

ATHABASCA OIL CORPORATION AER HANGINGSTONE PROJECT UPDATE January 2020

INTRODUCTION

PROJECT DESCRIPTION AND STATUS

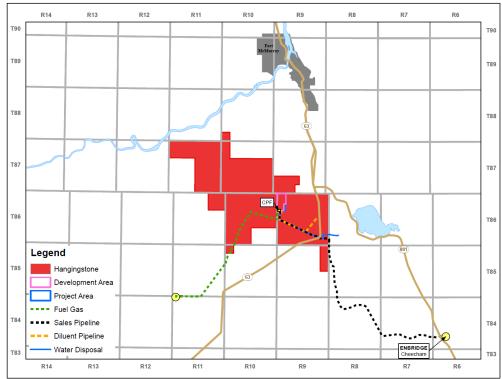
SUBSURFACE

- Geoscience
- Well Design and Instrumentation
- 4-D Seismic and Monitoring
- Scheme Performance
- Future Plans

SURFACE

- \circ Facilities
- Measurement and Reporting
- Facility Performance
- Water Production, Injection and Uses
- Sulphur Production
- Compliance
- o Future Plans

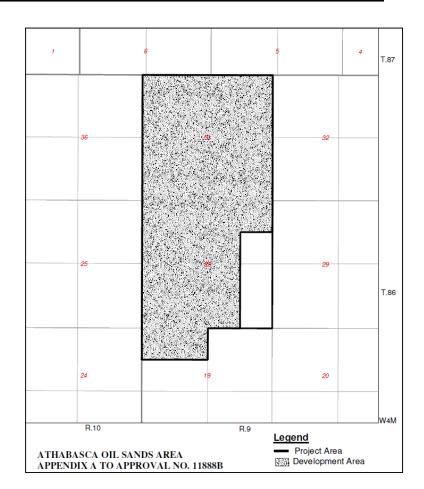
DEVELOPMENT OVERVIEW


PROJECT DETAILS

- Located 20 km south of Fort McMurray, AB
- \circ 5 production pads
- o 25 horizontal well pairs (5 well pairs per pad)
- Central Processing Facility (CPF)
- o Offsite services and utilities

INFRASTRUCTURE

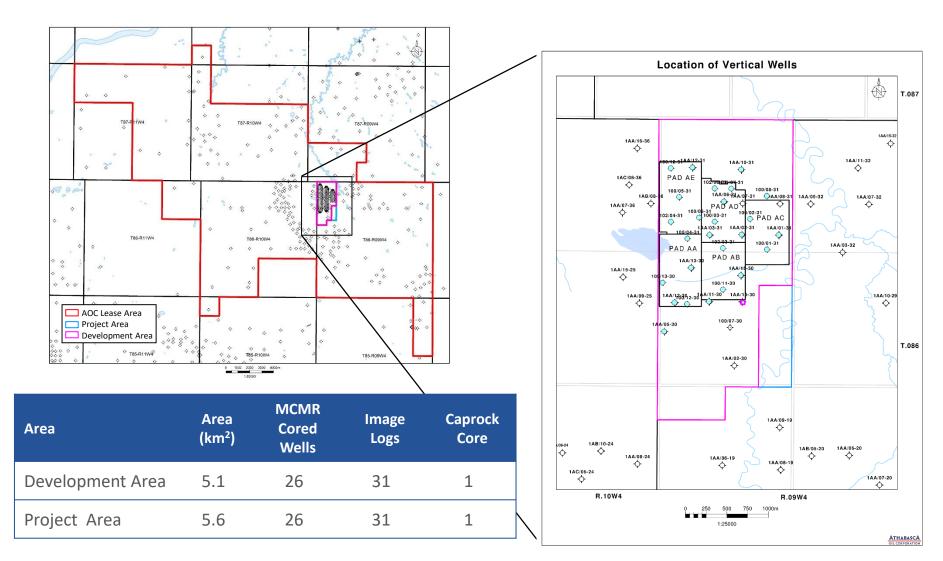
- Fuel gas from TransCanada Pipeline (TCPL)
- o Dilbit export to Enbridge Cheecham Terminal
- Diluent from Inter Pipeline (IPL)

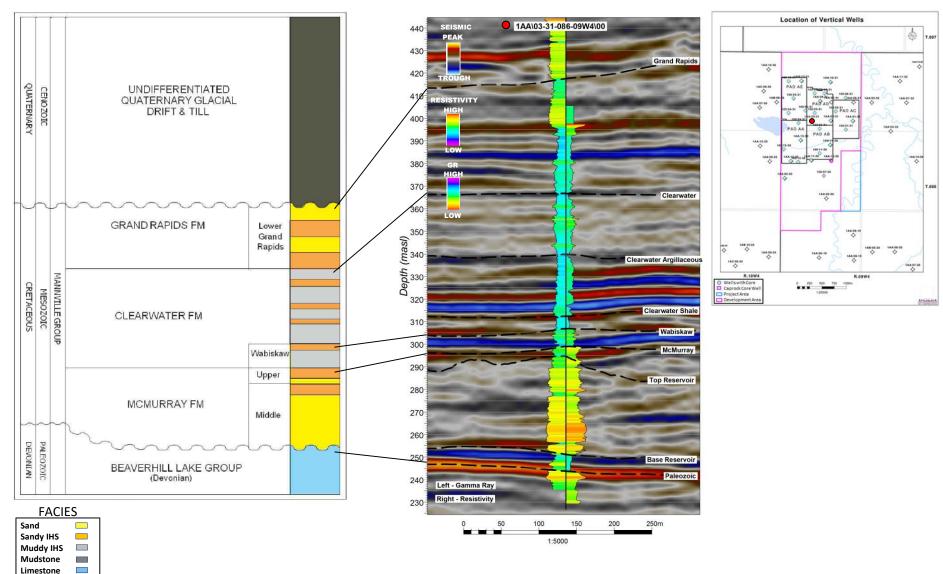


STATUS AND SCHEME MAP

HANGINGSTONE PROJECT

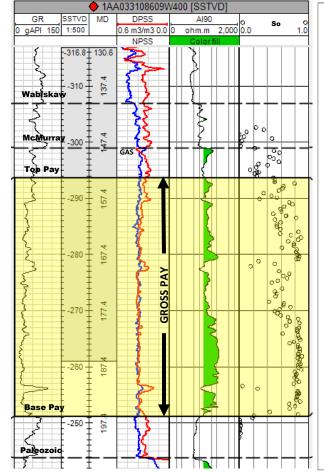
- First steam (downhole) achieved March 2015
 - First oil produced July 2015
- 24 well pairs in SAGD mode and 1 standing well pair
 - Last well pair (AA03) to be brought on-stream when steam is available
- Expansion application submitted in 2013
 - Environmental Impact Assessment report deemed complete by the AER pursuant to Section 53 of EPEA
 - Expands Project Area and Development Area
 - Application includes 3 phases (+70,000 bbl/d)

