JACKFISH IN SITU PROJECT
DIRECTIVE 54 ANNUAL
PERFORMANCE PRESENTATION
Commercial Scheme Approval 10097 (as amended)
November 2019
Outline – Subsurface

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Background</td>
<td>5 – 8</td>
</tr>
<tr>
<td>Geology, Seismic</td>
<td>9 – 35</td>
</tr>
<tr>
<td>Drilling and Completions</td>
<td>36 – 46</td>
</tr>
<tr>
<td>Artificial Lift</td>
<td>47 – 48</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>49 – 54</td>
</tr>
<tr>
<td>Scheme Performance</td>
<td>55 – 76</td>
</tr>
<tr>
<td>Future Plans</td>
<td>77 – 79</td>
</tr>
</tbody>
</table>
Outline – Surface

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities Overview</td>
<td>81 – 86</td>
</tr>
<tr>
<td>Measurement and Reporting</td>
<td>87 – 91</td>
</tr>
<tr>
<td>Water Production, Injection, and Uses</td>
<td>92 – 96</td>
</tr>
<tr>
<td>Water Treatment Technology</td>
<td>97 – 98</td>
</tr>
<tr>
<td>Water, Disposal Wells, Landfill Waste</td>
<td>99 – 115</td>
</tr>
<tr>
<td>Sulphur Production and Air Emissions</td>
<td>116 – 123</td>
</tr>
<tr>
<td>Environmental Issues</td>
<td>124 – 132</td>
</tr>
<tr>
<td>Compliance</td>
<td>133 – 136</td>
</tr>
<tr>
<td>Future Plans</td>
<td>137 – 138</td>
</tr>
</tbody>
</table>
Subsurface Operations
Project Background
3.1.1-1
Brief Background of Scheme

Jackfish

3.1.1.1

- Jackfish 1, 2, and 3 utilize steam-assisted gravity drainage (SAGD) to recover bitumen from the McMurray formation
- Located 150 km south of Fort McMurray
- Jackfish 1 scheme approval granted August 2006; first steam August 2007
- Jackfish 2 scheme approval granted August 2008; first steam May 2011
- Amalgamation of Jackfish approvals (including Jackfish 3) November 2011; first steam July 2014
- Jackfish Expansion approval granted in August 2019
Brief Background of Scheme

Jackfish

3.1.1-1

Jackfish Expansion

[Map showing the locations of Jackfish 1 Pad, Jackfish 2 Pad, and Jackfish 3 Pad, along with the Jackfish Expansion area. The map includes sections labeled QO, KK, BB, AA, DP, FF, EE, RR, and J1, J2, J3 CPF.]
Brief Background of Scheme

Jackfish

3.1.1-1

<table>
<thead>
<tr>
<th>Asset</th>
<th>Number of Operating Pads</th>
<th>Number of Operating Well Pairs</th>
<th>Upcoming Pads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackfish 1</td>
<td>11</td>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td>Jackfish 2</td>
<td>8</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>Jackfish 3</td>
<td>7</td>
<td>51</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>26</td>
<td>189</td>
<td>-</td>
</tr>
</tbody>
</table>
Geology, Seismic
3.1.1-2, 3.1.1-6
Geology
Jackfish Gross Rock Volume Pay Definition

3.1.1-2a

Gross Rock Volume (GRV)

• Characterizes the complete package accessible through SAGD

• Defined by:
 - \(S_o > 50\% \)
 - \(V_{sh} < 40\% \)
 - encompasses all brecciated intervals

• \(V_{sh} \) and \(S_o \) are standard petrophysical curves calculated from gamma ray, resistivity, and porosity logs, and correlated to image logs and core data
Geology

Jackfish Net Continuous Pay Definition

3.1.1-2a

Net Continuous Bitumen (NCB)

- More conservative definition used to define continuous bitumen pay, used for pad and well pair planning.

- Defined by:
 - \(V_{sh} < 40\% \)
 - can contain up to 1m continuous non-reservoir
 - excludes breccias that do not meet \(V_{sh} \) cutoff
 - base defined by producer (actual or estimated) elevation

- \(V_{sh} \) and \(S_\phi \) are standard petrophysical curves calculated from gamma ray, resistivity, and porosity logs, and correlated to image logs and core data.
Geology

Jackfish Volumetrics and Average Reservoir Properties

<table>
<thead>
<tr>
<th></th>
<th>Area (Ha)</th>
<th>OBIP ($10^6 m^3$)</th>
<th>Avg. GRV thickness (m)</th>
<th>Avg. Oil Saturation (So)</th>
<th>Avg. Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Area</td>
<td>13,802</td>
<td>633.95</td>
<td>19.06</td>
<td>71.7</td>
<td>33.6</td>
</tr>
<tr>
<td>Development Area</td>
<td>8,161</td>
<td>506.88</td>
<td>25.4</td>
<td>72.5</td>
<td>33.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Jackfish 1</th>
<th>Jackfish 2</th>
<th>Jackfish 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBIP ($10^6 m^3$)</td>
<td>75.3</td>
<td>81.3</td>
<td>67.5</td>
</tr>
<tr>
<td>Avg. Reservoir Depth (mTVD)</td>
<td>400</td>
<td>459</td>
<td>428</td>
</tr>
<tr>
<td>Avg. Reservoir Depth (mASL)</td>
<td>202</td>
<td>202</td>
<td>202</td>
</tr>
<tr>
<td>Avg. Original Reservoir Pressure (kPa) @ scheme startup</td>
<td>2,700</td>
<td>2,700</td>
<td>2,700</td>
</tr>
<tr>
<td>Avg. Reservoir Temp. (°C)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Avg. Kh (md)</td>
<td>5,000</td>
<td>3,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Avg. Kv (md)</td>
<td>2,000</td>
<td>1,200</td>
<td>1,500</td>
</tr>
<tr>
<td>Avg. Phi (%)</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Avg. Bitumen Viscosity (Cp)</td>
<td>1,000,000+</td>
<td>1,000,000+</td>
<td>1,000,000+</td>
</tr>
<tr>
<td>Original Bottom Water Pressure (kPa)</td>
<td>2,300</td>
<td>2,300</td>
<td>2,300</td>
</tr>
</tbody>
</table>

