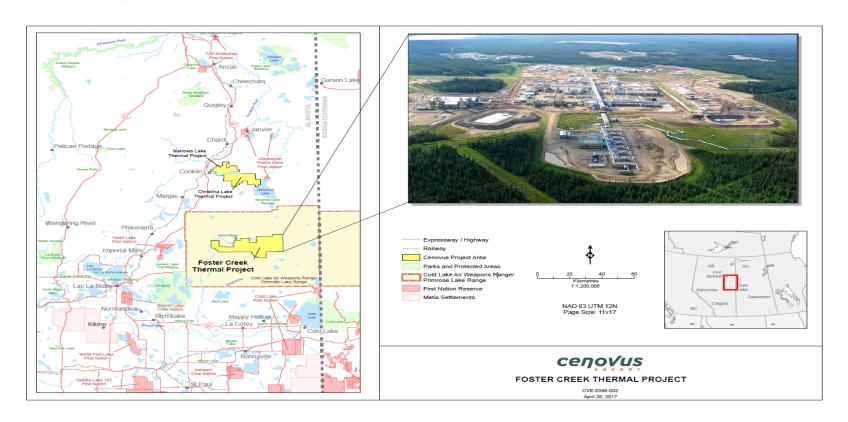
AER Directive 054 - Performance Presentations, Auditing, and Surveillance of In Situ Oil Sands Schemes

This document contains forward-looking information prepared and submitted pursuant to Alberta regulatory requirements and is not intended to be relied upon for the purpose of making investment decisions, including without limitation, to purchase, hold or sell any securities of Cenovus Energy Inc.

Subsection 4.1 1 Introduction

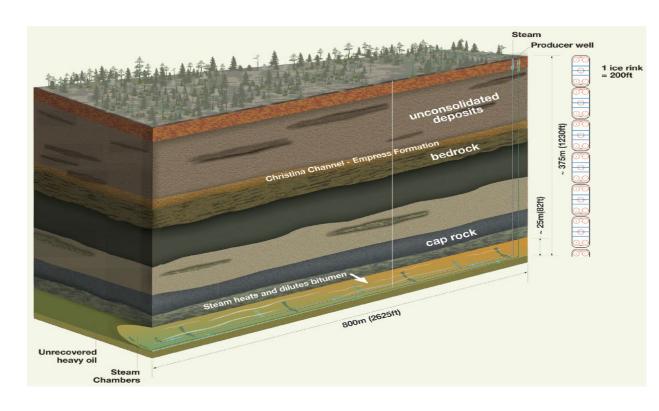
Cenovus at a glance

TSX, NYSE | CVE


2020F production	
Oil Sands Deep Basin	375 Mbbls/d 84 MBOE/d
2019 proved & probable reserves	6.9 BBOE
Reserve life index	42 years
Refining capacity	248 Mbbls/d net

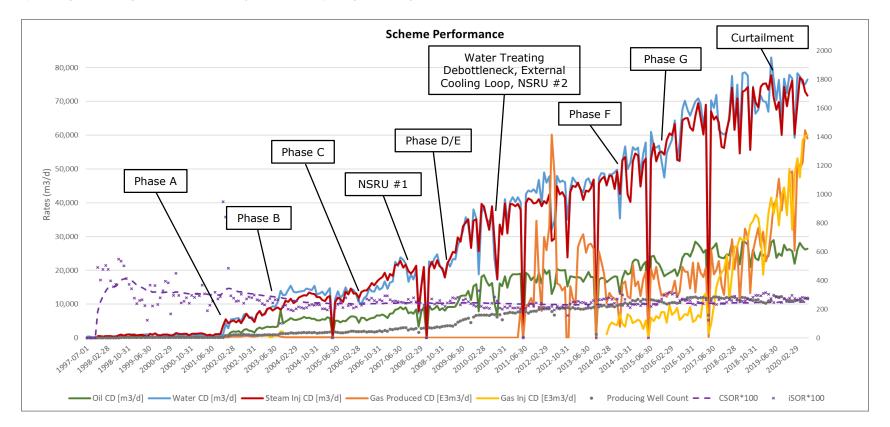
Telephone Lake Narrows Lake Elmworth-Wapiti Christina Lake Marten Hills -Foster Creek Bruderheim Kaybob-Edson

Note: Values are approximate. Forecasted production based on the midpoint of April 1, 2020 guidance. 2019 proved & probable reserves as at December 31, 2019. Reserve life index based on 2019 proved plus probable reserves and 2019 production before royalties, which was impacted by mandatory curtailment. Refining capacity represents net capacity to Cenovus.

