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Dover West Leduc Asset



THE LEDUC CARBONATE

OPPORTUNITY

o Northern extent of well-known prolific 
Leduc light oil reservoirs, but filled 
with bitumen.

o 14.8 billion bbl OOIP(1) (best estimate) 
in the Leduc carbonate reef (up to 100 
m net pay).

o Asset has potential for > 350 000 
bbl/d(2), based on TAGD.
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(1) Discovered (11 600 million bbl) plus Undiscovered.

(2) Based on management estimate.
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AREA MAP OF DOVER WEST 5
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TAGD Process
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TAGD OVERVIEW

THERMAL ASSISTED GRAVITY 
DRAINAGE

An in situ recovery process, in which:

o The reservoir is heated using a pattern
of horizontal heating wells.

o Sufficient temperature is reached such
that bitumen will flow by gravity to
production wells.

WHAT IT’S NOT:

o NOT just a near-wellbore stimulation process – goal is reservoir-wide heating.

o Does NOT involve flow of electrical current in the reservoir; instead, reservoir 
heating occurs via thermal conduction.

o Does NOT result in chemical alteration of the bitumen – target temperature to 
achieve sufficient reduction in viscosity, without cracking the bitumen.

7



1. Conduction Heating

Internal drive replaces 

voidage

Heating reduces viscosity 

and mobilizes oil

2. Internal Drive

TAGD PROCESS – 3 KEY ELEMENTS 8

3. Gravity Drainage

Mobilized oil flows 

down by gravity
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1: HEATING

o Steam injection pressure 
dictates high temperature

o Trade-off between additional 
energy (and cost) vs. benefit of 
reduced viscosity

o Conductive heating achieves 
desired optimum temperature

o Target temperature achieved 
via selection of well spacing 
and heater power input
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TAGD Steam Brent crude -

- Olive Oil

- Peanut butter
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AOC Leduc

o Depth: ~280 m ASL

o Temperature: 12°C

o Pressure: 480 kPa

o Leduc viscosity@ 12°C: 13×106 cP



Gas-Oil Gravity 

Drainage

2 & 3: GRAVITY + INTERNAL DRIVE

Voidage Replacement
o Expansion of in-place fluids

o Solution gas evolution

o CO2 generation (dolomite 
dissolution)

o Connate water vapourization

o Top gas drive from gassy 
bitumen zone

o Gas injection (optional)
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TAGD Field Test Introduction



TAGD FIELD TEST

OBJECTIVES

o Proof of TAGD concept.

o Drill horizontal wells in a fractured, 
vuggy carbonate.

SCOPE

o 1 horizontal heater well.

o 1 horizontal heater-producer well.

o 4 vertical observation wells.

o Instrumentation to measure 
downhole pressure and 
temperature.
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SCHEME MAP 13
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o No change in 2015



TAGD FIELD TEST SURFACE AND
SUBSURFACE LAYOUT
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TIMELINE

o June 18, 2010 Filed TAGD Field Test Application #1653013

o December 17, 2010 Received Approval 11546 for the TAGD Field Test 

o January to March 2011 Drilled And Completed Wells

o May 2011 Heating Initiated

o June 6, 2011 Received Approval For Early Production 

o July 21, 2011 Received Approval 11546A Extend Project Life

o October to November 2011 Production Cycle #1

o February to April 2012 Production Cycle #2

o September 5, 2012 Received Approval 11546B for the Addition of 

Submerged Combustion Evaporator

o October 25, 2012 Received Approval 11546C for the Addition of 

Submerged Combustion Evaporator Tank 
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TIMELINE

o November 27, 2012 First Evaporation

o December 2012 to February 2013 Production Cycle #3

o September 19, 2013 Received Approval 11546D for the TAGD Pilot 

Project 

o October 17, 2013 Filed Amendment for Gas Injection Test

o October 31, 2013 Received Approval 11546E for the Gas Injection 

Test 

o December 10, 2013 MARP approval for the TAGD Pilot  Project

o January 2014 to February 2014 Conducted Gas Injection Test

o June 2014 Began Production Cycle #4

o December 2014 Began gas co-injection

16
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2015 IN REVIEW

Production Cycle #4 June 2014 to May 
2015

o Pumping between 2 m³/d to 30 m³/d of fluid.

o 798 m³ of bitumen produced in Cycle #4.