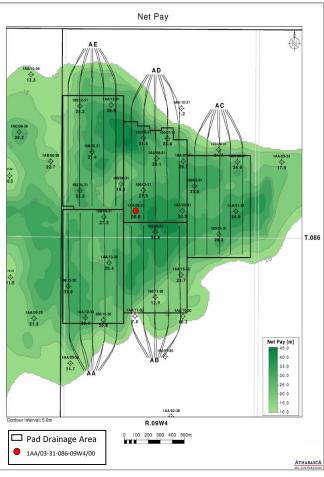



IN THE REPORTING PERIOD THERE WERE NO NEW GEOSCIENCE ANALYSES OBTAINED

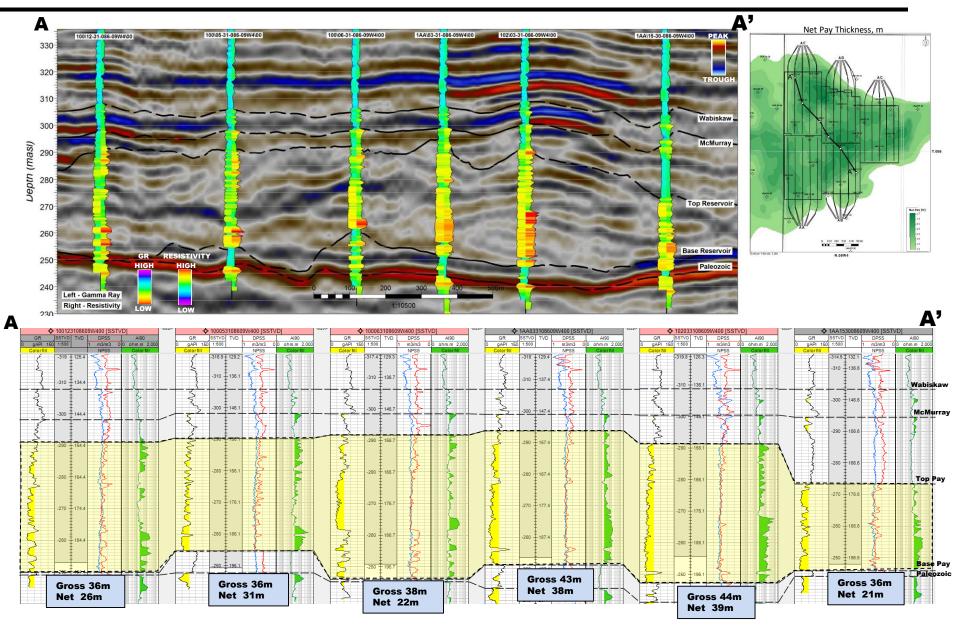
o i.e. cores, petrographic, geomechanical or fracture pressure or caprock integrity tests

STRATIGRAPHY AND REFERENCE WELL

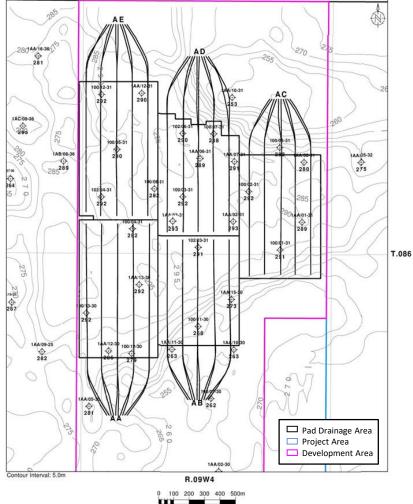

MIDDLE MCMURRAY TARGET RESERVOIR

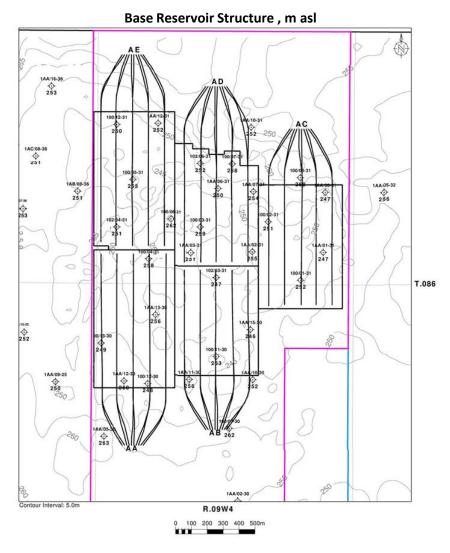


GROSS AND NET PAY


MIDDLE MCMURRAY GROSS PAY DEFINITION

- Thickness >= 10 m
- \circ GR < 70 API
- **Density > 27%**
- Resistivity >18 ohm-m
- Water Saturation < 50%
- Includes < 1 m thick mud
- Net pay thickness uses gross pay criteria but excludes mud




STRUCTURAL CROSS SECTION NW-SE ACROSS HS1 AREA 9

RESERVOIR STRUCTURE MAPS

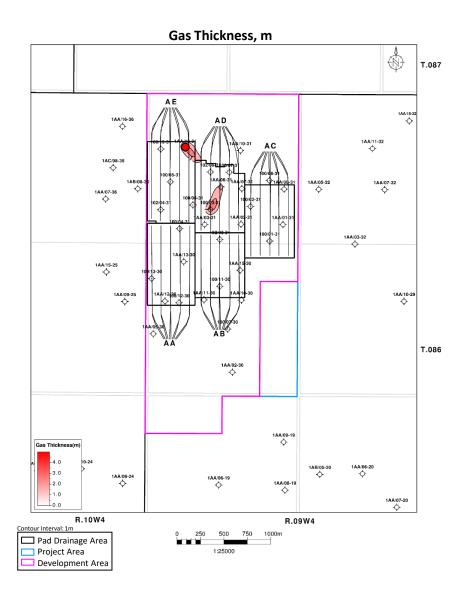
Top Reservoir Structure, m asl

• 241 to 262 m asl

ELEVATION RANGE

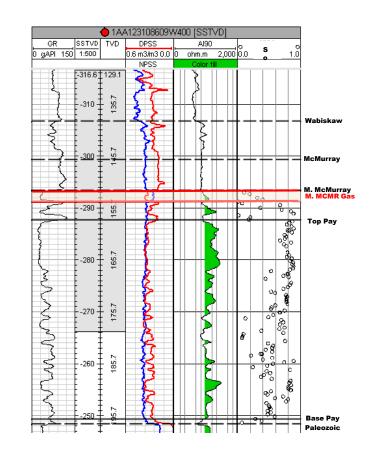
o 262 to 301 m asl

BOTTOM WATER THICKNESS MAP


BOTTOM WATER

- Localized and not in direct contact with bitumen; separated by MIHS or mud
- Bottom water interval consists of interbedded mud and sand (resistivity < 10 ohm-m)

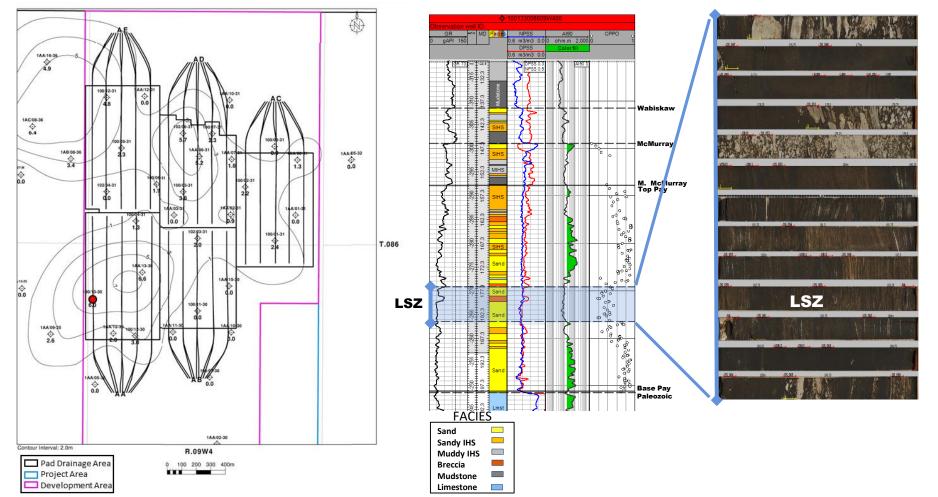
(A) 1AA/16-36 0.0 100 2-31 4 1AC/08-36 A4 05-32 1AB.08-30 9 0 0.0 0 T.086 ¢ \$ 1AA/09-25 di-0.0 1AA/02-30 Contour Interval: 2.0m R.09W4 0 100 200 300 400m Pad Drainage Area Project Area Bottom Water Thickness Contour, m Development Area Basal MudThickness Contour, m


Thickness of Bottom Water and Basal Mud, m

MIDDLE MCMURRAY FM GAS THICKNESS MAP ¹²

MIDDLE MCMURRAY GAS

 Minimal thickness and limited distribution within the development area

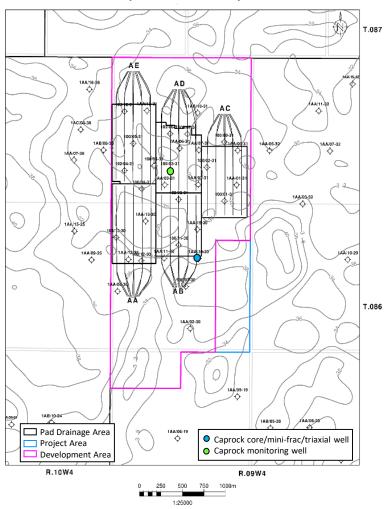


LOW BITUMEN SATURATION THICKNESS MAP

LOW BITUMEN SATURATION ZONE (LSZ)