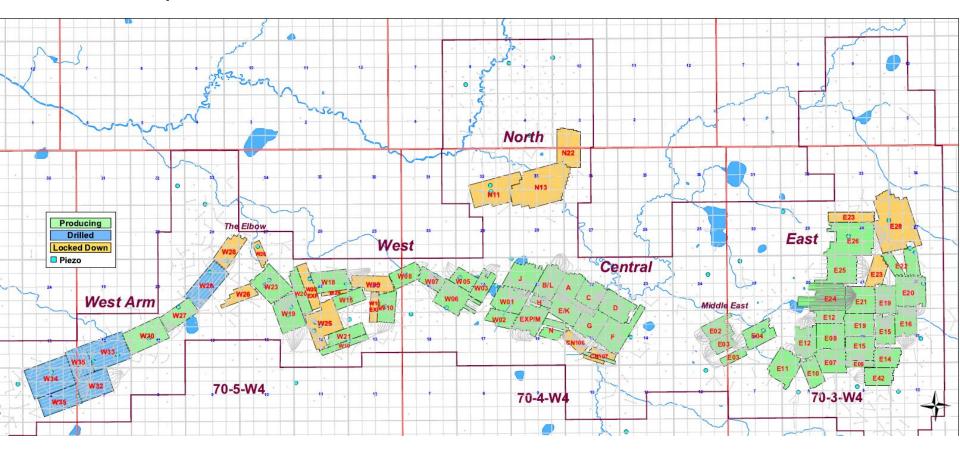

Area map

Recovery process

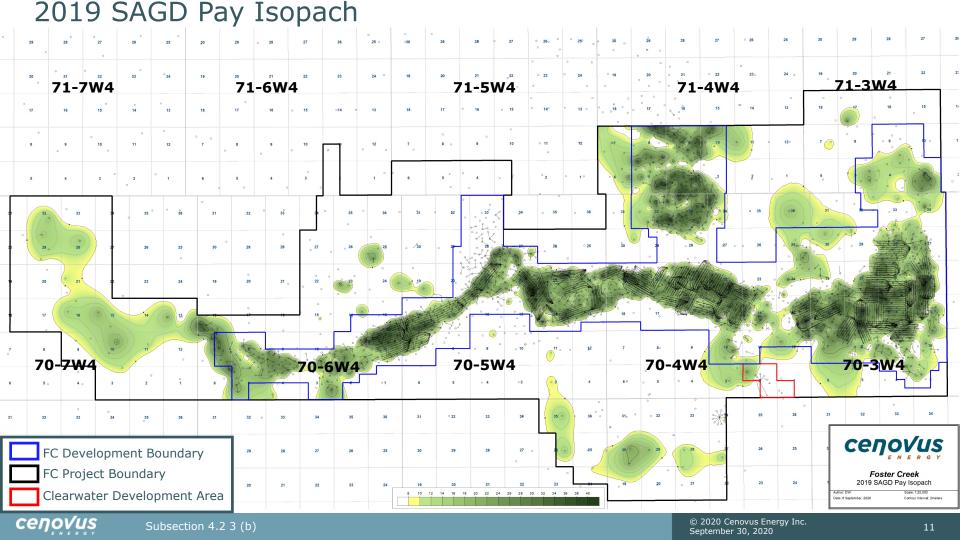
- The Foster Creek Thermal Project uses the dualhorizontal well SAGD (steamassisted gravity drainage) process to recover oil from the McMurray formation
- Two horizontal wells one above the other approximately 5 m apart
- Steam is injected into the upper well where it heats the oil and allows it to drain into the lower well
- Oil and water emulsion pumped to the surface and treated

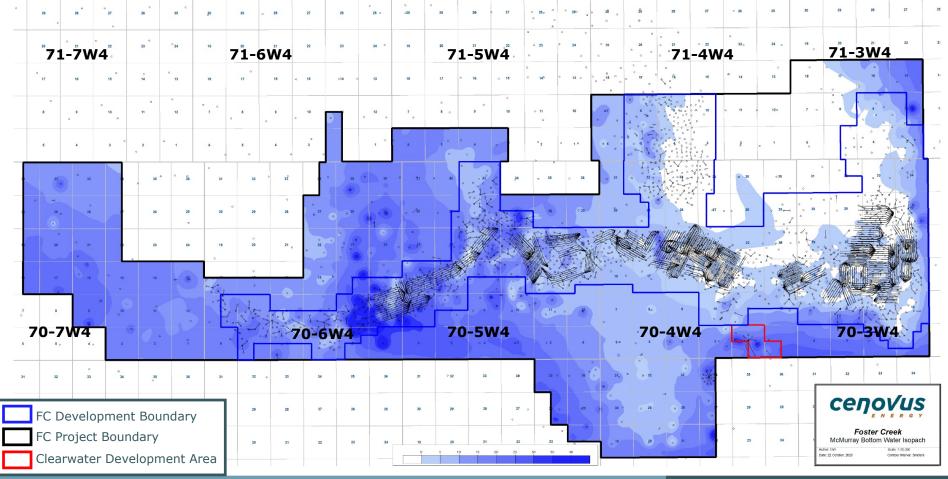


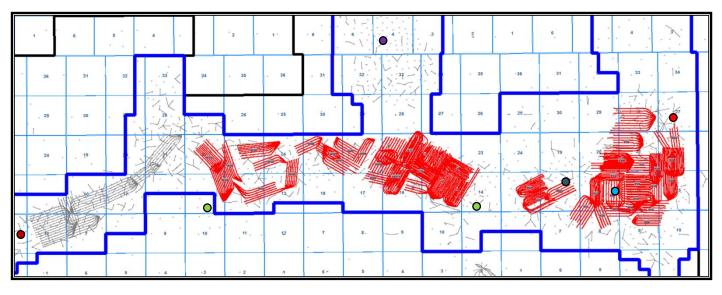
Subsection 4.2 2-7 Subsurface



Performance: full historical



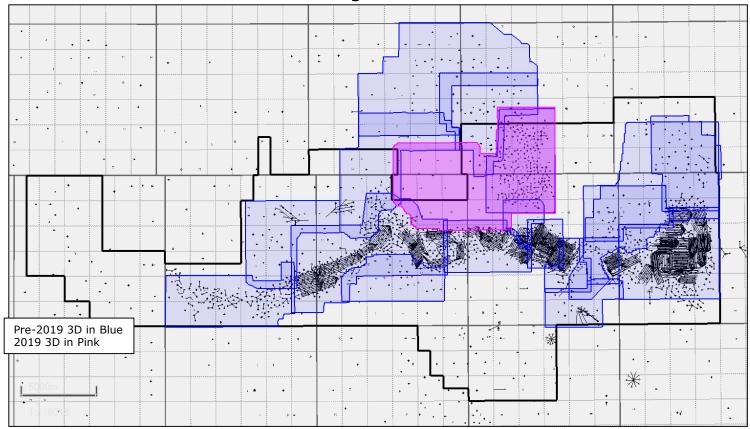

Scheme Map


McMurray Bottom Water Isopach

Mini-frac and DFIT wells

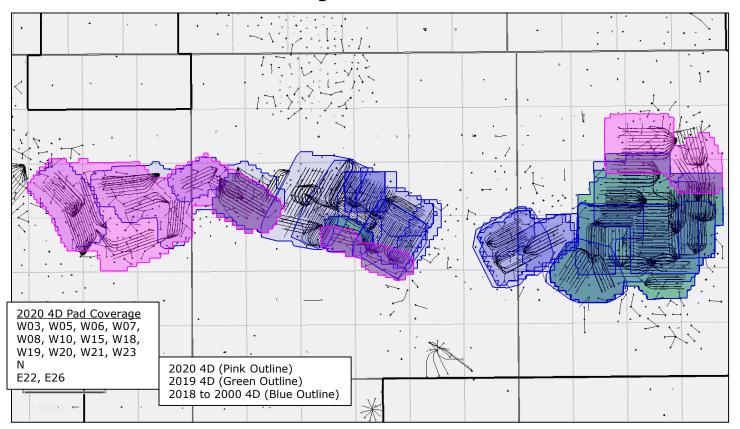
- CVE recognizes that tensile and shear failure are two possible ways for integrity to be compromised
- Mini-frac or DFIT data give information about failure mechanisms and stress magnitudes

```
9-17-70-3 (2009)
2-15-70-5 (2010)
3-14-70-4 (2010)
6-27-70-3 (2011)
9-11-70-6 (2012)
5-04-71-4 (2017)
15-18-70-3 (2018)
```