Test Successfully Completed September 2015
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TAGD Field Test Subsurface



OBIP
APPROVAL AREA AND OPERATING PORTION

OBIP = rock volume x porosity x bitumen saturation x net-to-gross

Net Pay cutoffs are:

< 6% porosity

> 20% Sw

> 10% Vshale

19

Area
Thicknes

s
Rock 

Volume
Porosity

Bitumen 
Saturatio

n

Net-to-
Gross

OBIP

(m2) (m) (m3) (%) (%) (frac) (m3)

TAGD Field 
Test Area

647 500 83 53 500 000 14.2 86 0.96 6 272 000

Approval Area  
No. 11546

3 940 
000

75
312 615 

000
14.7 89 0.94 37 000 000

Operating 
Portion

2 000 12 24 000 15 88 1.00 3 170
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Type Well Location

1AA/06-08-095-18W4/00

TYPE WELL LOG 1AA/06-08-095-18W4/0

o No change in 2015

o No petrographic analysis were completed to identify 
minerals that could impact the scheme recovery.
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NET BITUMEN PAY MAP 21

o No change in 2015

o Net pay ranges from 66 to 86 m in the 
approval area.
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STRUCTURE MAP OF TOP OF BITUMEN PAY

o No change in 2015

o The top of the bitumen pay is the eroded 
Leduc Formation.

o The structure for the top of the Leduc 
ranges from 281 to 292 m ASL in the 
approval area.
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STRUCTURE MAP OF BASE OF BITUMEN PAY

o No change in 2015

o The base of the bitumen pay is the top of 
the Cooking Lake open marine unit.

o The structure for the top of Cooking Lake 
open marine unit has a uniform southwest 
dip and ranges from 192 to 216 m ASL in 
the approval area.
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Cored wells

LOCATION OF CORED WELLS

o No change in 2015

o There are five cored wells in the 
approval area including the type well 
1AA/06-08-095-18W4/0.

o Adjacent wells around the approval 
area have been cored.

o Routine core analysis measured the 
porosity, bitumen saturation, and 
permeability (kh, kv, and kmax).

o Select cores have been CT scanned to 
understand the porosity-permeability 
relationship.
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o No change in 2015
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SEISMIC

o No change in 2015

o 4D monitor survey acquired Q4 2012.

o 0.8 km2 total area being monitored.

o Original 2010 survey being used as 
baseline.

o Time delay map of the Beaverhill Lake 
surface between the 4D monitor survey 
(2012) and original (2010) survey.

o Time delay results show no correlation 
to TAGD Field Test.
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OB1 OB2 OB3 OB4HeaterHeater-Producer

WELLBORE SCHEMATIC 27
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HEATER WELL COMPLETION 28

o No change in 2015
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HEATER-PRODUCER WELL COMPLETION 29

o Producer is heated to accelerate thermal communication between wells
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ARTIFICIAL LIFT

STEAM-RATED BOTTOM HOLE INSERT PUMP:

o landed at 80°inclination.

o pumped with hydraulic pumping unit.

o pump was changed in September 2013 to help minimize gas locking issues. 

o have pumped between 2 and 30 m3/d with new pump.

o flow assurance heater maintains 70°C uphole.

o dip tube attached to bottom of pump to lower intake point and achieve a more 
uniform in-flow. 

o performed well

30
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INSTRUMENTATION IN WELLS 31

o Base oil introduced in observation wells to reduce temperature smearing effects 
due to reflux
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INSTRUMENTATION OBSERVATIONS

Heater Well

o Fibre DTS data began to deviate from thermocouple data in April 2012.

o Fiber is now reading erroneously higher temperatures in majority of the heated 
section of the well.

o 1 failed thermocouple point.

Heater-Producer Well

o Fibre DTS data agree well with thermocouple data.

o 5 failed thermocouple points.

o Bubble tube has failed. Currently bubbling natural gas down casing annulus for 
pressure measurement. 