Total for all producing, drilled, and planned pads
Geology
Jackfish Gross Rock Volume Pay Thickness

3.1.1-2c
Geology
Jackfish Expansion Gross Rock Volume Pay Thickness

3.1.1-2c
Geology
Jackfish Net Continuous Bitumen Isopach

3.1.1-2c
Geology
Jackfish Expansion Net Continuous Bitumen Isopach

3.1.1-2c
Geology
Jackfish McMurray Water Contact to Paleozoic Isopach

3.1.1-2c
Geology
Jackfish Expansion McMurray Water Contact to Paleozoic Isopach

3.1.1-2c
Geology
Jackfish Top Structure of Gross Rock Volume

3.1.1-2d
Geology
Jackfish Expansion Top Structure of Gross Rock Volume

3.1.1-2d
Geology
Jackfish Base Structure of Gross Rock Volume

3.1.1-2d
Geology
Jackfish Expansion Base Structure of Gross Rock Volume

3.1.1-2d
Geology
Jackfish 1 Representative Well Log

3.1.1-2e
Geology

Jackfish 2 Representative Well Log

3.1.1-2e
Geology
Jackfish 3 Representative Well Log

3.1.1-2e
Geology
Jackfish Expansion Representative Well Log

3.1.1-2e
Geology
Jackfish 2019 Drilling Program and Cored Wells

3.1.1-2f

Project Area
2018-2019 Wells: 39
2018-2019 Core: 22
Total Well Count: 732
Total Core: 304

Special Core Analysis
No special core analysis conducted on core from the 2019 drilling program.
Geology
Jackfish 1 Representative Structural Cross-section

3.1.1-2i
Geology
Jackfish 2 Representative Structural Cross-section
Geology

Jackfish 3 Representative Structural Cross-section

3.1.1-2i
Geology
Jackfish Expansion Representative Structural Cross-section

3.1.1-2i
Geology
Jackfish Caprock Overburden Map and Mini Frac Wells

3.1.1-2m
Geology
Jackfish Expansion Caprock Overburden Map and Mini Frac Wells

3.1.1-2m
Seismic
Jackfish Historical Surveys

- No seismic was acquired in 2019
- Historically, seismic acquisition is extensive, totaling 21.7 km²
Seismic
Jackfish Expansion Historical Surveys

3.1.1-6a
Drilling and Completions
3.1.1-3
Drilling and Completions

Overview

3.1.1-3a

Operating SAGD Horizontal Wells
- **Jackfish 1**: 78 well pairs on eleven pads (horizontal sections are 790 – 1,200m)
- **Jackfish 2**: 60 well pairs on eight pads (horizontal sections are 790 – 1,200m)
- **Jackfish 3**: 51 well pairs on seven pads (horizontal sections are 720 – 1,200m)

Observation Wells
- 61 active SAGD observation wells (two to three wells per operating pad)
- 21 regional multi-zone monitoring wells equipped with piezometers

Service Wells
- Six Grand Rapids brackish source water wells
- Two McMurray brackish source water wells
- 14 water disposal wells (Class 1b)
 - 12 active wells
 - 1 inactive well (102/12-05-076-06W4)
 - 1 suspended well (102/03-22-075-06W4)
Drilling and Completions
Jackfish 1 Overview – SAGD Wells

Existing Pads
- Pad A, B, C, D, E, G, H, I, O: Seven well pairs per pad
- Pad F: Nine well pairs and three additional producers
- Pad R: Six well pairs
- Pad EX: Three well pairs, planned for steam Q4 2019
- Two observation wells per pad (heel and toe)
Drilling and Completions
Jackfish 2 Overview – SAGD Wells

3.1.1-3a

Existing Pads
• Pad AA, BB, CC, DD, and KK: Seven well pairs per pad
• Pad OO and PP: Eight well pairs per pad
• Pad FF: Nine well pairs
• Pad QQ: Ten well pairs, planned for steam Q4 2019
• Pad MM: Four well pairs, planned for steam Q4 2019
• Two observation wells per pad (heel and toe), three wells at Pad FF
Drilling and Completions

Jackfish 3 Overview – SAGD Wells

3.1.1-3a

Existing Pads

- Pad J and EE: Seven well pairs per pad
- Pad VV and K: Ten well pairs per pad
- Pad RR: Nine well pairs
- Pad EEE: Ten well pairs, five operating
- Pad III: Eight well pairs, three operating
- Two observation wells per pad (heel and toe)
Drilling and Completions
Jackfish Inter-well Spacing

3.1.1-3a

• Standard lateral inter-well spacing at Jackfish is 80m

• Currently drilled pads that differ from the standard are:
 • Pad VV: Spacing of 60m
 • Pad F: Spacing of 60m at the heels fanning to 90m at the toes
 • Pad O: Spacing of 75m at the heels fanning to 90m at the toes
 • Pad R: Spacing varies from 71 to 90m due to boundary restrictions
 • Pad III: Spacing of 80m at the heels fanning to 90m at the toes
Drilling and Completions

Typical Injection Well Schematic

3.1.1-3c

- Shiftable steam subs utilized on several injection wells
- Majority of new wells have steam sub(s) installed on the long injection string to improve steam distribution

- 406.4 mm (16") surface casing
- 298.5 mm (11 ¾") intermediate casing
- Short and long tubing are from 88.9 to 114.3 mm (3 ½" to 4 ½"
- 25.4 mm (1") coil tubing instrument string with thermocouples and a conduit to pump down fiber optics
- 219.1 mm (8 5/8") slotted liner
Drilling and Completions
Typical Gas Lift Production Well Schematic

- Inflow Control Devices (ICDs) are trialed on select wells
- Goal is to gain better understanding of this technology in SAGD environment
- Devices promote production through uniform inflow

219.1 mm (8 5/8”) slotted liner or wire wrap screen

406.4 mm (16”) surface casing

298.5 mm (11 ¾”) intermediate casing

31.8 mm (1 ¼”) lift gas coils

Short and long tubing are from 88.9 to 114.3 mm (3 ½” to 4 ½”)

25.4 mm (1”) coil tubing instrument string with thermocouples and a conduit to pump down fiber optics
Drilling and Completions

Typical ESP Production Well Schematic
Drilling and Completions
Inflow Control Devices (ICDs)