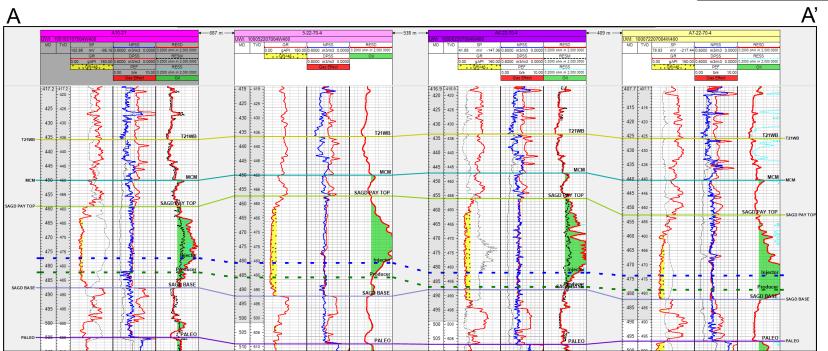


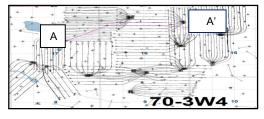
Summary of Mini-frac and DFIT test results

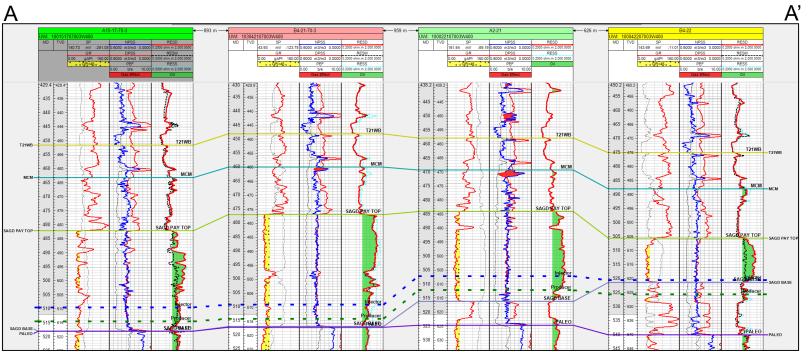
Test date	UWI	Zone	TVD (m)	First Closure Gradient	Post-
				(kPag/m)	steam
2009	9-17-70-3	McMurray Sand	500.30	12.49	N
2010	2-15-70-5	Westgate Shale	280.30	21.79	N
2010	2-15-70-5	Grand Rapids Shale	360.80	17.55	N
2010	2-15-70-5	Clearwater Shale Caprock	421.30	20.98	N
2010	2-15-70-5	T31 (Clearwater Shale) Caprock	437.50	22.24	N
2010	2-15-70-5	Clearwater Sand	447.30	14.09	N
2010	2-15-70-5	Clearwater Sand	455.80	14.88	N
2010	2-15-70-5	Wabiskaw Shale (T11) Caprock	477.80	18.13	N
2010	3-14-70-4	Westgate Shale	260.30	21.67	N
2010	3-14-70-4	Grand Rapids Shale	344.30	16.91	N
2010	3-14-70-4	T31 (Clearwater Shale) Caprock	416.50	21.25	N
2010	3-14-70-4	Wabiskaw Shale (T11) Caprock	447.30	20.00	N
2010	3-14-70-4	McMurray Mudstone	459.30	19.29	N
2011	6-27-70-3	Westgate Shale	270.30	21.05	N
2011	6-27-70-3	Joli Fou Shale	330.30	23.69	N
2011	6-27-70-3	Grand Rapids Shale	395.80	17.22	N
2011	6-27-70-3	T31 (Clearwater Shale) Caprock	470.00	21.08	N
2011	6-27-70-3	T21 (Clearwater Shale) Caprock	493.30	22.91	N
2011	6-27-70-3	McMurray Sand	532.30	12.56	N
2012	9-11-70-6	Joli Fou Shale	313.70	23.46	N
2012	9-11-70-6	Clearwater Shale Caprock	434.00	19.94	N
2012	9-11-70-6	T31 (Clearwater Shale) Caprock	449.50	20.41	N
2012	9-11-70-6	T21 (Clearwater Shale) Caprock	471.50	21.55	N
2012	9-11-70-6	McMurray Sand	525.50	11.73	N
2017	5-4-71-4	T31 (Clearwater Shale) Caprock	404.00	20.90	N
2018	15-18-70-3	T31 (Clearwater Shale) Caprock	419.25	19.56	Y

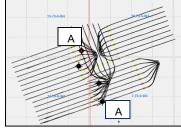


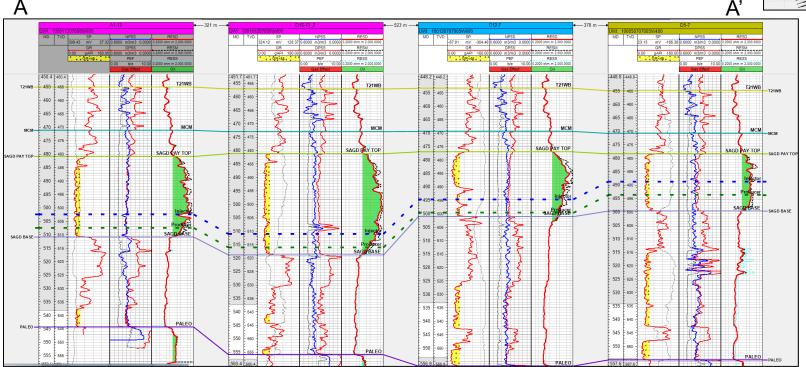
3D Seismic within Project Area


4D Seismic within Project Area


Representative structural cross-section over Central area




Representative structural cross-section over East area



Representative structural cross-section over West area

OBIP Volumes

- Project Area OBIP
 - 743 MMm³
- Development Area OBIP
 - 567 MMm³
- Combined Active Well Patterns OBIP
 - 176 MMm³
- Cumulative% Recovery
 - 57%

