

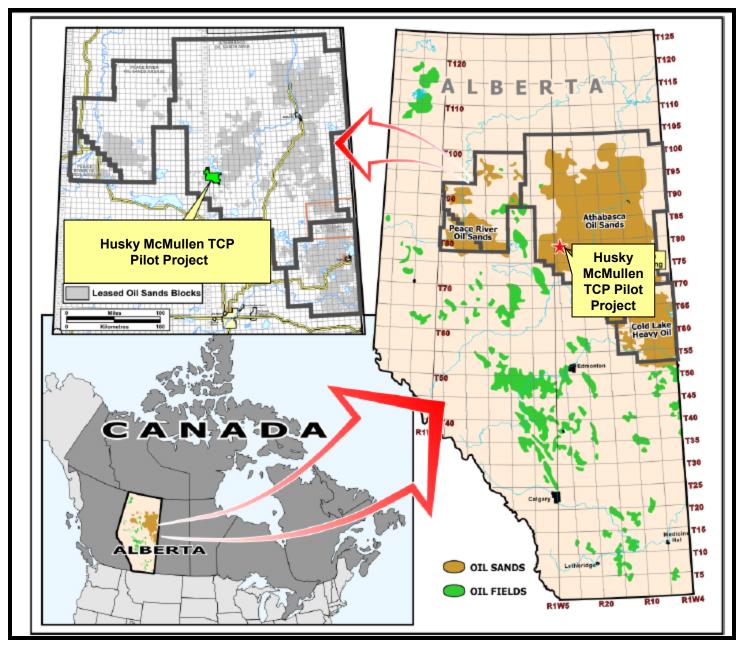
McMullen Thermal Conduction Process Experimental Pilot Project Review of AER Approval 11541, 11541A, 11541B and 11541C

March 16, 2015

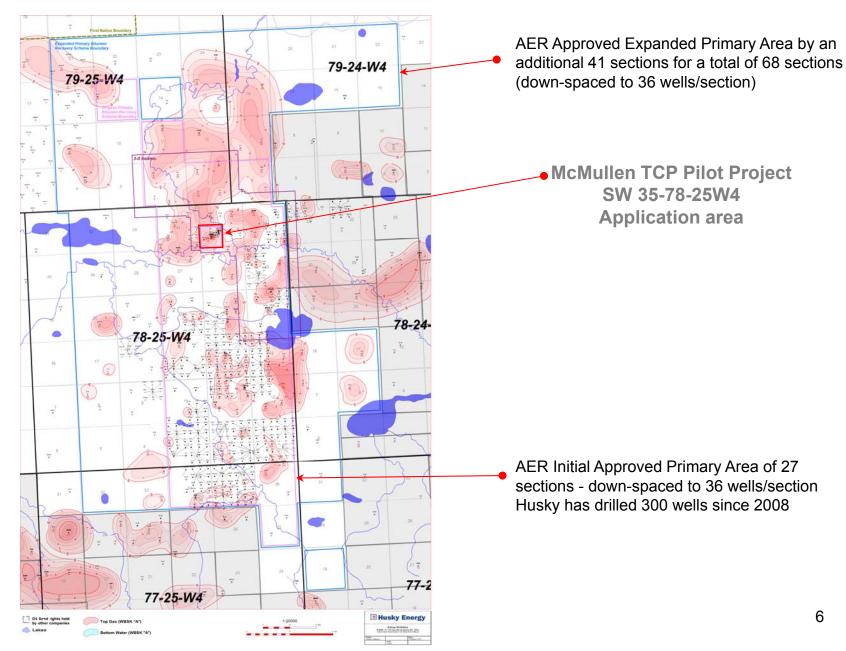
Introductions

- 3.1.1 Subsurface Issues
 - Related to Resource Evaluation and Recovery slide 3
- 3.1.2 Surface Operations
 - Compliance and Issues Not Related to Resource Evaluation and Recovery – slide 69
- Questions