- GR<60 API, density porosity >0.27 and resistivity 10-18 ohm-m and core water saturation >50%
- Core So= 0.36 and porosity = 0.37, thus the LSZ will still contribute to the overall bitumen production

Low Saturation Zone Net Thickness

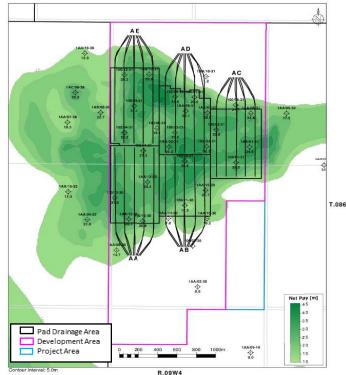

GEOMECHANICS

2019

- No pressure or temperature change has been observed in the caprock during the reporting period
- No new caprock core, mini-frac or tri-axial testing completed during the reporting period

HISTORICAL

- Caprock is defined as the unit between the top of the Clearwater and Wabiskaw
- One observation well has one piezometer and two thermocouples in the caprock


Caprock Thickness Map, m

RESERVOIR PROPERTIES AND OBIP

RESERVOIR PROPERTIES

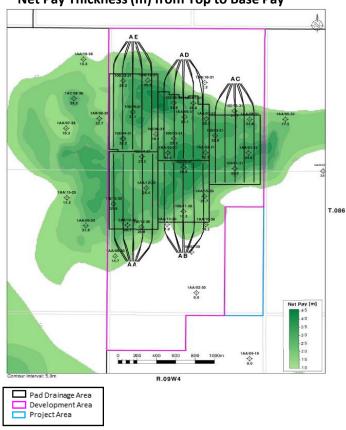
- Typical Producer Depth: 191 TVD (258 masl)
- o Initial Reservoir Pressure @ 190 m TVD: 600 kPaa
- Initial Reservoir Temperature: 8°C
- o Horizontal Permeability: 3,500-4,300 mD
- Vertical Permeability: 2,800-3,600 mD
- Bitumen Viscosity @ initial reservoir temperature: >1 mln cP

Gross OBIP = Thickness from Top to Base Pay x Area x Porosity x So

Net Pay Thickness (m) from Top to Base Pay

	Avg Por (frac)	Avg So (frac)	OBIP (mln m³)
Drainage Areas	0.36	0.72	15.6
Development Area	0.36	0.72	18.6
Project Area	0.36	0.72	18.6

SUBSURFACE WELL DESIGN AND INSTRUMENTATION



2019

• No new wells were drilled during this reporting period

HISTORICAL

 \circ 5 well pads with 25 well pairs

Net Pay Thickness (m) from Top to Base Pay

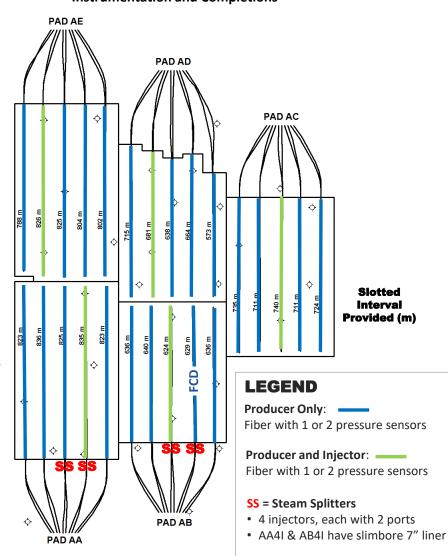
TYPICAL COMPLETION & ARTIFICIAL LIFT

0	All wells initially completed with all-metal PCP	Artificial Lift Performance	РСР	ESP	Well	Туре
	 Converted from PCPs to ESPs as rates improved and the wells matured 				AA1	ESP
0	Typical pump operating conditions:	Typical Minimum Rate (m ³ /d)	100	125	AA2	ESP
0	 Average bottomhole pressure = 1,800 kPag 	Typical Maximum Rate (m ³ /d)	600	825	AA3	PCP*
	 Average bottomhole pressure = 1,000 kl ug Average bottomhole temperature = 180 °C 	Typical Maximum Rate (m²/d)	600	825	AA4	ESP
	Average bottommole temperature – 100° e				AA5	РСР
0	ESP run life greater than 2 years on 14 wells				AB1	ESP
	• 7 ESPs with greater than 1,000 day run life				AB2	ESP
					AB3	ESP
	SAGD PRODUCER SAGD INJECTOR WELL WELL				AB4	ESP
					AB5	ESP
					AC1	ESP
406.4mm Surface Casing J55, ER Range 3, 96.73 kg/m						
THERMA					AC3	ESP
	mm Surface Casing				AC4	ESP
J55, ER R	ange 3, 96.73 kg/m 298.5mm Intermediate Casing TN55TH, BLUE, Range 3, 80.36 kg/m (Thermally Engineered)				AC5	ESP
					AD1	ESP
	THERMAL CEMENT Heel Injection String 114.3mm Hydrill J55				AD2	ESP
	298.5mm Intermediate Casing TN55TH, BLUE, Range 3, 80.36 kg/m Toe Injection Strin	9			AD3	ESP
		Thermal Debris	219.1mm Horizor	tal liner	AD4	РСР
	Production Tubing ~ 114.3mm or 88.9mm	88.9mm Hydrill J55	K55, BTL, Range		AD5	ESP
	Instrumentation Tubing		$\left(\right)$		AE1	ESP
	73mm Hydrill J55			Open Hole, 270mm	AE2	ESP
			7)		AE3	ESP
					AE4	ESP
	Pressure / Temperature Measureme Attached External to Tubin				AE5	ESP
			219.1mm Horizor K55, BTL, Range		*Production a	ssurance well

INSTRUMENTATION & FLOW CONTROL

¢

TEMPERATURE

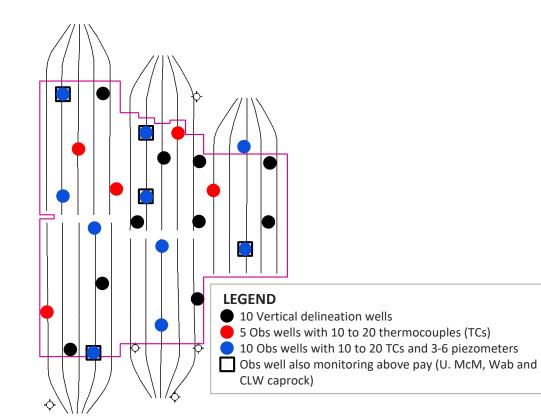

- Two types of fiber for temperature measurements
 - Fiber Bragg Grating (FBG) and Distributed Temperature Sensing (DTS)

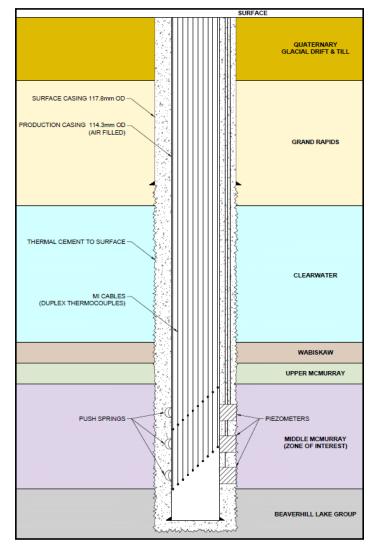
BOTTOMHOLE PRESSURE (BHP)

- \circ $\,$ Injector BHP is measured with blanket gas
- Producer BHP is measured using optical gauges and/or bubble tubes

FLOW CONTROL DEVICES (FCDs)

- o FCD installed in well AB04, March 2018
- Evaluation of performance is inconclusive due to impact of voluntary curtailment after install