Reservoir properties

Reservoir Characteristics	West Area	Central Area	East Area
Reservoir Depth (m subsea)	180 - 225	180 - 225	180 - 225
Average SAGD Pay Thickness (m)	Up to 30+	Up to 30+	Up to 30+
Porosity (%)	34%	34%	34%
Horizontal Permeability (D)	Up to 10	Up to 10	Up to 8
Vertical Permeability (D)	Up to 8	Up to 8	Up to 6
Oil Saturation (%)	~85%	~85%	~85%
Water Saturation (%)	~15%	~15%	~15%
Original Reservoir Pressure (kPa)	~2700	~2700	~2700
Original Reservoir Temperature (°C)	12°C	12°C	12°C

POIP & percent recovery – Central

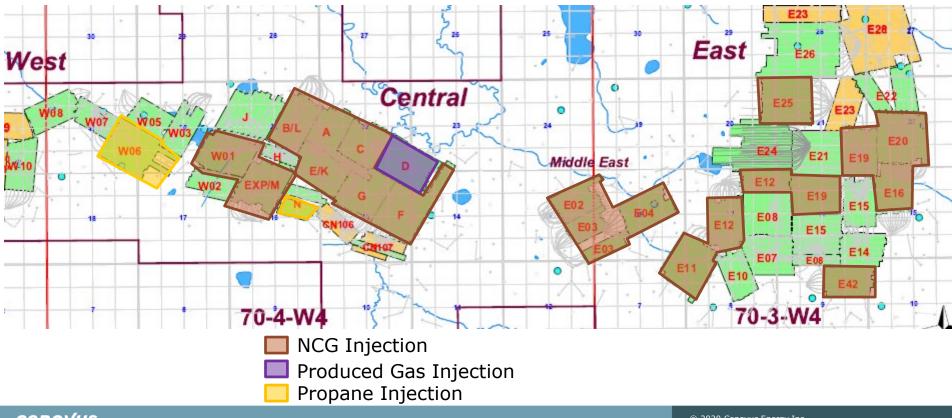
Central Pad	Area (m2)	Height (m)	Porosity (%)	So (%)	POIP (Mm3)	Cum Oil (Mm3) to Dec 31, 2019	Recovery % POIP	Estimated Ultimate Recovery (m3)	Ultimate Recovery as % of POIP
A PAD	531,099	26.5	33%	82%	3,804	3,643	96%	3,676	97%
B_L PAD	569,545	24.4	34%	79%	3,713	2,710	73%	2,739	74%
C PAD	541,344	29.2	34%	82%	4,386	4,479	102%	4,503	103%
D PAD	676,265	26.7	31%	81%	4,552	4,544	100%	4,551	100%
E_K PAD	576,442	23.1	33%	79%	3,466	3,071	89%	3,075	89%
EXP_M PAD	583,159	22.6	33%	81%	3,541	2,614	74%	2,698	76%
F PAD	817,054	23	33%	79%	5,263	3,680	70%	4,316	82%
G PAD	619,867	23	32%	82%	4,038	2,977	74%	3,287	81%
H PAD	121,557	18	33%	79%	564	206	36%	286	51%
J PAD	569,736	24	31%	77%	3,372	1,865	55%	2,138	63%
N PAD	423,299	18	33%	83%	2,043	275	13%	1,396	68%
W01 PAD	673,003	22	33%	81%	3,882	2,266	58%	2,521	65%
W02 PAD	376,851	18	33%	86%	1,862	678	36%	939	50%
Total Central	7,079,220				44,486	33,007	74%	36,126	81%
Total FC	27,447,386				168,788	94,644	56%	121,943	72%

To Dec 31, 2019

Note – C Pad and D Pad indicate recovery of 100% or greater, likely as the POIP may have been underestimated.

POIP and percent recovery – East

East Pad	Area (m2)	Height (m)	Porosity (%)	So (%)	POIP (Mm3)	Cum Oil (Mm3) to Dec 31, 2019	Recovery % POIP	Estimated Ultimate Recovery (m3)	Ultimate Recovery as % of POIP
E02 PAD	400,710	31	32%	72%	2,881	1,747	61%	2,067	72%
E03 PAD	459,410	34	32%	72%	3,631	1,685	46%	2,126	59%
E04 PAD	522,570	24	33%	78%	3,268	1,214	37%	1,433	44%
E07 PAD	532,122	16	28%	72%	1,674	305	18%	1,035	62%
E08 PAD	813,298	22	30%	77%	4,256	1,610	38%	2,597	61%
E10 PAD	431,584	20	30%	73%	1,804	979	54%	1,146	63%
E11 PAD	712,976	31	32%	76%	5,295	3,346	63%	3,639	69%
E12 PAD	887,907	33	34%	80%	7,852	5,433	69%	5,898	75%
E14 PAD	449,818	21	32%	81%	2,484	1,078	43%	1,596	64%
E15 PAD	1,132,603	24	33%	81%	7,140	4,285	60%	4,812	67%
E16 PAD	540,428	24	35%	79%	3,605	2,846	79%	2,996	83%
E19 PAD	1,136,540	24	33%	80%	7,348	5,628	77%	5,726	78%
E20 PAD	782,538	27	33%	83%	5,922	4,705	79%	5,002	84%
E21 PAD	792,643	18	31%	79%	4,077	2,203	54%	2,805	69%
E22 PAD	572,024	19	33%	83%	3,064	446	15%	1,894	62%
E24 PAD	924,102	27	34%	85%	7,188	4,572	64%	5,562	77%
E25 PAD	865,015	23	31%	81%	4,986	2,783	56%	3,123	63%
E26 PAD	1,197,131	19	32%	80%	5,774	1,092	19%	4,083	71%
E42 PAD	348,633	18	31%	79%	1,506	846	56%	946	63%
Total East	13,502,052				83,754	46,803	56%	58,486	70%
Total FC	27,447,386				168,788	94,644	56%	121,943	72%