3.1.1 Subsurface Issues – Table of Contents


- 1. Background AER Approvals slide 4
- **2. Geology/Geoscience** slide 13
- 3. Drilling and Completions & Instrumentation in Wells slide 31
- 4. Artificial Lift slide 38
- **5. Scheme Performance** slide 40
- **6. Key Learnings** slide 67
- **7. Future Plans 2015** slide 68

Project Background – AER Approvals


- December 20, 2010 AER issued Approval 11541 for the McMullen TCP experimental scheme application (ESRD issued EPEA Approval 265571-00-00 on January 10, 2011)
- **January 19, 2012** AER issued Approval **11541A** for 3 additional HZ production wells as a modification to the scheme
- August 7, 2013 AER issued Approval 11541B for the handling of sour gas at the facility for all production wells
- October 30, 2013 AER issued Approval 11541C to extend the experimental scheme approval and confidentiality period to July 31, 2015

Wabiskaw "A" Area Gas Cap Map

- Project location is the SW/4 of 35-78-25W4
 - based on core and log data from 100/03-35-78-25W4 well drilled in Nov 2008
 - well has a depleted gas zone of 4 meters in thickness that overlies a bitumen zone of 6 meters in thickness
- Thin bitumen zone of 6 meters has excellent reservoir characteristics
 - classified as a homogeneous, unconsolidated, clean sand with good porosity, excellent permeability and good oil saturation
- There is no underlying water in contact with the bitumen
- The overlying gas cap has a good seal

McMullen Thermal Conduction Process (TCP) Pilot Scope

Wabiskaw A Original Reservoir Temp. 20°C 200cb Wabiskaw B 6.0m Bit Base of Wahiskaw McMurray i

WHAT WE DO & WHY?

PURPOSE ?

Recover bitumen underlying depleted gas cap

WHAT WE DO?

 Ignite and oxidize residual oil saturation (8-15%) within depleted gas cap

HOW WE DID IT ?

Ignition process:

Steam/Linseed Oil/Steam/N²/Air (spontaneously combusts)

 Wait (3-6 months+) for heat to conduct to underlying bitumen

WHAT WE SEE ? (within the depleted gas cap)

 Combustion zone peak temperature 330°C (burn tube test 600 °C)

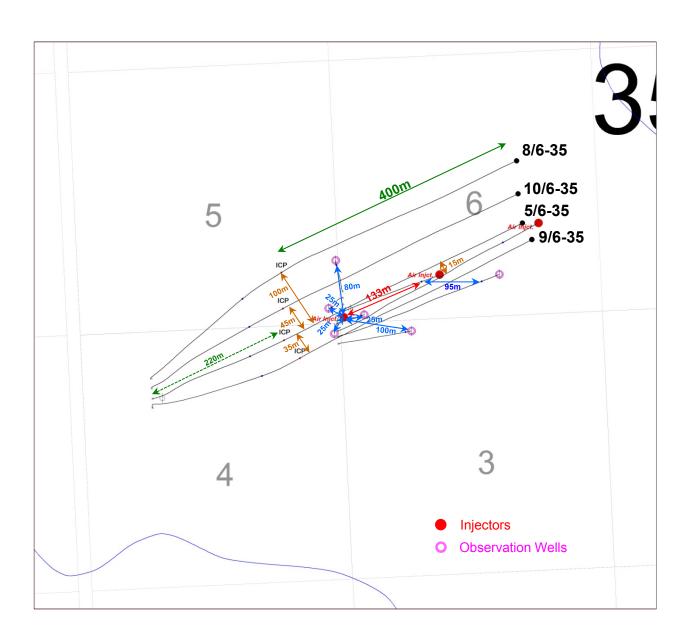
WHAT WE NEED ? (within bitumen zone)

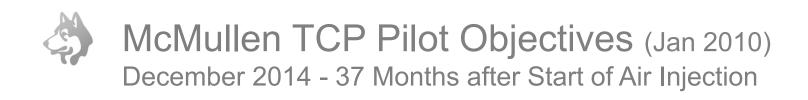
 Heated >56°C to lower viscosity to 2,200cp to start producing

WHAT WE GET ?