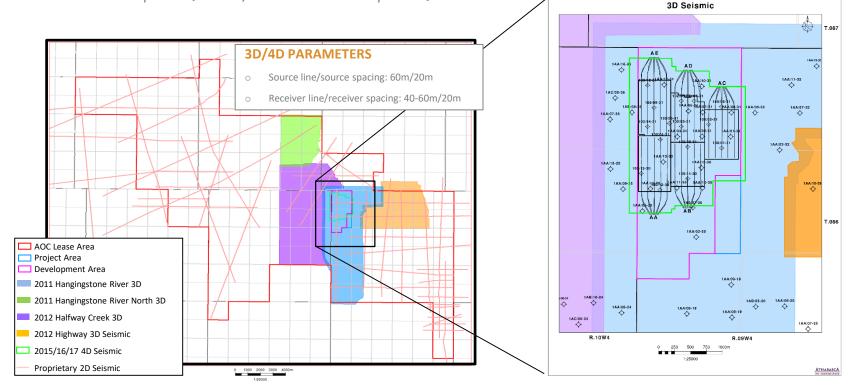

Instrumentation and Completions

INSTRUMENTATION – OBSERVATION WELLS

OBSERVATION WELLS

- o Instrumentation used to monitor reservoir pressure and temperature
 - Some pressure sensors have failed (typically after steam conditions observed)

SUBSURFACE 4D SEISMIC AND MONITORING

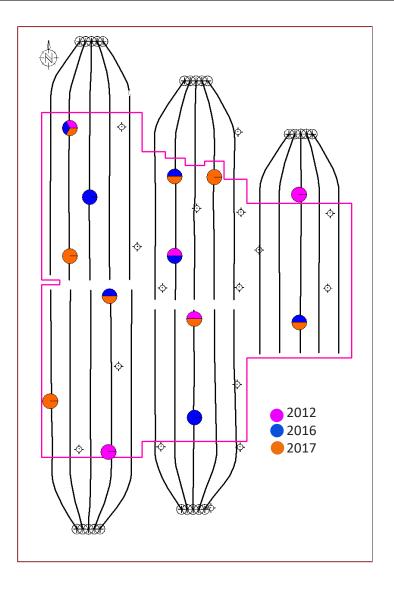

SEISMIC DATA OVERVIEW

2019

• No new data acquired in reporting period

HISTORICAL

- $\circ~$ 3D acquired in 2011 and 2012, merged in 2012
- Total proprietary 2D ~ 450 km
- Total 3D area ~98 km² (merged), covers development area
- \circ Total 4D area ~3.72 km²
 - Baseline acquired Q1 2014
 - First Monitor acquired Q1 2016 / Second Monitor acquired Q1 2017

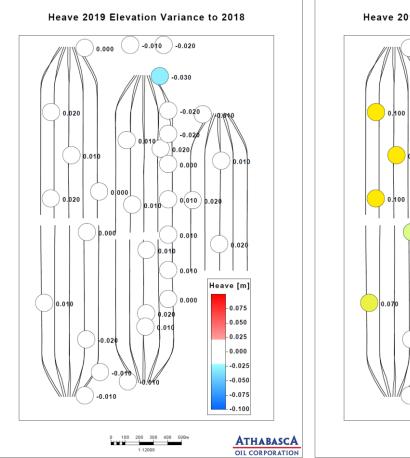

RESERVOIR SATURATION TOOL

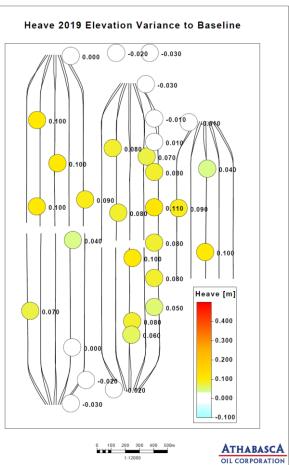
2019

 No new data acquired in reporting period

HISTORICAL

- Baseline acquired in 2012
- 2016 acquired 7 saturation logs; 2017 acquired 8 saturation logs
- Results show steam chamber thickness correlates with observation well temperature profiles

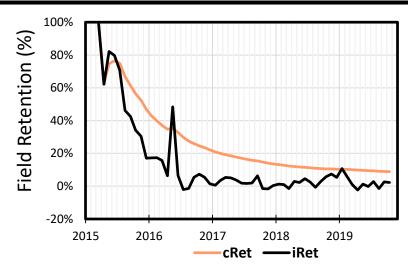

SURFACE HEAVE MONITORING

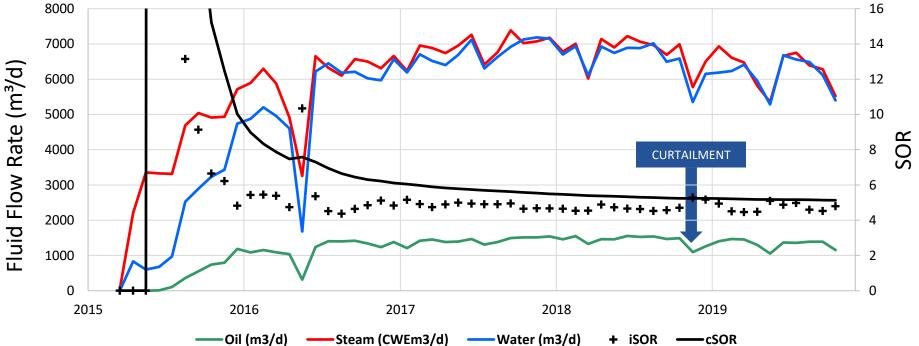

PROGRAM DESIGN

- 31 permanent surface heave monuments (0.30 x 0.30 m plate)
- Survey tolerance range is +/- 3 cm

SURVEY/RESULTS

- During 2019 the maximum change observed was within the +/- 3 cm survey tolerance
- $\circ~$ The maximum change observed between 2015 and 2019 is 11 cm ~

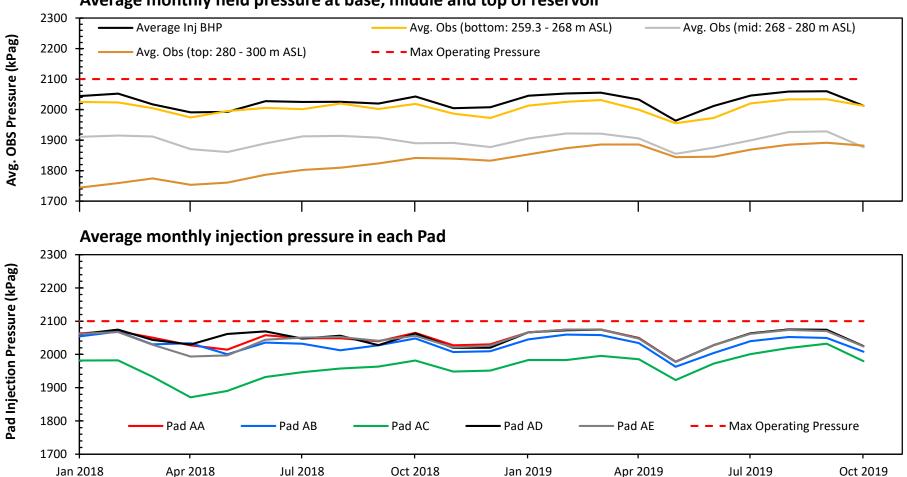




FIELD HISTORY

- $\circ~$ 24 of the 25 SAGD well pairs on production
- Injectors at target operating pressure
- SOR declining as upper portions of the reservoir drain
- Maximum monthly bitumen rate 1,466 m³/d (9,223 bbl/d) with SOR of 4.5 (Feb 2019)
- Curtailed production in Q4 2018 in response to extreme pricing differentials