To Dec 31, 2019

POIP and percent recovery – West

West Pad	Area (m2)	Height (m)	Porosity (%)	So (%)	POIP (Mm3)	Cum Oil (Mm3) to Dec 31, 2019	Recovery % POIP	Estimated Ultimate Recovery (m3)	Ultimate Recovery as % of POIP
W03 PAD	417,683	21	31%	76%	2,081	609	29%	1,121	54%
W05 PAD	683,826	23	30%	81%	1,669	312	19%	400	24%
W06 PAD	757,170	23	30%	82%	3,867	1,211	31%	2,856	74%
W07 PAD	334,674	23	33%	78%	1,989	678	34%	1,275	64%
W08 PAD	433,023	25	31%	80%	2,746	1,297	47%	1,856	68%
W10 PAD	464,355	23	31%	82%	2,739	1,382	50%	2,563	94%
W15 PAD	379,950	21	31%	86%	2,100	715	34%	1,554	74%
W18 PAD	691,116	23	31%	88%	4,446	2,417	54%	3,410	77%
W19 PAD	795,636	28	33%	81%	5,989	2,370	40%	4,628	77%
W20 PAD	426,744	29	33%	80%	3,239	721	22%	1,568	48%
W21 PAD	704,560	22	33%	84%	4,296	377	9%	1,771	41%
W23 PAD	777,377	26	32%	84%	5,387	2,745	51%	4,330	80%
Total West	6,866,114				40,548	14,834	37%	27,332	67%
Total FC	27,447,386				168,788	94,644	56%	121,943	72%

To Dec 31, 2019

Map of co-injection wells

Injected fluids

Non-condensable gas

NCG currently injected on A, C, F, G, M_Exp, B/L, E/K, E02, E03, E04, E11, E12, E16, E19, E20, E25, E42, and W01

Produced gas Injection

PG is currently injected on D Pad

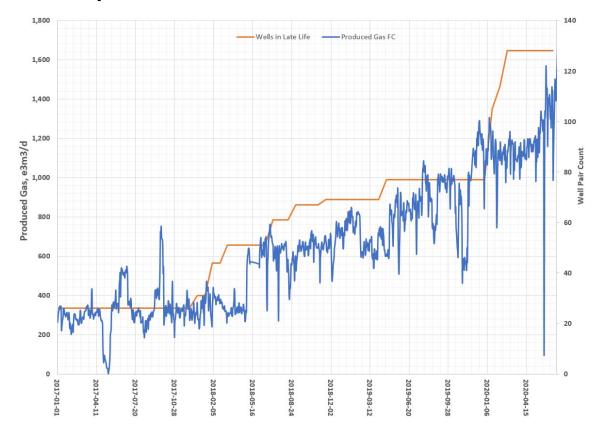
Stimulation treatments

Wells are occasionally treated with HCl and/or Thermosolv to minimize skin

Solvent

- Have used solvent in start-up work-overs and have approval to use this as a potential startup process
- N pad propane (3 to 10 wt%) SAP pilot
- W06 pad propane (60 80 wt%) co-injection pilot

Injection Strategy and Impacts

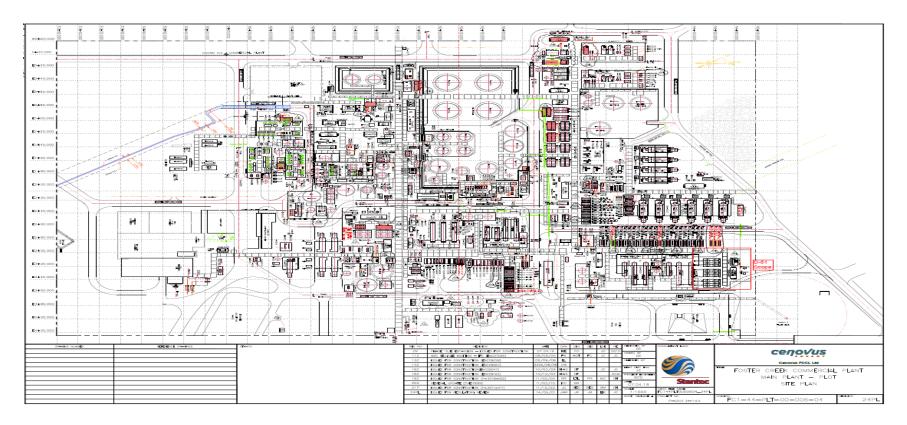

NCG Injection commencement is based on:

- Pads with high RF
- Pads with high SOR/declining oil rates

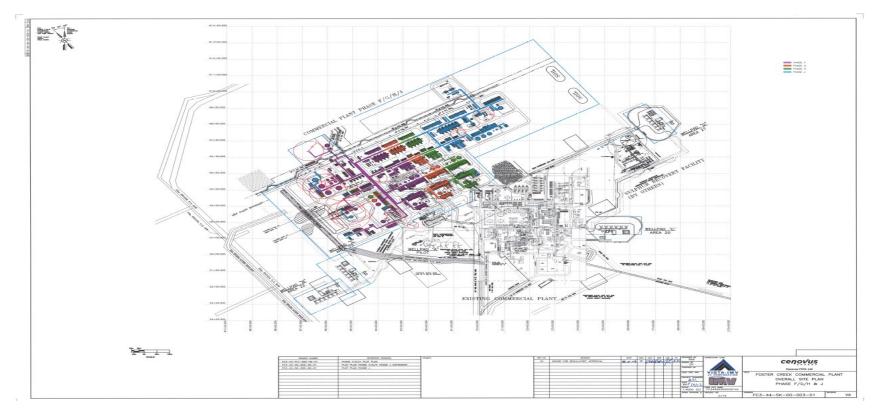
Steam cuts are typically made in 25% increments.

Impact of co-injection:

- High gas production. Trials underway to determine if produced gas may be decreased.
- Production declines and RFs cannot be reasonably compared as they may be impacted by trials/facility limitations and redevelopment wells.