- Flow rate 25m3/day (from 400m HZ Well)
- Recovery factor >50%

4


McMullen Thermal Conduction Process – Project Status



Project Status and Timeline

- 2011/2012 13 wells drilled and facility construction completed
- Sep 28, 2011 start of temporary steam
- Dec 8, 2011 start of first air injection
- Q1 2012 received approval to drill 3 additional HZ producers
- Aug 1, 2012 first HZ on prod (H2S detection)
- Oct 2012 3rd train air compression added
- Nov 1, 2012 production re-start
- Oct 2013 three additional HZ wells on prod
- Sep 18, 2014 shut-in of air injection
- July 31, 2015 current expiry of confidential and approval period

McMullen Thermal Conduction Process - Inter-Well Spacing

- Successful ignition and continuous combustion
 - achieved
- Heating the underlying bitumen through thermal conduction
 - as predicted (~25 m3/d; 25-30% BS&W)
- Determine combustion front velocity through the depleted gas zone
 - as predicted
- Determine optimal well spacing for future design of a commercial project
 - requires Pilot expansion to test new spacing
- No Injected air or combustion gas breakthrough into the horizontal producer
 - achieved

New innovative technology

to recover bitumen underlying a depleted gas cap

Thermal recovery process

 conducts heat downward from the gas zone to the bitumen leg in order to mobilize the oil for production

Combustion reactions

will be confined to the gas zone and results in high temperature oxidation

Significant reduction in fresh water usage

- over conventional steam assisted methods (CSS and SAGD)
- water requirements are for initial steaming only (8311 m3 CWE)

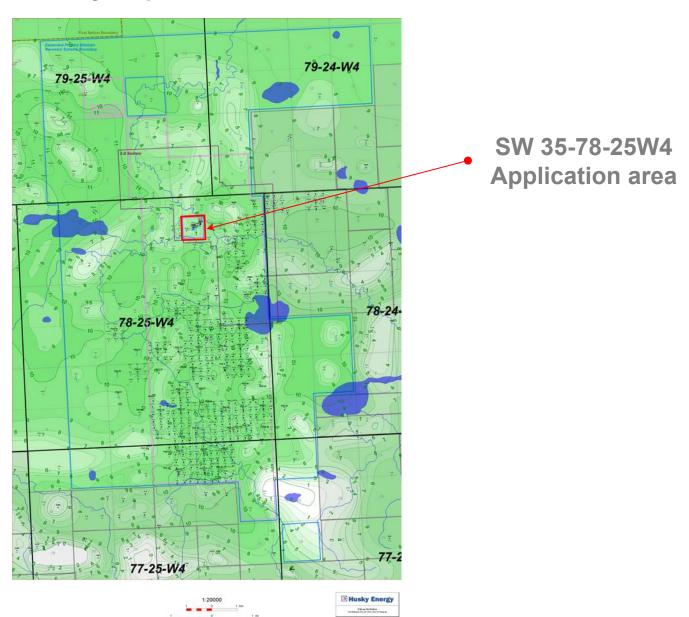
Geology/Geoscience

Average Reservoir Parameters:

- Net Oil Pay = 6 m
- Porosity = 31%, So = 70%
- Oil FVF = 1.00 m3/m3

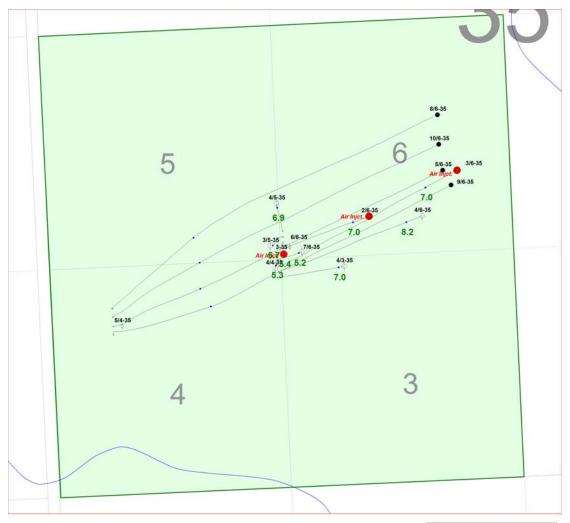
Entire approval area - 64 ha (SW/4 section 35-78-25W4)