Observation wells

o Convection in wellbore annulus is smearing temperature readings

o OB4 well has 2 failed thermocouple points.
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SCADA 33

o Instrumentation tied to central data acquisition system for remote real-time 
monitoring and control from the field and Calgary



34

TAGD FIELD TEST PRODUCTION SUMMARY 

o Heating from January to September in Heater well and Heater-Producer well.

o Production Cycle #4 (June 2014 to May 2015).

• Pumping from 2 to 30 m³/d fluid
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Mini-Hydraulic Fracture Test Summary (TAGD Pilot Application)
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GEOMECHANICS

o At caprock depth of 340 m TVD, fracture pressure estimated to be 7 300 kPa (i.e. 
21.5 kPa/m).

o Minor increase in pressure due to heating at producer; no change in pressure at 
observations wells in gas-bitumen zone.

o All observed pressures well below maximum operating pressure of 5 100 kPa as 
specified in the Application.

o No heave monitoring was conducted.
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HEATING PERFORMANCE

o Heater running at full power.

o Heater producer limited by 
maximum temperature.
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HEATING WELL TEMPERATURES

o Thermocouple data used to monitor heater temperature as fiber readings 
have become unreliable.
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ROCK FACE TEMPERATURE

o Based on transients observed when heaters are shut off

o Non-uniform rock-face temperature along well potentially due to:

• Porosity variations along well

• Refluxing in build section

• Fluid phase distribution along well
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OBSERVATION WELL TEMPERATURE

o Observed peak temperatures lower than expected from simulation.

o Convective smearing of temperatures.
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HEATING PHASE – PRESSURE CHANGES 40
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PRODUCTION HISTORY

o Liquid rate controlled by pump

o High oil cut at start of each cycle

o Mobile water likely from disposal in 7-4

41

o Criteria for start up of each cycle varies in each cycle based 
on observations during heating, and predictions from history 
match

o Maximize oil recovery and initial oil cut
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CYCLE #4 - MAJOR EVENTS 42

Production
shutin

Heater 
Outages Production shut-in; gas injection

Gas co-injection

Pump speed reduction

Pump speed increase

Staged Pump 
speed increases

To maintain liquid rate



GAS CO-INJECTION 43
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Scope:

o Inject up to 1000 m³/d of natural gas into the casing of producer well during 
subsequent cycles

o Injection may be conducted during both shut-in and production conditions. 

o The maximum injection pressure will be 1800 kPa.

o Impact of reduced relative permeability to oil due to gas injection offset by benefit 
from additional voidage replacement. High vertical absolute permeability would 
allow for gravity drainage

Objective:

o Understand the impact of gas 
co-injection on the TAGD 
process, particularly its role in 
providing additional voidage
replacement for the gravity 
drainage process

o Gas injection during shut-in is 
expected to accelerate fluid 
redistribution by gravity 
drainage, and reduce the 
period of shut-in required 
between cycles



0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

2011 2012 2013 2014 2015

R
e
co

ve
ry

, %

Prod #1 Prod #1 Prod #1 Prod #1

Prod #2 Prod #2 Prod #2

Prod #3 Prod #3

Prod #4

Prod #1

Prod #2

Prod #3

Prod #4

44

RECOVERY FACTORS TO DATE

o Recovery factors (RF) have assumed a 
drainage box of 12 m H x 8 m W x 250 
m L. 

o RF only an estimate as system is 
unbounded
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45ENERGY VS CUMULATIVE OIL
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Cycle 5 ObjectivesCycle 5 Objectives

Cycle 2Cycle 2 Cycle 3Cycle 3 Cycle 4Cycle 4

KEY LEARNINGS

46

Cycle 1Cycle 1
Objectives:

•Determine heating time 
required to re-establish 
oil production

Objectives:

•Demonstrate gravity 
drainage from upper well

Objectives:

•Validate forecasts

•Test ways to increase 
heater power

Observations:

• Fiber DTS showed oil 
production from toe 
and water from the 
heel

Observations:

• High initial oil cut with 
gradual decline

Observations:

• Heat Transfer Fluid 
reduced temp in 
Heater well

Objectives:

•Investigate early 
production potential

Observations:

• Produced more oil 
than expected; 
watered out at the end 
of cycle

Learnings & 
Implications:

• Oil mobilized at lower 
temperatures than 
expected

• Need to operate 
cyclically to minimize 
water production

Learnings & 
Implications:

• 3 months heating is 
too short to establish 
gravity drainage 
between wells

• Pump intake changed 
to achieve uniform 
inflow in HZ

Learnings & 
Implications:

• Inter-well gravity 
drainage demonstrated

Learnings & 
Implications:

• Higher heater power

• Increase inter-well temp to commercial target

• Test gas co-injection to enhance drainage
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2015 KEY OBSERVATIONS

o Cycle #4 was by far the best cycle. Oil production continued at gradually declining rates 
for 12 months

o Interwell temperatures were close to the TAGD target temperature of 150°C
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TAGD Field Test Surface
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49
FIELD TEST PLOT PLAN

o No change in 2015
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FACILITY PERFORMANCE

Generally stable and predictable battery performance

o Well pumping for ~139 days in 2015. 

o Tubing production routed to separator.

o Solution gas is separated and sent to flare.

o Bitumen / water mix sent to production tanks.

o Emulsion trucked off site to sales.

o Submerged Combustion Evaporator operated to evaporate some of the produced 
water.

o Electrical power is generated on site.

o No steam generation.
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2015 POWER CONSUMPTION 51
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2015 NATURAL GAS CONSUMPTION 52
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APPROVED FIELD TEST METERING SCHEMATIC 53

o No change in 2015



54

PRODUCTION MEASUREMENT METHODOLOGY

No Changes to methodology

Bitumen and Water Production:

o Daily tank gauging and manual water cut measurements.

o Total fluid production meter FIT-0100 used as reference meter.

o Additional verification will be through trucking and third party processing. 

o Evaluating new technologies: 2 Phase and 3 Phase BS&W analyzer.

Gas Production:

o Solution gas measured from the produced gas meter at the separator.

o Casing gas measured from the produced gas meter on casing line.
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2015 PRODUCED OIL 55
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2015 PRODUCED WATER MANAGEMENT

o Produced water was disposed through evaporation to atmosphere or was trucked with 
the emulsion.
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2015 PRODUCED GAS 57
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2015 GREENHOUSE GAS EMISSIONS

GHG emissions based on CAPP’s “Calculating Greenhouse Gas Emissions”
(April, 2003).

Detailed emissions calculation method used
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Source
Total GHG Emissions,

t CO2e/y

Combustion 4 590

Flaring 0

Venting 0

Total 4 590
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SULPHUR RECOVERY

o No Change

o The produced gas samples indicated no detectable H2S.

o Sulphur recovery is not required for this test.
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TAGD Field Test Compliance
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COMPLIANCE

May 8th, 2015 - AOC submitted application to inject 1 000 m3/d of natural gas into producer 
well 100/06-08-095-18 W4M 

August 14th, 2015 - Experimental Scheme Approval No.11546F was received for Gas Co-
Injection 

September 21st,2015 - AOC successfully concluded the TAGD field test 

September 28th, 2015 - AOC submitted notification to the AER regarding field test 
conclusion 
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COMPLIANCE

AOC confirms compliance to:

Experimental Scheme Approval No. 11546F

EPEA Approval 298764-00-00 

AOC has not started reclamation as the project is still active.
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REGIONAL INITIATIVES

AOC is a funding member of the following:

o Oil Sands Community Alliance

o Joint Oil Sands Monitoring Program

o Wood Buffalo Environmental Association

o Alberta Biodiversity Monitoring Institute
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Plans
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PLANS

The TAGD Field Test has met or exceeded all objectives

AOC terminated the TAGD Field Test in September 2015

AOC has received approval to construct a TAGD Pilot:

o Approval 11546D received from AER on September 19, 2013

o Approval for the MARP received from AER on December 10, 2013

o EPEA Approval 298764-00-00 received from AESRD on December 17, 2013

o AOC may re-use some of the Field Test facilities for the TAGD Pilot
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Corporate Office

1200, 215 - 9 Ave SW, Calgary, Alberta

Telephone: 403-237-8227

Fax: 403-264-4640

www.atha.com