Subsection 4.3 8 Surface

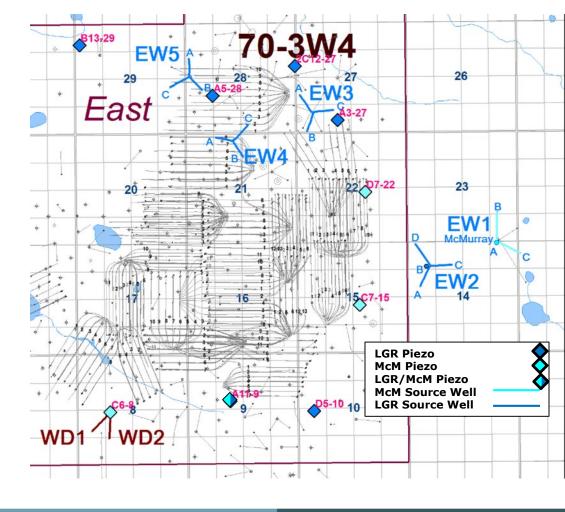


Foster Creek A/E Plot Plan

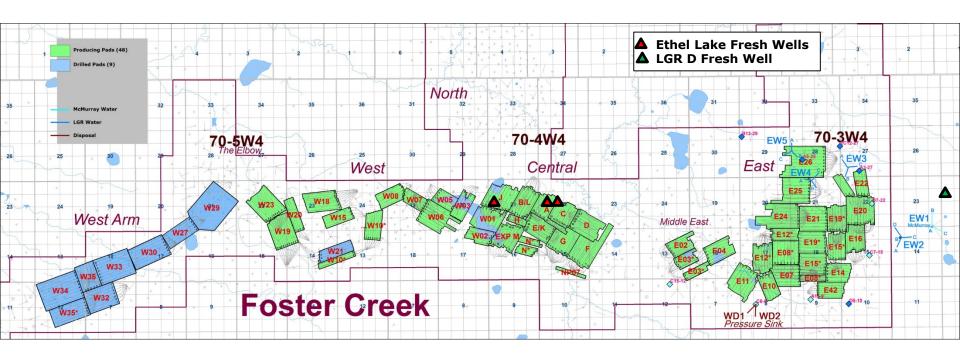
Foster Creek F/H Plot Plan

Brackish Source Wells

Source LGR Wells:

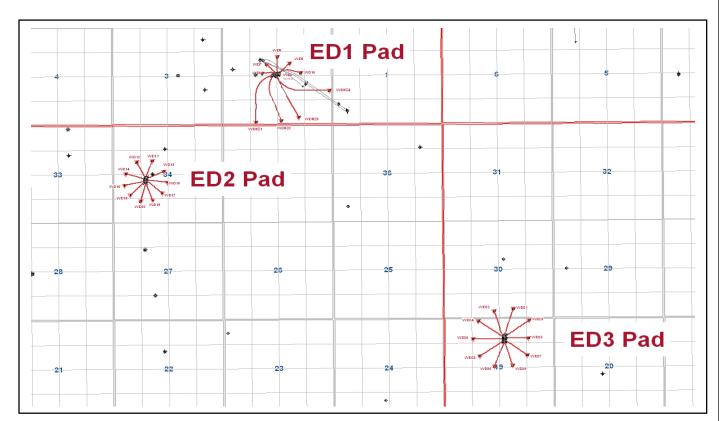

EW2-A	1F1/12-14-070-03W4
EW2-C	1F1/14-14-070-03W4
EW2-D	1F2/13-14-070-03W4
EW3-A	1F1/05-27-070-03W4
EW3-B	1F1/04-27-070-03W4
EW3-C	1F2/03-27-070-03W4
EW4-A	1F1/14-21-070-03W4
EW4-B	1F1/15-21-070-03W4
EW4-C	1F1/02-28-070-03W4
EW5-A	1F2/12-28-070-03W4
EW5-B	1F1/05-28-070-03W4
EW5-C	1F2/08-29-070-03W4

Source McM Wells:


EW1-A	1F2/01-23-070-03W4
EW1-B	1F1/08-23-070-03W4
EW1-C	1F1/13-13-070-03W4
EW2-B Redrill	1F1/13-14-070-03W4/02

Pressure Sink Wells:

WD1 (LGR Disposal) 100/05-08-070-03W4 WD2 (McM Source) 1F1/03-08-070-03W4



Location of Fresh Source Wells

Current Disposal Well Locations

Legend

Disposal Wells:

ED1 Pad:

WDHZ 1 - 100/03-02-070-04W4 (McM)
WDHZ 2 - 100/02-02-070-04W4 (LGR)
WDHZ 3 - 102/02-02-070-04W4 (LGR)
WDHZ 4 - 100/08-02-070-04W4 (McM)
WD6 - 104/11-02-070-03W4 (McM)
WD7 - 105/11-02-070-03W4 (LGR)
WD8 - 104/10-02-070-03W4 (LGR)
WD9 - 102/10-02-070-03W4 (LGR)
WD10 - 103/10-02-070-03W4 (McM)
ED2 Pad (McMurray):
WD11 - 102/11-34-069-04W4
WD12 - 100/12-34-069-04W4

WD13 - 103/11-34-069-04W4 WD14 - 102/12-34-069-04W4 WD15 - 100/06-34-069-04W4

WD16 - 100/05-34-069-04W4 WD17 - 102/06-34-069-04W4

WD18 - 102/05-34-069-04W4 WD19 - 100/03-34-069-04W4

WD20 - 100/04-34-069-04W4

ED3 Pad (McMurray):

WD21 - 100/02-30-069-03W4 WD22 - 100/03-30-069-03W4

WD23 - 100/16-19-069-03W4 WD24 - 100/14-19-069-03W4

WD25 - 100/16-19-069-03W4

WD26 - 102/14-19-069-03W4 WD27 - 100/09-19-069-03W4

WD27 - 100/09-19-069-03W4 WD28 - 100/11-19-069-03W4

WD29 - 100/10-19-069-03W4 WD30 - 102/11-19-069-03W4

Abandoned Disposal well:

WD5 - 103/11-02-070-03W4

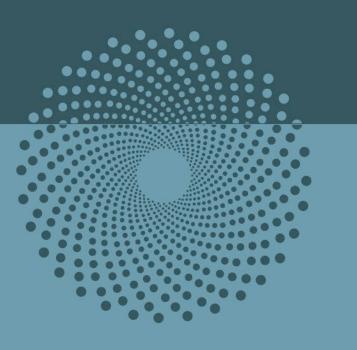
Facility Summary

- Production curtailment (January August 2019) limited inlet production rate
 - Fresh water temporary diversion license (TDL) utilized for steam production to maintain well health/operation
- Approval of New Directive 081 Disposal Regulation
 - FC will meet new allowable disposal ratio (<100%)
- Phase F/G Outages (March 2019) and Phase C Boiler Outages (August October 2019)
- Casing gas debottleneck (January 2019) and emulsion cooling projects (November 2019) completed
- Phase H currently on hold

Plant Performance

• Steam and oil flowrates were reduced in Q1/Q2 due to Production Curtailment

Steam


- System capacity increased to 78,100 m³/d (1.6% increase)*
- 2019 average flowrate is 70,628 m³/d | 90% of Capacity
- Record daily steam production achieved
- Continued operation at high steam qualities

Oil

- System capacity increased to 30,239 m³/d (190,200 bbl/d) (3.8% increase)*
- 2019 average flowrate is 25,412 m³/d | 84% of Capacity

^{*}Capacity values are based on proven best 7 day averages

Subsection 4.4 9-12 Historical and Upcoming Activity

Pad Abandonments

No pad abandonments are currently planned at Foster Creek in the next 5 years.