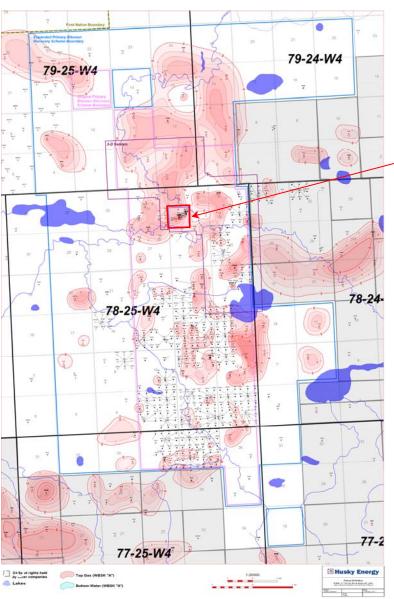
OBIP = 833 e3m3

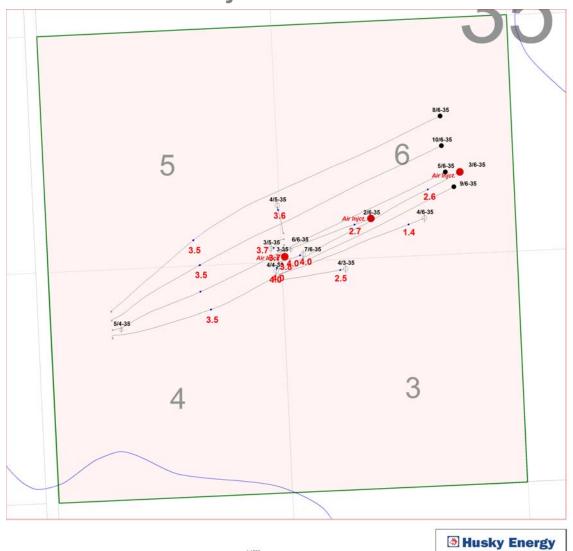

Planned operating portion of the scheme - 13 ha (prior shut-in air injection)

OBIP = 169 e3m3

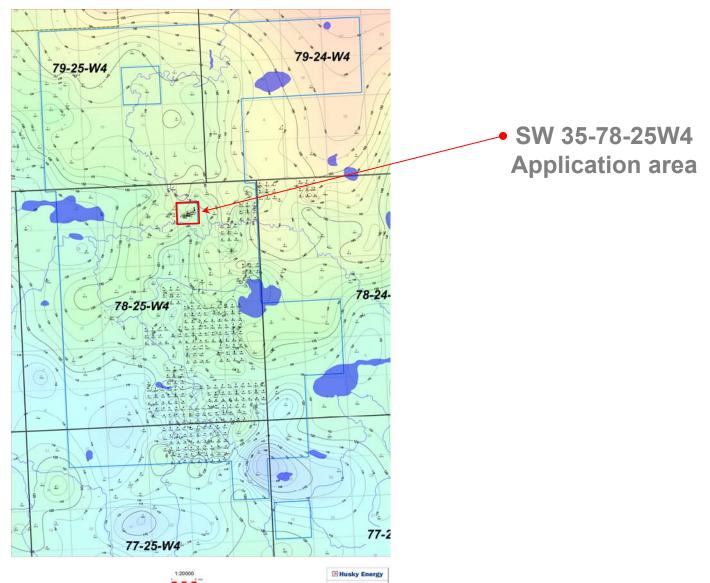
Actual operating portion of the scheme - 6 ha (after shut-in air injection)