Pad	Well Pairs	Average Lateral Length	Average Net Pay	Oil Saturation	Total Net Pay Porosity	OBIP	Current Recovered ¹	Current Recovery Factor	Predicted Recovery Factor
		(m)	(m)	(frac)	(frac)	(10 ⁶ m³)	(10 ⁶ m³)	(%)	(%)
AA	4/5	850	28.0	0.71	0.35	3.3	0.31	9.4	50-70
AB	5/5	640	29.3	0.73	0.37	2.9	0.68	23.5	50-70
AC	5/5	750	28.7	0.70	0.36	3.0	0.25	8.5	50-70
AD	5/5	670	32.1	0.71	0.35	3.2	0.35	11.0	50-70
AE	5/5	830	28.2	0.70	0.35	3.2	0.39	12.3	50-70
TOTAL	24/25					15.6	1.99	12.8	50-70


¹ Recovery Factor based on cumulative oil production in Oct 2019

Notes:

- Well Spacing: 100 m, Spacing between pads: 130 m
- Volumetrics include 25 m at heel and toe of the well pair
- OBIP is gross oil volume between base and top of pay

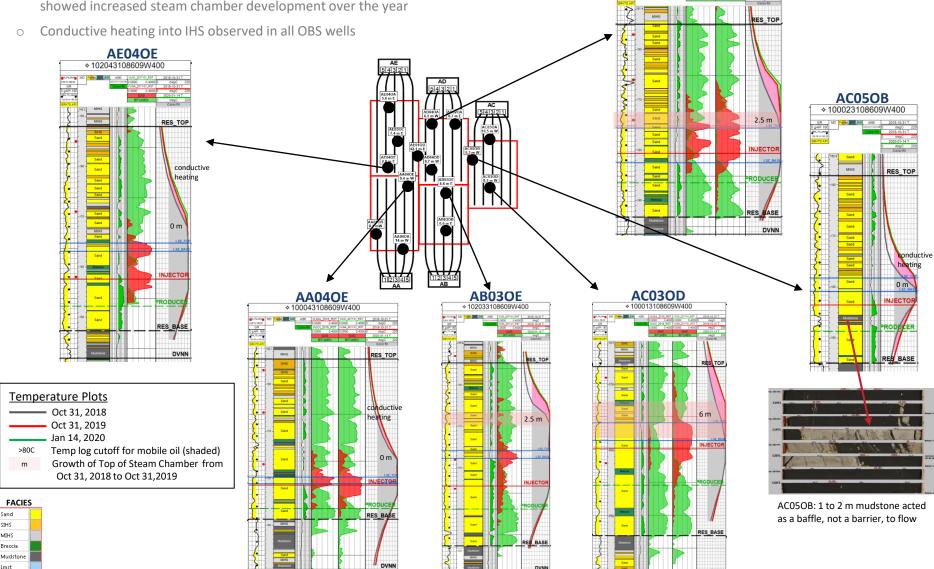
RESERVOIR PRESSURE

- Approved Maximum Operating Pressure is 2,100 kPag
- Throughout the reporting period, the reservoir continues pressuring up
 - Pressure drops due voluntary curtailment in Nov/Dec 2018 and facility maintenance
- No pressure change in caprock

Average monthly field pressure at base, middle and top of reservoir

STEAM CHAMBER PROGRESSION IN OBSERVATION WELLS

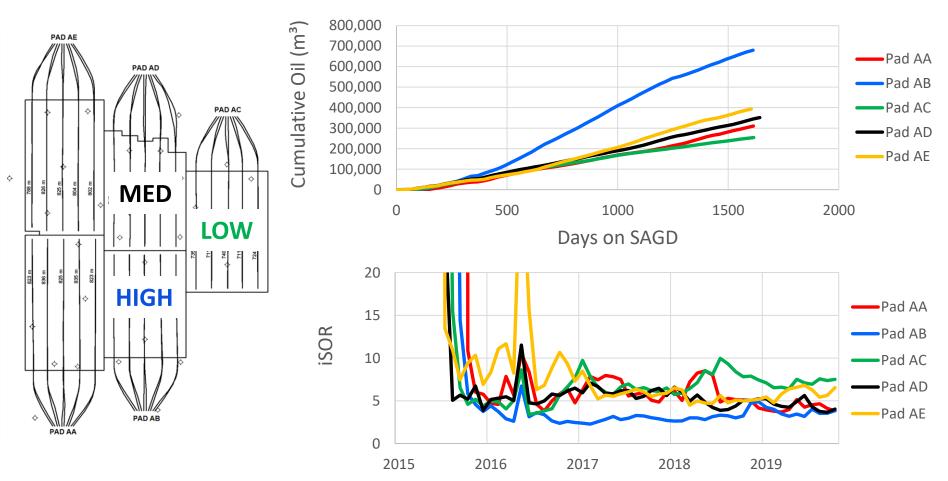
PROGRESSING THROUGH IHS


Sand

SHIS

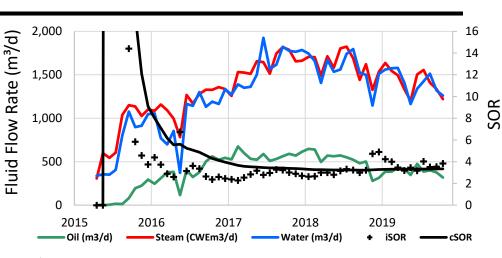
MIHS Breccia

Lmst


- 0 Height of steam chamber top was maintained during voluntary curtailment; some pads showed increased steam chamber development over the year
- 0

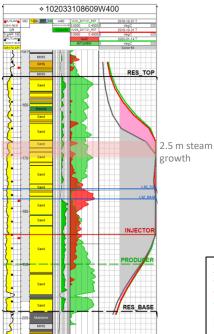
AD040A + 102063108609W400

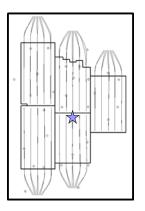
PAD PERFORMANCE


- Variation of pad performance depends on geology, pad boundary, well pair trajectories, pump performance and subcool conformance
 - Pads AB, AD and AC selected as examples of high/medium/low performing pads
 - Selection based on cumulative oil recovery and cSOR
 - Differences in the productivity of the wells primarily due to geological variability

PAD PERFORMANCE – HIGH PAD AB

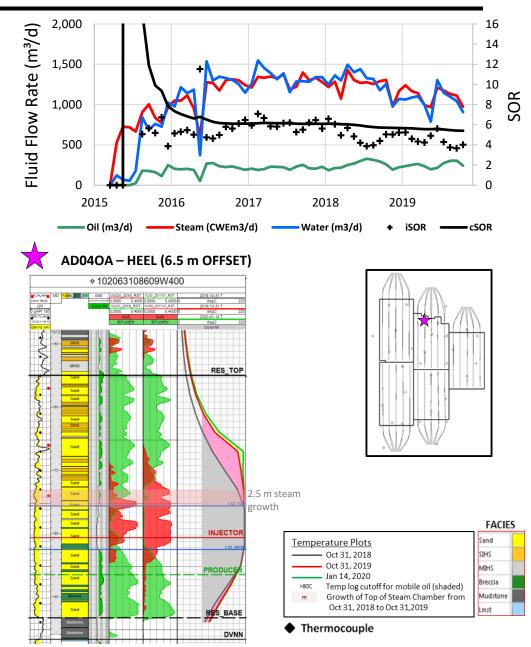
PAD AB


- Highest reservoir quality 0
 - Mostly sandy reservoir
 - High oil saturation around well pairs .
 - Thin low bitumen saturation zone .
- Highest average effective wellbore (97%) 0
- Peak well pair monthly rates >1,000 bbl/d 0


🛧 AB03OE - TOE (6.6m OFFSET)

- Well AB03OE shows 2.5 m steam chamber rise near toe \bigcirc
- Pressure continues to increase at top of reservoir (through IHS) 0