3.1.1-3c

- Tubing-deployed systems on wells CC1P, DD2P, DD7P, OO1P, OO8P
 - Installed successfully via service rig

 - Installed successfully via drilling rig

- Key learnings to date:
 - Actual pressure drops in original ICDs different than design.
 - Incorporated lab test data in recent deployments and pressure drop to date is within expected design range.
 - Observed well production improvements range from 0 to 100%, uplift sustainability is being evaluated
 - Able to operate wells at lower subcool with positive impact on temperature conformance
Drilling and Completions
Wire Wrapped Screens

3.1.1-3c

• Expected benefits of wire wrapped screens:
 • Reduced liner pressure drop
 • Increased open flow area
 • Mechanical strength
 • Sand control

• Recent implementation at Jackfish includes Pad F, Pad O and Pad R
 • Successful start-up of these wells using wire wrapped screens
Artificial Lift
3.1.1-4
Artificial Lift

Summary

3.1.1-4a,b

- Combination of Gas lift and ESP utilized for artificial lift at Jackfish District

- Gas lift continues to be an effective lift strategy for Jackfish operating conditions
 - Typical producer operating pressure above 1,800 kPag
 - Ability to handle over 1,000 m³/day emulsion flow
 - No operating temperature limitation

- ESP use has expanded from single well (B3P) in 2015 to full pad installation over past 2 years
 - ESP Wells: B3P, F10-F12P, O1-O7P, R1-R6P
 - Upcoming ESP Wells: MM1-MM4P, EX8-EX10P (Pads pending circulation)
 - Plan to continue to deploy ESPs as deemed necessary
Instrumentation

3.1.1-5
Subsurface Temperature Instrumentation:
- 25.4 mm (1") coil tubing instrument string with four to eight evenly spaced thermocouples and a conduit to pump down fiber optics
- Fiber optics currently in 49 wells on Pads C, G, I, J, CC, DD, EE, KK, FF, OO, RR and III
- Future fiber optics installations planned for Pad QQ producer wells
Jackfish 1, 2, and 3 SAGD observation wells contain:

- 20 points thermocouples (25 points in more recently drilled wells), spaced above, below, and within pay interval
- Two to four pressure sensors spaced above, below, and within pay interval
Instrumentation in Wells
Regional Multi-Zone Monitoring Wells

3.1.1-5b

Twenty-one monitoring wells cover areas of Jackfish 1, 2, and 3

- 00/07-32-75-6W4 (5 piezometers)
- F1/08-28-75-6W4 (4 piezometers)
- F1/09-14-75-6W4 (4 piezometers)
- F1/12-31-75-6W4 (4 piezometers)
- F1/10-22-75-6W4 (5 piezometers)
- F1/04-26-75-7W4 (5 piezometers)
- F1/06-28-75-7W4 (5 piezometers)
- F1/15-19-75-6W4 (5 piezometers)
- F1/09-24-75-7W4 (5 piezometers)
- F1/14-25-75-6W4 (5 piezometers)
- F1/05-12-75-6W4 (5 piezometers)
- F1/09-22-75-7W4 (4 piezometers)
- 02/12-23-75-7W4 (4 piezometers) *
- 02/01-35-75-7W4 (3 piezometers)
- 00/15-07-75-5W4 (4 piezometers)
- 00/07-22-75-7W4 (2 piezometers)
- 00/03-15-75-6W4 (3 piezometers) **
- 02/09-33-75-6W4 (4 piezometers)
- 00/04-30-75-7W4 (3 piezometers)
- 00/01-19-75-6W4 (3 piezometers) **
- AA/11-30-75-6W4 (5 piezometers)

* Perf with a Level Logger
** Perf for water sampling

2019 Jackfish Directive 54 Presentation
Instrumentation in Wells

Regional Multi-zone Monitoring Wells

<table>
<thead>
<tr>
<th>UWI</th>
<th>Rig Release</th>
<th>Quaternary</th>
<th>Colorado Group</th>
<th>Grand Rapids</th>
<th>Clearwater</th>
<th>Wabiskaw</th>
<th>McMurray Bitumen</th>
<th>Basal McMurray Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/03-15-075-06W4</td>
<td>2012/03/06</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/01-19-075-06W4</td>
<td>2013/02/17</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/04-30-075-07W4</td>
<td>2013/03/03</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/07-22-075-07W4</td>
<td>2013/03/13</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Prediction

- Well pad performance forecasts generated using Jackfish and industry analogues; validated with numerical simulation and analytical methods

- Facility service factors based on historical data, future plans, and quantified risks
Scheme Performance
Jackfish 2 Project Life Plot

3.1.1-7a

Flow Rate (m³/d)
0 5,000 10,000 15,000 20,000
Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Jan-17 Jan-18 Jan-19 Jan-20

SOR (m³/m³), Gas Injection (E³/m²/d), Well Pairs
0 50 100 150 200

- Daily Steam Injection
- Daily Oil Production
- Daily Water Production
- ISOR
- CSOR
- Well Pairs
- Daily Gas Injection

Pad KK startup
Pad FI startup
Pad OO, Pad PP startup
Turn around
Turn around
Government Mandated Curtailment
Turn around
Maintenance
2019 Scheme Performance