Well integrity - casing

2019 Intermediate Casing Mitigation Program:

- Ongoing monitoring and inspection program to assess casing condition and repair as required, including EMAT and UT of surface casing depending on severity.
- Cenovus complies with all regulations surrounding inactive wells, including tracking compliance status and reporting well suspensions in the DDS system
- Pursuing application and viability of Potassium Silicate coating on surface casing to prevent or slow down corrosion.

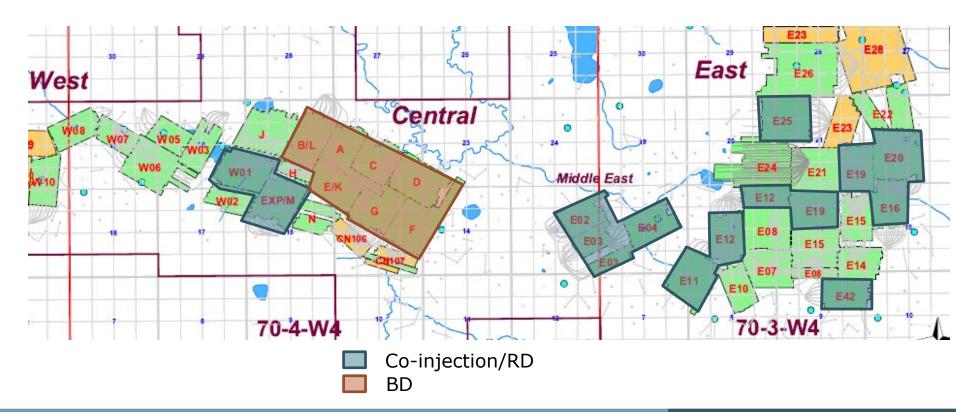
Casing Corrosion

Corrosion Location	Status
Surface Casing Exterior	Mitigation program in place
Surface Casing Interior / Intermediate Casing Exterior	Mitigation program in place
Pack-Off	Investigation on-going

Well Integrity - SCVF

- Cenovus complies with all regulations and when a surface casing vent flow is identified,
 Cenovus reports non-serious and serious surface casing vent flows into the DDS system per ID 2003-01
- Cenovus engages with the AER to discuss appropriate strategies related to managing SCVFs
- Cenovus communicates with the AER regularly on the status of the vents and presents an annual update on activities executed to manage surface casing vent flows
- Cenovus is currently tracking 40 separate SCVF events across FCCL which have been reported. Within 2019, only one new well has been recorded (non-serious within DDS).

Well Integrity - Wellheads


Wellhead integrity monitoring is ongoing. No wellhead failures observed.

Well integrity – strain monitoring

Strain monitoring wells installed:

- Baseline data in non-thermally affected zones and in lateral sections
 - 102/03-23-070-05W4/00 (FC W20 Pad)
 - 102/05-23-070-05W4/00 (FC W20 Pad)
 - 100/05-28-070-03W4/00 (FC E26 Pad)
 - 100/14-14-070-05W4/00 (FC W20 Pad)
 - 106/13-07-070-05W4/00 (FC W32/35 Pad)
 - 1AB/02-32-070-04W4/00 (FC North)
- Field measurements scheduled relative to milestone dates

Well patterns with active blow-down or ramp-down

2019 Regulatory application/approval summary

Act	Application No.	Application Description	Approval Date
OSCA	1918413	E04 Pad Permeability Improvement Trial Update	2019-01-23
OSCA	1918826	West Pad (W27-W30) Solvent Aided Process Application	2019-04-04
OSCA	1918928	Butane Blending Project Application	2019-02-27
OSCA	1923235	W10 and W20 Pad Trajectory Amendment Application	2019-08-12
OSCA	1925501	ID 2001-03 Sulphur Variance Waiver for 2020	2019-12-10
EPEA	026-68492	Short-term variance to SO ₂ emission limit (3 months)	2019-05-13
EPEA	027-68492	Short-term variance to SO ₂ emission limit (to year-end 2020)	2019-10-18

Facility Modifications

No additional major modifications made in 2019

Emulsion Treatment

Process Treating Area

- Challenges with heat exchanger fouling and limited cooling capacity at high emulsion rates and hotter outside ambient air temperatures
- Achieved record production at FC 1 day, 7 day, 30 day in May 2019
- Reduced inlet emulsion rates due to production apportionment (January August 2019)

Water Treatment

De-oiling

 Reduced produced water rates due to production apportionment (January – August 2019)

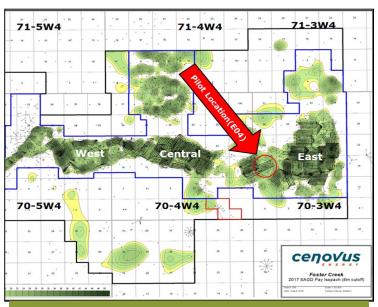
Water Treatment

- Challenges managing BFW hardness at different times during the year, resulting in reduced OTSG firing, lower BFW rates, and periods of reduced emulsion
 - Result of a number of different factors including treating excursions, process trials, and equipment integrity issues
- FC1 WLS outage for mechanical repairs restricted PW treating capacity and lead to emulsion reductions

Steam Generation

- Significant downtime on FC1 OTSGs for mechanical repairs
 - Regulatory inspections, radiant section bend replacements, and economizer repairs led to extended outages on a number of boilers
- BD/Glycol heat exchanger fouling
 - Increased fouling led to cooling limitations and reductions in BFW volume, significant lost production occurred to allow for cleaning of this equipment
- Production apportionment resulted in periods of reduced produced water and insufficient BFW to generate the steam required to maintain well health/operation
 - Fresh water temporary diversion license (TDL) provided the ability to utilize additional fresh water to increase steam production by ~2,000 Sm³/d
- NRSU modifications for improved operability completed
 - Seeing positive results in terms of reduced chemical carry-over