DVNN

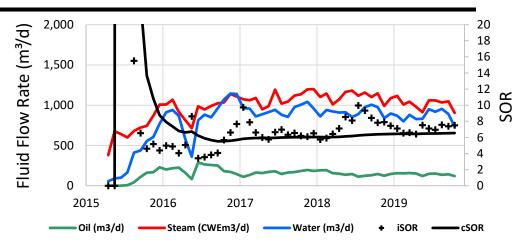

PAD PERFORMANCE - MID PAD AD

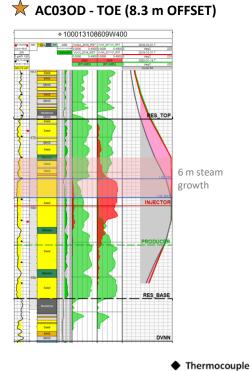
PAD AD

- o Average reservoir quality
 - Thickest net pay above producer (26.2 m)
 - IHS with high oil saturation in upper reservoir
 - Thick low bitumen saturation zone above injection well
- o Shortest wells
- High average effective wellbore (96%)

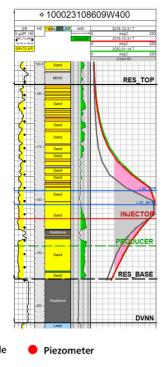
STEAM CHAMBER DEVELOPMENT

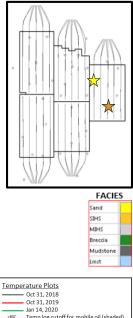
- Well AD04OA shows 2.5 m steam chamber rise near heel of AD04 in 12 months, 9 m in 14 months
- o Steam chamber advanced through LSZ


PAD PERFORMANCE – LOW PAD AC


PAD AC

- Heterogeneous reservoir
 - IHS dominated .
 - Thin low bitumen saturation zone above injection well .
- Bounded at east of pad Ο
- Sharing west boundary with pads AB and AD


STEAM CHAMBER DEVELOPMENT


AC03OD steam chamber developed beyond the LSZ 0 and is now advancing through SIHS and Breccia

🛧 AC05OB - MID (5.3 m OFFSET)

Temp log cutoff for mobile oil (shaded) Growth of Top of Steam Chamber from Oct 31 2018 to Oct 31 2019

STEAM QUALITY

- Steam quality leaving the plant is approximately 98% (includes Continuous Blow Down at typically 6,000 kPag
- Steam quality decreases to wellheads and is not measured but is modeled to be ~95%
- These conditions align with the original design

WELL INTEGRITY

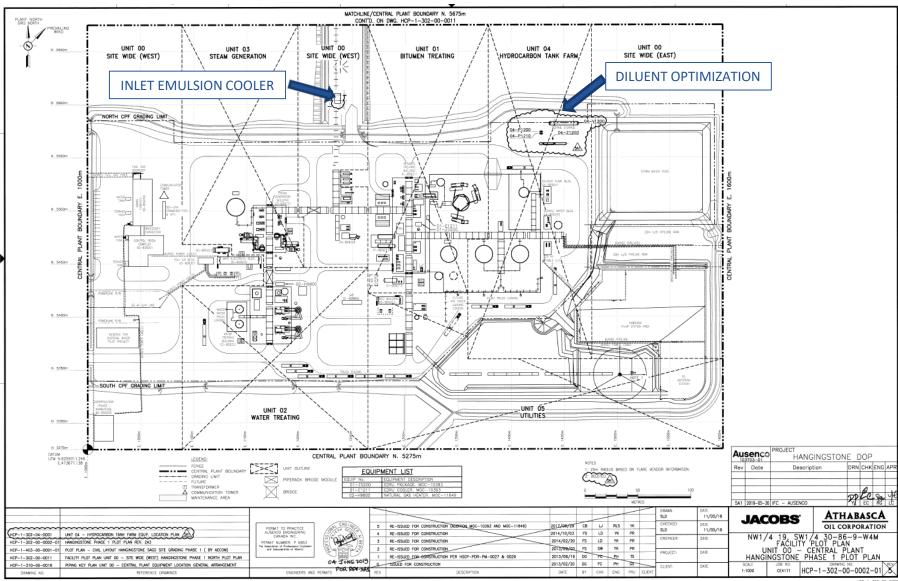
- Well integrity is addressed by using thermally engineered casing, thermal cement and completing cement bond logs in accordance with Directive 051
 - No wellbore integrity failures during the reporting period
 - No non-compliances of reporting and repairing wellbore integrity issues during the reporting period
- AOC has a wellhead valve maintenance program in place to prevent wellhead valve failures
 - No wellhead failures during the reporting period

ABANDONMENTS

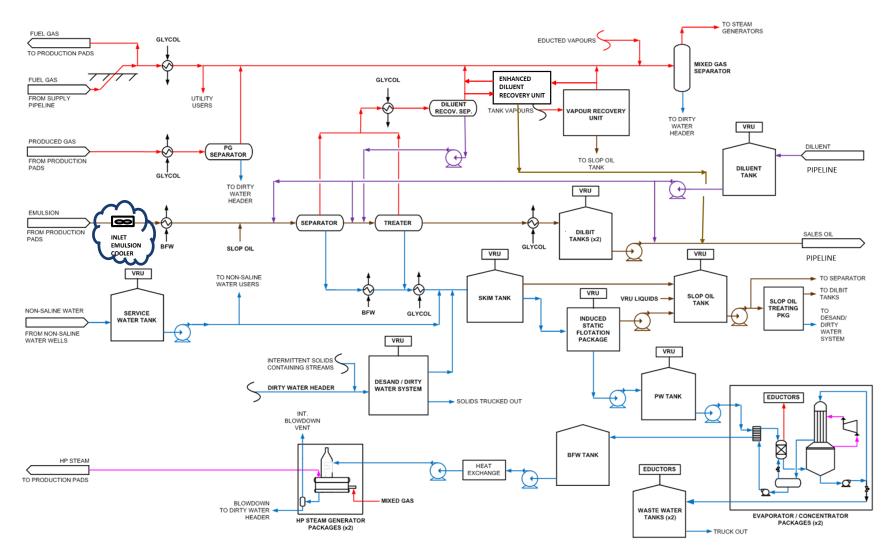
• No wells have been abandoned or suspended within the project area to date

FUTURE PLANS

- No plans for the drilling of any new SAGD well pairs for next reporting period
- \circ No abandonments planned in the next 5 years
- Well AA03 to be brought online pending steam availability (Q3 2020)
- Expect to convert remaining active PCP wells to ESPs as required
- Evaluating opportunities for Flow Control Devices (FCDs) into producer wells


SURFACE OPERATIONS FACILITIES

CENTRAL PROCESSING FACILITY PLOT PLAN


o Diluent Optimization and Inlet Emulsion Cooler projects completed during reporting period

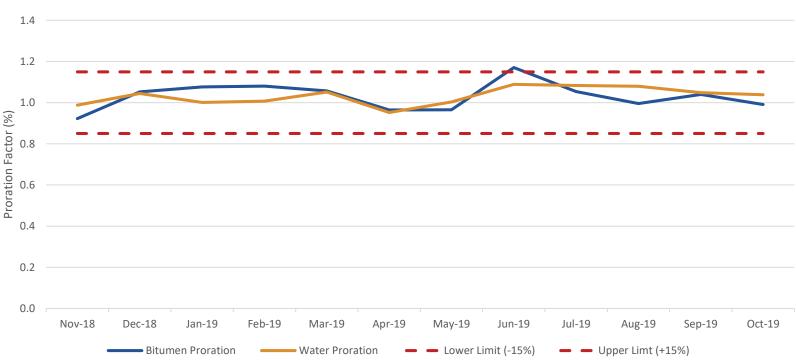
38

FACILITY SCHEMATIC

o Updated facility schematic showing inlet emulsion cooler

SURFACE MEASUREMENT, ACCOUNTING AND REPORTING PLAN (*MARP*)

MEASUREMENT AND REPORTING


MEASUREMENT, ACCOUNTING AND REPORTING PLAN (MARP)

- MARP approved 2012
- 2019 Voluntary disclosure of failed MARP meter (June 4) meter replacement (June 9)