Jackfish 1 Pad Recoveries

<table>
<thead>
<tr>
<th>Pad</th>
<th>Area (m²)</th>
<th>Avg. GRV Pay (m)</th>
<th>Net GRV Pay S₀ (%)</th>
<th>Net GRV Pay Porosity (%)</th>
<th>OBIP (10⁶m³)</th>
<th>Ult Rec (10⁶m³)</th>
<th>Cum Prod (10⁶m³)</th>
<th>RF (%) to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>529,788</td>
<td>42</td>
<td>80</td>
<td>33</td>
<td>6.0</td>
<td>4.9</td>
<td>4.5</td>
<td>75</td>
</tr>
<tr>
<td>B</td>
<td>532,736</td>
<td>44</td>
<td>75</td>
<td>34</td>
<td>5.9</td>
<td>3.2</td>
<td>2.5</td>
<td>42</td>
</tr>
<tr>
<td>C</td>
<td>530,374</td>
<td>42</td>
<td>78</td>
<td>34</td>
<td>6.0</td>
<td>3.0</td>
<td>2.8</td>
<td>47</td>
</tr>
<tr>
<td>D</td>
<td>531,192</td>
<td>46</td>
<td>79</td>
<td>34</td>
<td>6.6</td>
<td>3.5</td>
<td>2.5</td>
<td>38</td>
</tr>
<tr>
<td>E</td>
<td>603,919</td>
<td>43</td>
<td>74</td>
<td>34</td>
<td>6.4</td>
<td>3.9</td>
<td>2.5</td>
<td>39</td>
</tr>
<tr>
<td>F</td>
<td>675,933</td>
<td>37</td>
<td>77</td>
<td>34</td>
<td>6.6</td>
<td>4.4</td>
<td>1.3</td>
<td>20</td>
</tr>
<tr>
<td>G</td>
<td>525,388</td>
<td>34</td>
<td>80</td>
<td>34</td>
<td>4.8</td>
<td>2.4</td>
<td>0.6</td>
<td>13</td>
</tr>
<tr>
<td>H</td>
<td>530,352</td>
<td>34</td>
<td>70</td>
<td>33</td>
<td>4.2</td>
<td>2.3</td>
<td>1.8</td>
<td>43</td>
</tr>
<tr>
<td>I</td>
<td>530,093</td>
<td>36</td>
<td>76</td>
<td>34</td>
<td>4.8</td>
<td>2.9</td>
<td>1.1</td>
<td>23</td>
</tr>
<tr>
<td>O</td>
<td>509,016</td>
<td>30</td>
<td>75</td>
<td>34</td>
<td>4.3</td>
<td>2.6</td>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td>R</td>
<td>587,459</td>
<td>36</td>
<td>75</td>
<td>34</td>
<td>5.3</td>
<td>3.3</td>
<td>0.1</td>
<td>2</td>
</tr>
</tbody>
</table>
2019 Scheme Performance
Jackfish 2 Pad Recoveries

<table>
<thead>
<tr>
<th>Pad</th>
<th>Area (m²)</th>
<th>Avg. GRV Pay (m)</th>
<th>Net GRV Pay S₀ (%)</th>
<th>Net GRV Pay Porosity (%)</th>
<th>OBIP (10⁶m³)</th>
<th>Ult Rec (10⁶m³)</th>
<th>Cum Prod (10⁶m³)</th>
<th>RF (%) to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>501,959</td>
<td>32</td>
<td>78</td>
<td>34</td>
<td>4.3</td>
<td>2.4</td>
<td>1.6</td>
<td>37</td>
</tr>
<tr>
<td>BB</td>
<td>505,867</td>
<td>46</td>
<td>77</td>
<td>34</td>
<td>6.0</td>
<td>4.3</td>
<td>3.7</td>
<td>62</td>
</tr>
<tr>
<td>CC</td>
<td>506,800</td>
<td>38</td>
<td>74</td>
<td>34</td>
<td>4.8</td>
<td>1.4</td>
<td>0.8</td>
<td>17</td>
</tr>
<tr>
<td>DD</td>
<td>506,799</td>
<td>39</td>
<td>76</td>
<td>34</td>
<td>5.1</td>
<td>1.6</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>FF</td>
<td>653,895</td>
<td>32</td>
<td>76</td>
<td>34</td>
<td>5.4</td>
<td>3.2</td>
<td>1.6</td>
<td>30</td>
</tr>
<tr>
<td>KK</td>
<td>506,801</td>
<td>31</td>
<td>77</td>
<td>34</td>
<td>4.1</td>
<td>1.3</td>
<td>1.0</td>
<td>24</td>
</tr>
<tr>
<td>OO</td>
<td>573,574</td>
<td>40</td>
<td>82</td>
<td>34</td>
<td>6.4</td>
<td>4.1</td>
<td>1.5</td>
<td>23</td>
</tr>
<tr>
<td>PP</td>
<td>802,652</td>
<td>31</td>
<td>81</td>
<td>35</td>
<td>7.0</td>
<td>5.0</td>
<td>2.5</td>
<td>36</td>
</tr>
</tbody>
</table>
2019 Scheme Performance
Jackfish 3 Pad Recoveries

<table>
<thead>
<tr>
<th>Pad</th>
<th>Area (m²)</th>
<th>Avg. GRV Pay (m)</th>
<th>Net GRV Pay S₀ (%)</th>
<th>Net GRV Pay Porosity (%)</th>
<th>OBIP (10⁶m³)</th>
<th>Ult Rec (10⁶m³)</th>
<th>Cum Prod (10⁶m³)</th>
<th>RF (%) to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>530,754</td>
<td>38</td>
<td>71</td>
<td>34</td>
<td>4.9</td>
<td>2.7</td>
<td>1.1</td>
<td>22</td>
</tr>
<tr>
<td>K</td>
<td>671,303</td>
<td>46</td>
<td>84</td>
<td>34</td>
<td>8.8</td>
<td>6.3</td>
<td>3.3</td>
<td>38</td>
</tr>
<tr>
<td>EE</td>
<td>506,800</td>
<td>47</td>
<td>76</td>
<td>33</td>
<td>6.1</td>
<td>3.5</td>
<td>2.1</td>
<td>34</td>
</tr>
<tr>
<td>RR</td>
<td>724,014</td>
<td>34</td>
<td>80</td>
<td>34</td>
<td>6.7</td>
<td>3.5</td>
<td>1.8</td>
<td>27</td>
</tr>
<tr>
<td>VV</td>
<td>558,761</td>
<td>44</td>
<td>75</td>
<td>34</td>
<td>6.2</td>
<td>2.9</td>
<td>1.7</td>
<td>27</td>
</tr>
<tr>
<td>EEE</td>
<td>1,001,409</td>
<td>33</td>
<td>75</td>
<td>34</td>
<td>8.4</td>
<td>4.4</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>665,081</td>
<td>36</td>
<td>82</td>
<td>34</td>
<td>6.6</td>
<td>4.7</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>
Jackfish 2 – Pad DD Highlights
Low Performer