Pilots/ Technical Innovations


- Fluidized bed heat exchanger (FBHX)
 - Objective: Develop FBHX to steam from untreated produced water
 - Used fluidized chopped wire cuttings in HX to prevent scale from forming on tube surface
 - Four trials completed from October 2018 January 2019
 - **Summary:** Trials successful however additional engineering and cost required to scale up will pursue another technology
- D Pad casing gas re-injection operational since Q1 2019
 - Objective: To increase the effective produced gas handling capacity at Foster Creek
 - **Results:** The re-injection project allows the injection of a maximum of 175 e^3m^3/d of casing gas into D pad reservoir
- E04 Pad Vertical Permeability Improvement trial

FC Permeability Improvement at E04 Pad, Phase 1 - 2019

Objective

Hydraulically fracture non-rich reservoir to:

- 1. Enhance vertical permeability to allow for convective drainage
- 2. Do so without jeopardizing the integrity of the cap rock



FCCL Non-Rich Resource: ~2000 MMBbls Estimated 0-20% increase in non-rich RF (400 MMbbls)

FCCL Non-Rich Resource = OIP between SAGD Rich Top and SAGD Pay
Top over a 5m SAGD Rich Pay Cutoff

Results

- 1. Two fractures placed with no caprock integrity issues
- Vertical drainage was proved by pulsed neutron logs (RST/RAPTOR)

2019 Non-compliance summary (AER)

Date	Non compliance	Follow-up
2019-01-25	Notice of Noncompliance – Waste Facility Inspection @ 01-21-70-4W4 (WM082P51139).	Compliance achieved – Apr 17, 2019
2019-04-15	Pipeline Incident Review @ 5-17-70-3W4 to 5-17-70-3W4 P46881 Line 005. FIS20191144. E11 Pad casing gas p/l failure.	Pipeline inspected and repaired. Compliance achieved – July 31, 2019
	Notice of Noncompliance - Pipeline Technical @ 3-21-70-5W4 P44823 Line 34.	Compliance achieved – Aug 7, 2019
2019-08-27	Notice of Noncompliance - Oilfield Waste Management Component - Change of Ownership.	Approval rescinded, no longer required. Compliance achieved – Oct 4, 2019.

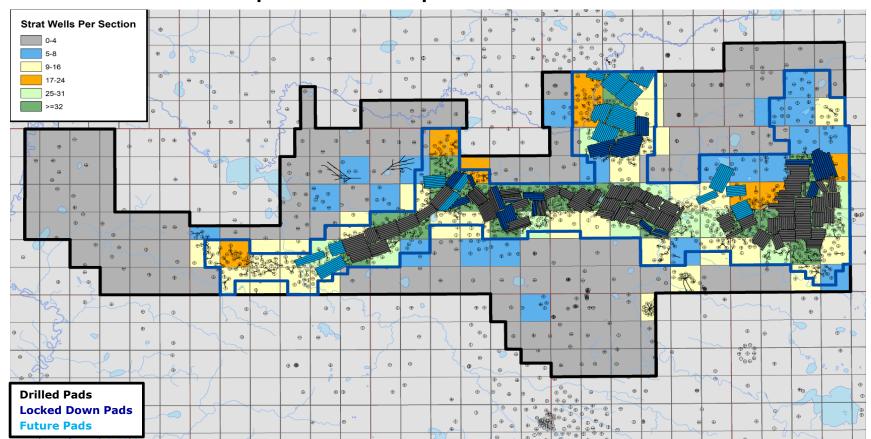
2019 Non-compliance Summary – EPEA

Date	Non compliance	Follow-up
2019-01-31		Internal system updated with person responsible and back-up support.
2019-02-12	EDGE Ref# 349447. Failure to meet the 90% uptime requirement on COGEN 2 due to a failure of the purge air blower motor.	A new purge air blower motor was sourced and installed.
2019-03-08	EDGE Ref# 0350324. Failure to meet the NOx emission limit of 1.0 kg/hr set forth by the AER EPEA approval for source FC1-H-0501B.	Repairs and tuning was completed prior to the fall/winter season when heater demands returned
2019-04-16	EDGE Ref# 0352289. Stormwater from M Pad was released off-site with a pH of 9.71.	Reviewed procedures with contractors to ensure pH limit of between 6.5 and 9.0 is met prior to pump-off.
2019-06-10	EDGE Ref# 354544. NOx exceedance on COGEN 2 due to testing islanding capabilities as required by AESO.	No follow-up required.
2019-06-24	EDGE Ref# 355180 . NOx exceedance on COGEN 1 due to testing islanding capabilities as required by AESO.	No follow-up required.
2019-10-02	EDGE Ref# 359954. Late submission of the CEMS certification report for COGEN 1 and 2. Report was not provided to on-site personnel on a timely basis.	Notification system updated to ensure on-site personnel receive reports.
2019-11-13	EDGE Ref# 361041. NOx limit exceedance on COGEN 2 due to flame scanner failure.	Flame scanner replaced.

Future Plans

Submitted Applications (2020)

FC1 Diluent Tank floating roof installation

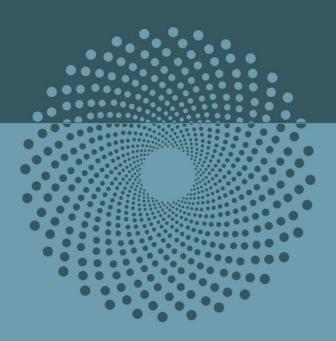

Potential Future Applications

- Compact Flotation Unit (CFU)
- East and West trunk Produced Gas Debottleneck (Casing Gas Reinjection)
- Oil Debottleneck

Future Plant Activity

• Due to the COVID-19 pandemic, there were no plans for activities that affected plant operation in Q1-Q3 and no future plans for Q4 of 2020

Planned development map



Questions

please contact us

Cenovus Energy Inc. 225 - 6 Ave SW PO Box 766

Calgary, Alberta T2P 0M5 Telephone: 403.766.2000 Toll free in Canada: 1.877.766.2066 Fax: 403.766.7600