MEASUREMENT METHODOLOGY

- No changes or alterations made to measurement methodology in reporting period
- WELL PRODUCTION AND INJECTION VOLUMES
 - Each well pad has a dedicated test separator with liquid flow meter and water cut analyzer to determine well bitumen and water production
 - Wells are individually put on test for one valid testing hour for every 20 hours of operation
 - Valid well test criteria per approved MARP
 - Well gas production prorated from Battery Level GOR using a proration factor of 1
 - Battery Level GOR is updated monthly
 - Steam injection is metered at each individual wellhead. Primary and secondary steam production metering available at the central steam plant
- BATTERY SALES OIL
 - Sales oil is shipped via pipeline from the Hangingstone Battery. Custody transfer metering is done at receiving facility
- MEASUREMENT TECHNOLOGY
 - Well testing uses standard method of test separators with microwave water cut analyzers
- STEAM VOLUMES
 - Steam quality leaving the plant is approximately 98%
 - A continuous blowdown (CBD) of approximately 2% is added to the steam of each boiler and is injected into the wells
 - Intermittent blow down (IBD) flow is estimated at 0.02% of total water out of the facility using sound engineering practices
- PRODUCED WATER VOLUMES
 - Calculated using the measured Water Disposition to the Injection Facility plus the Water Dispositions from the Plant plus changes in Water Inventory less any Water Receipts

PRORATION OF BITUMEN AND WATER

Proration Factor for Bitumen & Water

SURFACE OPERATIONS FACILITY PERFORMANCE

SITE RELIABILITY > 95%

- o Based on steam performance
- Integrity management program and predictive maintenance programs have been implemented to maintain higher site reliability

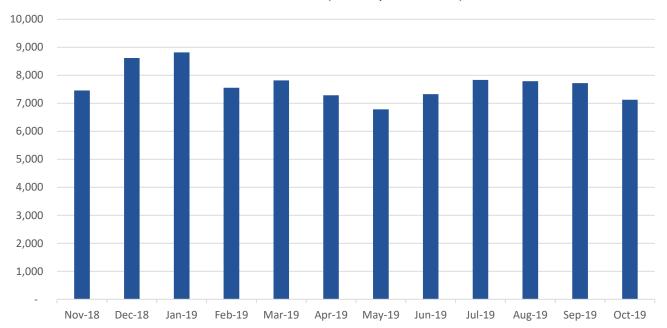
MAJOR ACTIVITIES

- o Boiler Mechanical Cleaning
- o Evaporator Chemical Cleaning

MAJOR CHALLENGES

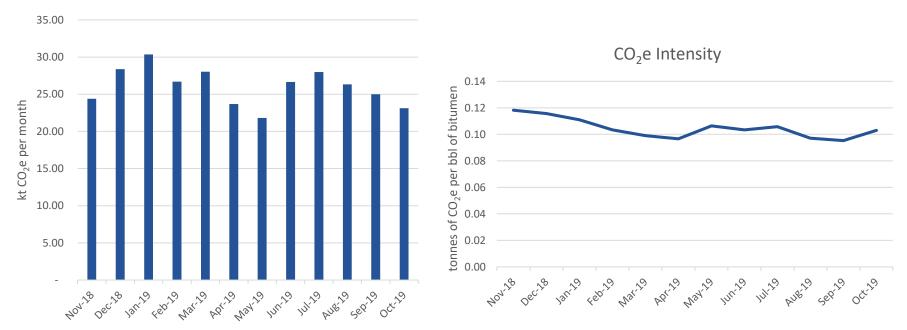

o De-oiling optimization

BITUMEN PRODUCTION



Bitumen Production

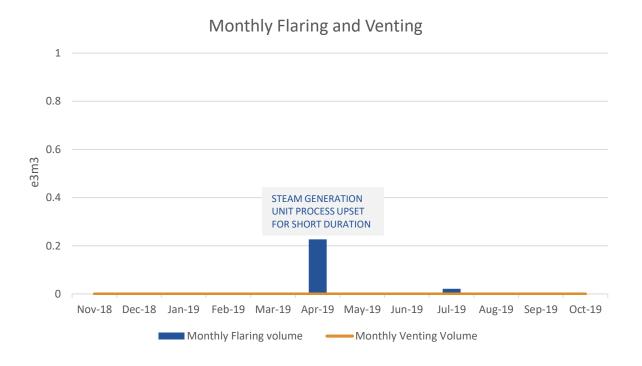
STEAM GENERATION


POWER USAGE YTD 92,096 MWH

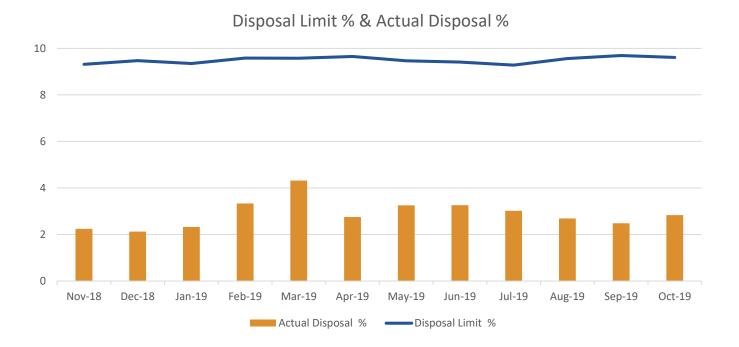
POWER USAGE (MWh per month)

DIRECT GHG EMISSIONS FROM NOVEMBER 2018 – OCTOBER 2019 : 312 KT CO₂e

- o Sources: stationary combustion, flaring, venting and fugitives
- Calculated using 2019 CCIR

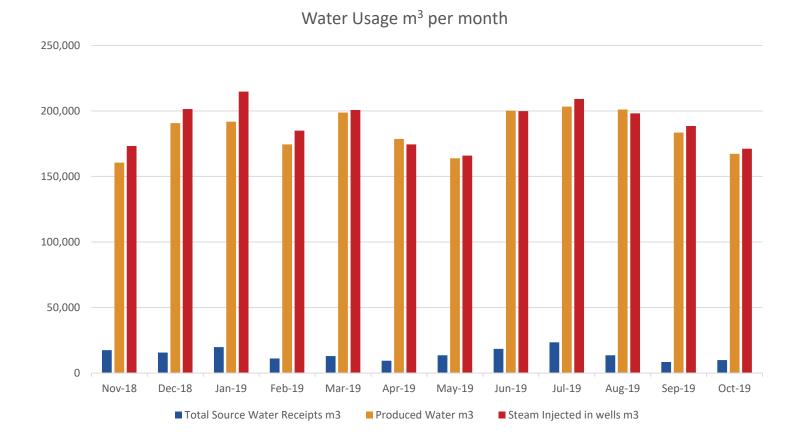

Direct GHG Emissions

TOTAL GAS USAGE YTD 144,421 e³m³ SOLUTION GAS RECOVERY 100%



GAS USAGE (e³m³ per month)

MONTHLY FLARING AND VENTING



FACILITY PERFORMANCE

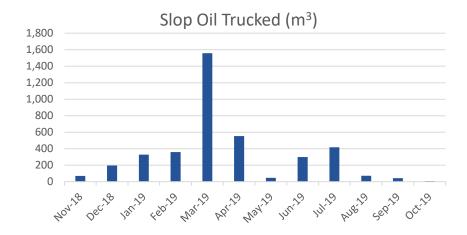
- Calculations completed in accordance Directive 081 (2012)
- Revised Directive 081 released November 5, 2019, and is not applicable to the current reporting period (Nov. 1, 2018 – Oct. 31, 2019)
- o AOC will incorporate new disposal factors in the 2020 Performance Report

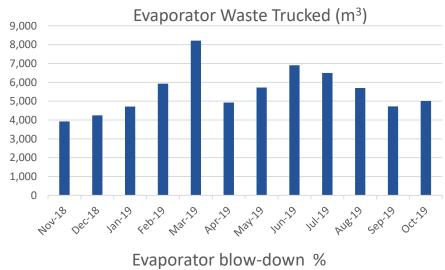
WATER USAGE

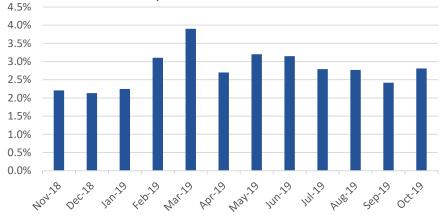
52

FACILITY PERFORMANCE

PRODUCED WATER RECYCLE (AVG. 97%)