• First steam occurred in June 2011
• NCG injection commenced as of March 2016 on wells DD1, DD3, DD5, and DD6
• Heterogeneous reservoir with low mid-heel ceiling of ~5m pay thickness
 • Limited vertical steam chamber growth
 • Regions of poor temperature conformance
• Inflow Control Device installed in September 2013 (DD2)
• Inflow Control Device installed in November 2014 (DD7)
• Potential fluid interaction with Pad AA due to chamber growth on DD1-DD3 wells
Pad DD Toe Observation Well Temp
(10.5m from DD3 well pair)

3.1.1-7c
Jackfish 3 – Pad EE Highlights
Medium Performer

First steam occurred in July 2014
Seven well pairs in operation
Production currently in plateau phase
Wells EE1 – EE5 have clean sand with uniform ceiling
Wells EE6 – EE7 have low ceiling at toe of wells
Steam subs opened on EE1 – EE5 in 2015 to increase steam injection rates
Pad SOR historical average between 2.0 – 2.5
EE exhibiting signs of transition into decline
Pad EE Performance
Jackfish 3 Pad EE Life Plot

3.1.1-7c
Pad EE Heel Observation Well Temp
(4.8m from EE5 well pair)

3.1.1-7c
Jackfish 3 – Pad K Highlights
High Performer

3.1.1-7c

• First steam occurred in February 2015
• Ten well pairs are in operation
• Best performing pad at Jackfish 3
• Clean sand throughout all ten well pairs
• Historical SOR < 2
• Pad K starting to exhibit signs of potential decline
Pad K Performance
Jackfish 3 Pad K Life Plot

3.1.1-7c
Pad K Toe Observation Well Temp
(9.5m from K5 well pair)

3.1.1-7c
Five Year Outlook
Jackfish Pad Abandonments

3.1.1-7c

• No anticipated pad abandonments at Jackfish within the next five years
Five Year Outlook

Wellhead Steam Quality

3.1.1-7d

<table>
<thead>
<tr>
<th></th>
<th>Pressure (kPag)</th>
<th>Temperature (°C)</th>
<th>Quality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Gate</td>
<td>9,600</td>
<td>311</td>
<td>100</td>
</tr>
<tr>
<td>JF1 Wellhead</td>
<td>2,500-3,700*</td>
<td>226-246</td>
<td>97</td>
</tr>
<tr>
<td>JF2 Wellhead</td>
<td>2,500-4,400*</td>
<td>226-256</td>
<td>97</td>
</tr>
<tr>
<td>JF3 Wellhead</td>
<td>2,500-4,400*</td>
<td>226-256</td>
<td>97</td>
</tr>
</tbody>
</table>

*Maximum injection pressure for each facility in line with MOP

- Losses in steam quality occur as steam is transported to the pads
- Utilize condensate traps at each pad to maximize wellhead steam quality
NCG Co-injection

Overview:
- NCG source is fuel gas, primarily composed of methane
- 16 Pads with NCG co-injection capability:
 - JF1: A, B, C, D, E, H, and I
 - JF2: AA, BB, CC, DD, FF, KK
 - JF3: EE, RR, and VV

Learnings to date:
- NCG injection rates within expected range
- NCG successful in maintaining chamber pressure with reduced steam
- No negative impact to resource recovery observed in late life NCG co-injection
- Improved SOR observed

Go Forward Plan:
- Continue to monitor and evaluate NCG utilization and performance
Steam Additive

- Overview:
 - Chemical additive co-injected with steam into two injection wells on pad OO (Jackfish 2)
 - Limited scale pilot
 - Executed May 2018 – February 2019

- Pilot results inconclusive at this time

- Learnings to date:
 - Chemical additive impact on the downstream Central Processing Facility (CPF)
 - Identifying appropriate selection criteria for a steam additive pilot
 - Appropriate plan, design and facility construction
 - Testing and monitoring techniques, such as sample points selection and sampling frequency
 - Chemical additive transportation and logistics
Jackfish Performance

Key Learnings

3.1.1-7f

- District SOR improvements tied to pressure reduction and optimization
- Maintained focus on pressure balance with the aquifer is beneficial
- Successful use of NCG enables steam transfer to higher quality pads
Jackfish Performance
Well Operations, Drilling, and Trials

• Jackfish 1
 • Pad EX – Startup planned Q4 2019
 • Pad A – 3 additional producers drilling planned Q3 2020
 • Pad S – SAGD drilling planned Q4 2020
• Jackfish 2
 • Pad MM – Startup planned Q4 2019
 • Pad QQ – Startup planned Q4 2019
 • Pad TT – SAGD drilling planned Q1 2021
 • Pad XX – SAGD drilling planned Q3 2021
• Jackfish 3
 • Pad OOO – drilled Q2 2019
Jackfish Performance
Jackfish District Steam Strategy

3.1.1-8c

• Jackfish 1
 • Utilizing steam capacity while managing SOR through steam allocation, execution of NCG co-injection, and continuing to balanced chamber pressures with aquifer

• Jackfish 2
 • Utilizing steam capacity while managing SOR through steam allocation, pressure management, and leveraging NCG co-injection across asset

• Jackfish 3
 • Utilizing steam capacity while managing SOR through steam allocation, pressure management, and leveraging NCG co-injection across asset
Facilities
Jackfish 2 Plot Plan

3.1.2-1a
Facilities
Jackfish 3 Plot Plan

3.1.2-1a
Facilities
Plant Performance

3.1.2-d

Turnarounds/Outages

• Jackfish 2 maintenance turnaround completed June 2019

Bitumen Treatment

• Stable operation and production rates at Jackfish 1 and Jackfish 3

Water Treatment

• Utilized brackish water wells with TDS ranging from greater than 4,000 - 22,000 ppm for all make up water requirements

Steam Generation

• 80% overall steam quality targeted to decrease blowdown disposal volumes and increase steam generation
Measurement and Reporting
3.1.2-2
Well Bitumen / Water Production

- Total battery production is allocated to each SAGD producing well based on individual well tests
- Battery Bitumen Production = Dispositions – Receipts + \(\Delta \)Inventory + Blending Shrinkage
- Battery Water Production = Inlet Produced Water + \(\Delta \)Inventory + Truck Out – Truck in – Desand Water to Treater and FWKO

Individual well test:

- Each pad equipped with test separator along with coriolis meter and watercut analyzer on liquid leg
- Vortex meter for gas measurement / water vapor calculation
- Tested water volume includes the calculated water vapor (from \(\frac{P_{sat}}{P_{measured}} \))
- Typical well test duration is nine hours
Measurement and Reporting

Methods

3.1.2-2a

• **Well Gas Production**
 • Well Estimated Test Gas Production = (GOR) x (Test Bitumen Production)
 • Battery Gas Production = Fuel + Fuel to IF + Flare – TCPL Purchase – Receipt Gas – Diluent Flash
 • Battery gas is allocation to each well based on well test

• **Steam Injection**
 • Total steam to field measured downstream of HP separators minus the steam condensate
 • Vortex meters at each wellhead are used to allocate total steam
Measurement and Reporting
Water Balance and Compliance

3.1.2-2b

Water Balance
• Water balance is done on each of the reporting injection facilities (4 total) included in the scheme

Calibration
• All meters used in water balance are verified and inspected as per Directive 017

Accuracy / Location
• Meter accuracies and locations have been reviewed for all water meters used for volume reporting
Measurement and Reporting
NCG Injection, Production Reporting

3.1.2-2d

• NCG being used across scheme as co-injection strategy as per approval
• NCG sourced from existing lift gas infrastructure (purchased TCPL gas)
• NCG injection is metered on a per well basis using vortex meters with live pressure and temperature correction applied
• As all gas production is consumed as fuel, NCG recovery is not estimated for Petrinex volumetric reporting
Water Production, Injection, and Uses
3.1.2-3
Water Disposal and Source Water
Well Locations

3.1.2-3a
Source Water Geology
Grand Rapids C Aquifer

3.1.2-3a

Jackfish Source Well
Source from Grand Rapids C
Jackfish Monitoring Well
Monitoring Grand Rapids C
Monitoring other formations
Quaternary Channel Outlines
Grand Rapids C Isopach
C.I. = 5m

Date: Oct. 10, 2019
Water
UWI of Fresh and Brackish Wells

- Brackish source water produced from the Grand Rapids ‘C’ and McMurray zones

- Available for Jackfish 1, Jackfish 2, and Jackfish 3

- Two McMurray Wells:
 - F1/07-30-075-06W4
 - F1/03-15-075-06W4

- Six Grand Rapid Wells:
 - F1/12-15-075-06W4
 - F1/15-15-075-06W4
 - F1/03-10-075-06W4
 - F1/03-11-075-06W4
 - F1/04-16-075-06W4
 - F1/05-17-075-06W4
Water

Uses and Volumes Needed for Fresh and Brackish Water Make-Up

3.1.2-3b

Brackish Water Usage

<table>
<thead>
<tr>
<th>Date</th>
<th>Monthly Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-09</td>
<td>J1: 60,000, J2: 70,000, J3: 50,000</td>
</tr>
<tr>
<td>2018-10</td>
<td>J1: 80,000, J2: 90,000, J3: 70,000</td>
</tr>
<tr>
<td>2018-11</td>
<td>J1: 100,000, J2: 110,000, J3: 90,000</td>
</tr>
<tr>
<td>2018-12</td>
<td>J1: 120,000, J2: 130,000, J3: 100,000</td>
</tr>
<tr>
<td>2019-01</td>
<td>J1: 140,000, J2: 150,000, J3: 110,000</td>
</tr>
<tr>
<td>2019-02</td>
<td>J1: 160,000, J2: 170,000, J3: 120,000</td>
</tr>
<tr>
<td>2019-03</td>
<td>J1: 180,000, J2: 190,000, J3: 130,000</td>
</tr>
<tr>
<td>2019-04</td>
<td>J1: 200,000, J2: 210,000, J3: 140,000</td>
</tr>
<tr>
<td>2019-05</td>
<td>J1: 220,000, J2: 230,000, J3: 150,000</td>
</tr>
<tr>
<td>2019-06</td>
<td>J1: 240,000, J2: 250,000, J3: 160,000</td>
</tr>
<tr>
<td>2019-07</td>
<td>J1: 260,000, J2: 270,000, J3: 170,000</td>
</tr>
<tr>
<td>2019-08</td>
<td>J1: 280,000, J2: 290,000, J3: 180,000</td>
</tr>
<tr>
<td>2019-09</td>
<td>J1: 300,000, J2: 310,000, J3: 190,000</td>
</tr>
</tbody>
</table>

- **J1**
- **J2**
- **J3**
Water Treatment Technology
3.1.2-4
Water Treatment Technology

3.1.2-4

- New water treatment technology in the Jackfish District includes:
 - Implementation of permanent polymer skids at Jackfish 1, 2, and 3
 - Upgraded lime and magox feeder
 - Implementation of soda ash feed for HLS across Jackfish district
Water, Disposal Wells, Landfill Waste
3.1.2-5
Water, Waste Disposal Wells, and Landfill Waste
UWI's of Disposal wells

3.1.2-5a

Disposal System is shared between Jackfish 1, 2, and 3

• Two disposal streams:
 • Blowdown and regen waste

• Fourteen Class 1b disposal wells in total:
 • Twelve active (see list below)
 • One inactive (102/12-05-076-06W4)
 • One suspended (102/03-22-075-06W4)

• Approved MWIP of 6,000 kPa (July 2009)

• Jackfish 1 disposal wells:
 • 00, 02, and 03/09-14-075-06W4 (blowdown)
 • 00 and 02/12-14-075-06W4 (regen)

• Jackfish 2 disposal wells:
 • 02 and 03/07-13-075-06W4 (blowdown)
 • 02 and 04/12-15-075-06W4 (regen)

• Jackfish 3 disposal wells:
 • 00 and 02/05-12-075-06W4 (blowdown)
 • 00/03-22-075-06W4 (regen)
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

- Volume Summary - Approval No. 10790

Blowdown Water Volumes

Regen Water Volumes
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 1: 00/09-14-075-06W4 BD Disposal Well

- Monthly Volume (m³)
- Average Wellhead Pressure (kPag)

Graph showing the monthly volume and average wellhead pressure for Jackfish 1 from September 2018 to September 2019.
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 1: 02/09-14-075-06W4 BD Disposal Well

[Diagram showing monthly wellhead pressure and volume over time from September 2018 to September 2019]

- Monthly Volume (m^3)
- Average Wellhead Pressure (kPag)

Canadian Natural

2019 Jackfish Directive 54 Presentation 103
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 1: 03/09-14-075-06W4 BD Disposal Well

- Monthly Volume (m³)
- Average Wellhead Pressure (kPag)

Graph showing the monthly volume and average wellhead pressure for Jackfish 1 from September 2018 to September 2019.
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 1: 00/12-14-075-06W4 Regen Disposal Well

- Monthly Volume (m³)
- Average Wellhead Pressure (kPag)

Graph showing monthly volume and average wellhead pressure for Jackfish 1.
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 1: 02/12-14-075-06W4 Regen Disposal Well

- Monthly Volume (m³)
- Average Wellhead Pressure (kPag)

Graph showing monthly volume and average wellhead pressure for Jackfish 1 from September 2018 to September 2019.
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 2: 02/07-13-075-06W4 BD Disposal Well

- Monthly Volume (m³)
- Average Wellhead Pressure (kPag)

- Graph showing Monthly Volume and Average Wellhead Pressure from Sep-18 to Sep-19.
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 2: 03/07-13-075-06W4 BD Disposal Well

- Pressure transmitter failure mid November, brought back online late December
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 2: 02/12-15-075-06W4 Regen Disposal Well

- **Monthly Volume (m³)**
- **Average Wellhead Pressure (kPag)**

<table>
<thead>
<tr>
<th>Month</th>
<th>Average Wellhead Pressure</th>
<th>Monthly Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep-18</td>
<td>5,000</td>
<td>8,000</td>
</tr>
<tr>
<td>Oct-18</td>
<td>2,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Nov-18</td>
<td>1,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Dec-18</td>
<td>3,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Jan-19</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Feb-19</td>
<td>5,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Mar-19</td>
<td>6,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Apr-19</td>
<td>7,000</td>
<td>1,000</td>
</tr>
<tr>
<td>May-19</td>
<td>8,000</td>
<td>0</td>
</tr>
<tr>
<td>Jun-19</td>
<td>9,000</td>
<td>500</td>
</tr>
<tr>
<td>Jul-19</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Aug-19</td>
<td>2,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Sep-19</td>
<td>3,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 2: 04/12-15-075-06W4 Regen Disposal Well

Monthly Volume (m³)

Average Wellhead Pressure (kPag)

- Monthly Volume
- Average Wellhead Pressure
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 3: 00/05-12-075-06W4 BD Disposal Well

[Graph showing monthly volume and average wellhead pressure for the period Sep-18 to Sep-19]
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 3: 02/05-12-075-06W4 BD Disposal Well

![Graph showing monthly volumes and average wellhead pressure for Jackfish 3 disposal well from September 2018 to September 2019.](image-url)
Water, Waste Disposal Wells, and Landfill Waste
Disposal Volumes, Pressure, Temperature

3.1.2-5b

Jackfish 3: 00/03-22-075-06W4 Regen Disposal Well

- Monthly Volume (m³)
- Average Wellhead Pressure (kPag)
Water, Waste Disposal Wells, and Landfill Waste
Basal McMurray Aquifer
Water, Waste Disposal Wells, and Landfill Waste

Location of waste disposal site and volumes associated with the scheme

3.1.2-5c

<table>
<thead>
<tr>
<th>Disposal Facility</th>
<th>Volume Injected (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tervita Lindbergh Cavern Facility (AB WP 0000557)</td>
<td>1,408</td>
</tr>
<tr>
<td>Cancen New Serepta (AB WP 0099677)</td>
<td>165</td>
</tr>
<tr>
<td>Tervita Ft. McMurray (AB WP 0133414)</td>
<td>923</td>
</tr>
<tr>
<td>CEIBA ATHABASCA (AB WP 0136010)</td>
<td>369</td>
</tr>
<tr>
<td>White Swan Atmore (AB WP 0139656)</td>
<td>112</td>
</tr>
<tr>
<td>White Swan Conklin (AB WP 0142079)</td>
<td>12,644</td>
</tr>
<tr>
<td>Cancen Morinville (AB WP 0144022)</td>
<td>2,997</td>
</tr>
<tr>
<td>Total</td>
<td>18,618</td>
</tr>
</tbody>
</table>
Sulphur Production and Air Emissions
3.1.2-6
Sulphur Production
Operations with Sulphur Recovery

3.1.2-6a (i) & (ii)

- Jackfish 1 – Sulphur Recovery not required as inlet Sulphur content <1 t/d
Sulphur Production
Operations with Sulphur Recovery

3.1.2-6a (i) & (ii)

- Jackfish 3 – Sulphur Recovery Unit run intermittently to maintain facility and district compliance
Sulphur Production
Peak Daily SO₂ Emissions

3.1.2-6c

• Sulphur recovery reduced in December 2018, March 2019 and August 2019 in line with outage allowance in EPEA approval
• Emissions throughout year remained below allowable emissions limits stipulated by EPEA approval
Ambient Air Quality Monitoring

Summary

3.1.2-6d

Passive air monitoring
- At minimum there are four passive stations located at each Jackfish site to monitor sulphur dioxide and hydrogen sulphide
- Monitored parameters: sulphur dioxide and hydrogen sulphide

Continuous ambient monitoring
- September 2018: Jackfish 1 and Jackfish 2/3 continuous monitoring stations joined the Wood Buffalo Environmental Associations (WBEA)’s integrated monitoring network. The monitoring stations are now operated by WBEA, on behalf of Canadian Natural
- Monitored parameters: sulphur dioxide, hydrogen sulphide, nitrogen dioxide, total hydrocarbons, wind speed, and direction

All ambient air quality monitoring and reporting requirements were satisfactorily met in 2017-2018.
Ambient Air Quality Monitoring

Air Monitoring Station Map
Ambient Air Quality Monitoring

Jackfish 1 Continuous Results

3.1.2-6d

<table>
<thead>
<tr>
<th>Ambient Concentrations</th>
<th>SO2 (ppb)</th>
<th>NO2 (ppb)</th>
<th>SO2 AAAQO (ppb)</th>
<th>NO2 AAAQO (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-Sep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018-Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018-Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018-Dec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-Jan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-Feb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-Apr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-May</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-Jul</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-Aug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-Sep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S (ppb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S AAAQO (ppb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May 31st 2019 one-hour H2S limit exceedance not attributable to Operations, reference WBEA report.
Ambient Air Quality Monitoring