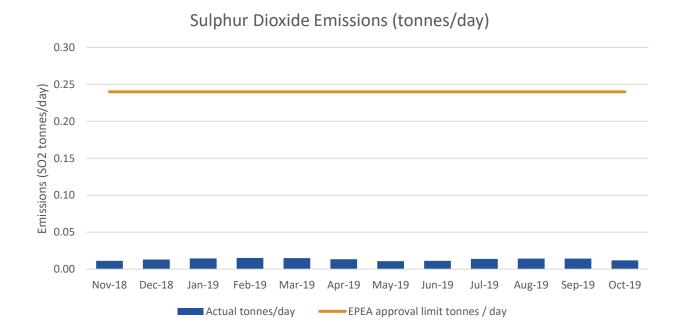

Directive 081 (2012), Appendix H, Equation 6


100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Jul-19 Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Aug-19 Sep-19 Oct-19



WASTE DISPOSAL

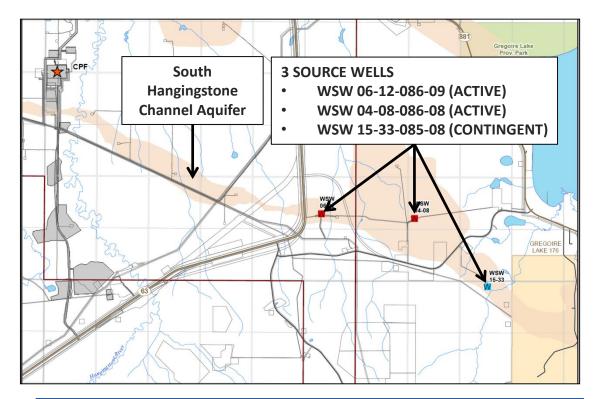
- o Waste streams are slop oil and evaporator blowdown
- Evaporator waste disposal volume reduced by 13,364 m³
- No excess produced water trucked out in reporting period



SULPHUR PRODUCTION

• Currently there is no sulphur recovery

• SO₂ emissions are calculated based on analytical results of produced gas samples


SURFACE SOURCE WATER AND WATER CHEMISTRY

SOURCE WATER

NON-SALINE WATER WELLS

- Hangingstone Water Act License
 00316166-01-00 annual
 allocation is 479,975 m³
- During Nov. 1, 2018 to Oct. 31, 2019 AOC diverted 159,286 m³
- Aquifer drawdown is stable and within the allowable as specified in the Water Conservation and Allocation Guideline for Oilfield Injection (AENV 2006)

Well ID	Location	Formation	TDS (mg/L)	Maximum Rate of Diversion (m ³ /d)
WSW153308508W400	15-33-085-08-W4	Quaternary	286	3,000
WSW061208609W400	06-12-086-09-W4	Quaternary	310*	3,000
WSW040808608W400	04-08-086-08-W4	Quaternary	310*	3,000

Wells are less than 150 m in depth and not licenced with the AER Well IDs are AOC internal identifiers, not UWIs

* 2019 Analysis

TYPICAL WATER ANALYSIS

Parameter	Non-Saline Make-up Water (mg/L)	Produced Water (mg/L)	Disposal Water (Evap blow-down) (mg/L)
рН	7.97	7.36	11.8
Total Dissolved Solids (TDS)	310	2,300	130,000
Chlorides	7.4	1,200	49,000
Hardness as CaCO ₃	220	14.5	550
Alkalinity as CaCO ₃	270	320	25,000
Silica	5	150	7,000
Total Organic Carbon	<1	180	6,000
Oil Content	<1	20	500

APPROVALS AND AMENDMENTS

• No applications were made or approvals received during the reporting period

AUDITS

 \circ The AER completed an audit of the Emergency Response Plan and found it satisfactory

INSPECTIONS

• The AER completed 6 facility inspections, all results satisfactory

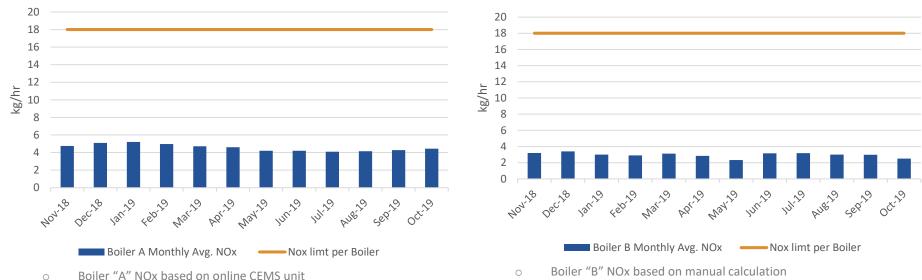
COMPLIANCE – SUMMARY OF NON-COMPLIANCE ⁶¹

Notices of Non-Compliance and Voluntary Self Disclosures				
Event	Corrective Action			
April 24, 2019 – CEMS code violation 90% uptime	Investigation identified a defective communication card. Method 4 calculation approved for missing data and the defective card was replaced.			
June 4, 2019 - Voluntary Self-Disclosure for failed MARP meter	Meter was repaired and put back into service June 9, 2019			

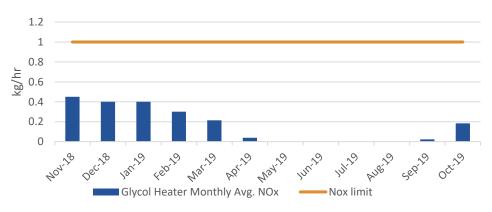
From November 1, 2018 to October 31, 2019 there were

• 2 reportable releases

COMPLIANCE – MONITORING PROGRAMS


MONTHLY AND ANNUAL MONITORING PROGRAMS

- Passive air monitoring stations- no exceedances (SO₂, NO₂, H₂S) of the Alberta Ambient Air Quality Objectives
- A continuous air monitoring station is not an EPEA approval requirement
- Continuous NO₂ emissions monitored using a Continuous Emissions Monitoring System (CEMS) as required under the EPEA approval (Boiler A)
- SO₂ and NO₂ emissions were summarized in monthly and annual EPEA Air Emissions Reports
- Air Emissions Inventory Report submitted in September 2019
- o Industrial wastewater and runoff all releases monitored with no exceedances
- Groundwater water monitoring completed (2 events)
- A soil monitoring program proposal was approved by the AER and the monitoring program completed
- A Woodland Caribou Report (2015 2018) was submitted and approved by the AER
- o Water Act Licenses (term & surface) all conditions met and reporting completed


COMPLIANCE - MONITORING PROGRAMS

Boiler "A" NOx Monthly Average

o Glycol Heater NOx based on manual calculation and is operated only in winter months

COMPLIANCE – RECLAMATION PROGRAMS

• Reclamation certificates have been obtained for all Hangingstone OSE programs with the exception of 3 programs that were applied for in Q4 2019

COMPLIANCE – REGIONAL INITIATIVES

AOC IS A FUNDING MEMBER OF:

- Oil Sands Environmental Monitoring Program
- Wood Buffalo Environmental Association (WBEA) air shed monitoring
- Regional Industry Caribou Collaboration (RICC)
- Industrial Footprint Reduction Options Group (iFROG) wetland reclamation research industry collaboration

AOC PARTICIPATES IN:

- Various regional CAPP Committees
 - Oil Sands Environmental Policy and Regulatory Committee
 - NE Alberta Caribou Working Group
 - Indigenous Affairs Committee
 - Air Issues Committee
- o Oil Sands Community Alliance

COMPLIANCE – STATEMENT OF COMPLIANCE

66

ATHABASCA OIL CORPORATION HANGINGSTONE PROJECT IS IN COMPLIANCE WITH AER APPROVALS AND REGULATORY REQUIREMENTS

 For the period of November 1, 2018 to October 31, 2019, AOC has no unaddressed noncompliant events

FUTURE PLANS

 $\circ~$ No new initiatives planned

ATHABASCA OIL CORPORATION

ATHABASCA OIL CORPORATION

SUITE 1200, 215 – 9TH AVENUE SW CALGARY, AB T2P 1K3 P:403-237-8227 F:403-264-4640