Jackfish 2/3 Continuous Results

3.1.2-6d

Ambient Concentrations

SO2 (ppb) NO2 (ppb) SO2 AAAQO (ppb) NO2 AAAQO (ppb)

H2S (ppb) H2S AAAQO (ppb)
AER Regulatory Approval Summary

D78 Amendments

3.1.2-7b

<table>
<thead>
<tr>
<th>Amendment</th>
<th>Date</th>
<th>Approval Code</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackfish 3 Pad OOO and Jackfish 1 Pad S Proposal</td>
<td>October 25, 2018</td>
<td>100977TT</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish Sulphur Recovery Variance</td>
<td>November 29, 2018</td>
<td>100977UU</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish Expansion Area</td>
<td>December 19, 2018</td>
<td>100977VV</td>
<td>3</td>
</tr>
<tr>
<td>Jackfish NCG Blowdown Application for Pads A, C, D & KK</td>
<td>January 11, 2019</td>
<td>100977WW</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish 1 Pad F PLECO Proposal</td>
<td>January 24, 2019</td>
<td>100977XX</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish 1 Pad P Proposal</td>
<td>February 26, 2019</td>
<td>100977YY</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish Sulphur Recovery Waiver</td>
<td>March 11, 2019</td>
<td>100977ZZ</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish 1 Pad S Proposal</td>
<td>May 6, 2019</td>
<td>100977AAA</td>
<td>2</td>
</tr>
<tr>
<td>Steam Additive Reporting Deferral</td>
<td>June 7, 2019</td>
<td>100977BBB</td>
<td>1</td>
</tr>
<tr>
<td>Jackfish 2 Pad XX Proposal</td>
<td>July 23, 2019</td>
<td>100977CCC</td>
<td>2</td>
</tr>
<tr>
<td>Devon to Canadian Natural Ownership Transfer</td>
<td>August 9, 2019</td>
<td>100977DDD</td>
<td>-</td>
</tr>
</tbody>
</table>
AER Regulatory Approval Summary
Jackfish District
3.1.2-7b

Pad VV and Pad EE NCG Amendment letter
• Approved November 2018

Landfill WM 105G
• Approval for Cell 3
AER Regulatory Approval Summary
Jackfish District
3.1.2-7b

Water Diversion Licenses
• Potable Water Act Amendment approved December 2018

Water Act Approval (383056-00-01)
• Amendment for diversion of groundwater relating to Landfill Underdrains

CEMS Monitoring Plans
• Monitoring plans approved April 2019
• Certification testing ongoing

Sewage Lagoon Approval for use as temporary storage
• Approved May 2019
Water Management
Jackfish 1, 2, and 3

3.1.2-7c

Groundwater
• Jackfish 1, 2, and 3 groundwater monitoring occurs twice per year
• No significant impacts observed
• Revised proposal including Thermally Mobilized Constituents submitted Q2 2019

Surface Water – Groundwater Interaction Monitoring Program
• Remained within the expected variability
• No noticeable influence from project related effects

Wetlands
• Wetland monitoring sites surveyed Q2 and Q3 2019
• No significant impacts observed to date
• Revised proposal due Q4 2019
Soil Monitoring and Soil Management
Jackfish 1, 2, and 3

District soil monitoring program for Jackfish 1, 2, and 3 was executed August 2017

- Soil monitoring proposal submitted to AER November 2017
- Execution of the soil management occurred in Fall 2018:
 - Soil Management Program report submitted to AER March 2019
 - No additional soil management required for the Jackfish projects

Next Soil Monitoring Program proposal due November 2020
AER Regulatory Reporting Requirements

3.1.2-7c

- Industrial Wastewater and Industrial Runoff Report
- Groundwater Monitoring Report
- Wetland and Waterbody Monitoring Report
- Potable Water Monitoring Report
- Air Monitoring Report
- Soil Management Report
- Soil Monitoring Report
- Conservation and Reclamation Annual Report
- Comprehensive Wildlife Report
Wildlife & Caribou Mitigation and Monitoring

- Jackfish Wildlife Monitoring Program was authorized July 2012
- Comprehensive Wildlife Reports submitted in 2015 and 2019
- Long term monitoring ongoing
- No significant project related impacts observed to date
Reclamation Program Work

3.1.2-7e

Summary of Jackfish construction, operation and land reclamation activities from 2005 to 2018:

- Total area of lands on which Jackfish activities occurred as of the end of 2018: 681.4 ha
 - 71.8 ha under construction
 - 586.3 ha operational
 - 23.3 ha undergoing permanent reclamation

- Reclamation Monitoring Program proposal currently due Q4 2019
Compliance
3.1.2-8,-9
Canadian Natural believes the Jackfish Project is in compliance with AER approvals and regulatory requirements. As of September 30/2019, Canadian Natural has no unaddressed non-compliant events.
Summary of Spill Releases

The following list summarizes spills reported to the AER within the reporting period

<table>
<thead>
<tr>
<th>Site</th>
<th>No. of Reportable Releases</th>
<th>Volume released (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackfish 1</td>
<td>4</td>
<td>47.2</td>
</tr>
<tr>
<td>Jackfish 2</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>Jackfish 3</td>
<td>3</td>
<td>1.1</td>
</tr>
</tbody>
</table>
AER Summary of Noncompliance

3.1.2-9

The following list summarizes non-compliant events within the reporting period. For all events corrective actions were identified and are being tracked to completion.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 1, 2019: Jackfish 1, 2 and 3</td>
<td>Did not meet 90% uptime requirement in CEMS code – Approval Requirement</td>
<td>Install new CEMS units</td>
</tr>
<tr>
<td>May 1, 2019: Jackfish 2 and 3</td>
<td>Waste Water Limit Exceedance</td>
<td>Sampling error, sampling practices adjusted</td>
</tr>
</tbody>
</table>
Future Plans
Major Activities and Target Dates

• No major projects for 2020
• Scheduled turnaround for Jackfish 3 Q3 2020
• Focus on reliability enhancements