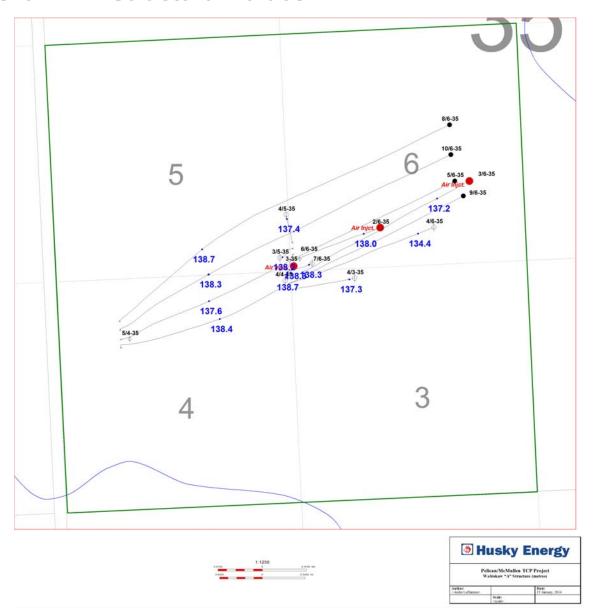

- OBIP = 78 e3m3
- The operating portion of the scheme after shut-in of air injection is the estimated size of the drainage area that was heated by the combustion front at the time of shut-in. The premature shut-in of air injection (and shut-down of combustion) resulted in a smaller portion of the scheme being heated than originally estimated. The actual operating portion of the scheme (6 ha) is based on a drainage area size of 75+75 m wide by 400 m long (length of a HZ well).

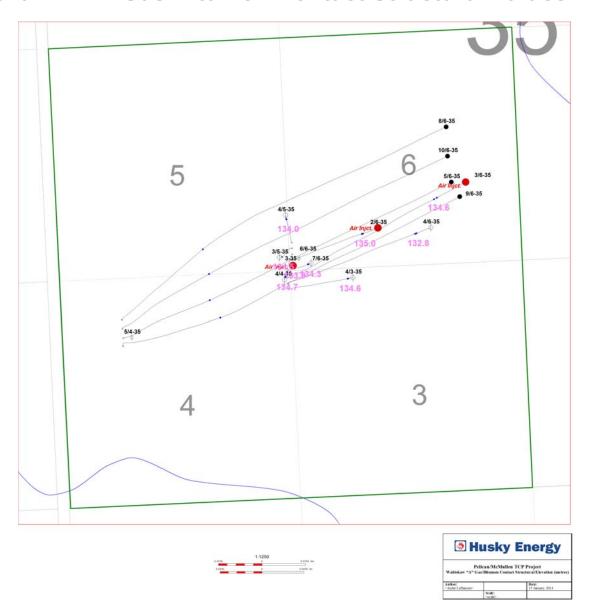

SW 1/4 of Section 35-78-25W4 Wabiskaw "A" Net Oil Pay Values



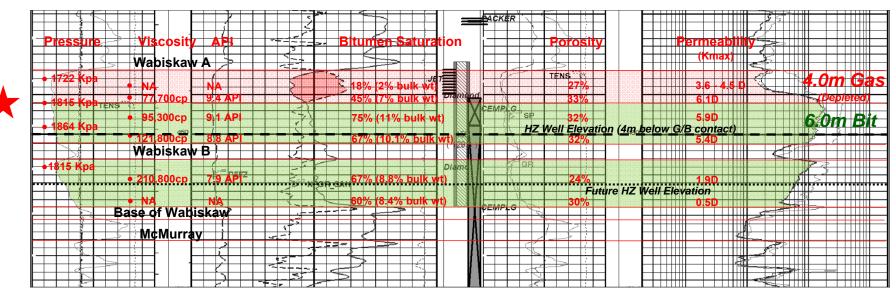
→ SW 35-78-25W4 Application area


SW 1/4 of Section 35-78-25W4 Wabiskaw "A" Net Gas Pay Values

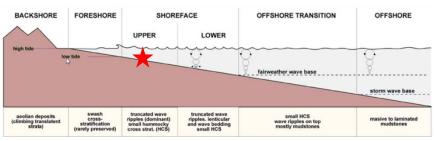




SW 1/4 of Section 35-78-25W4 Wabiskaw "A" Structural Values

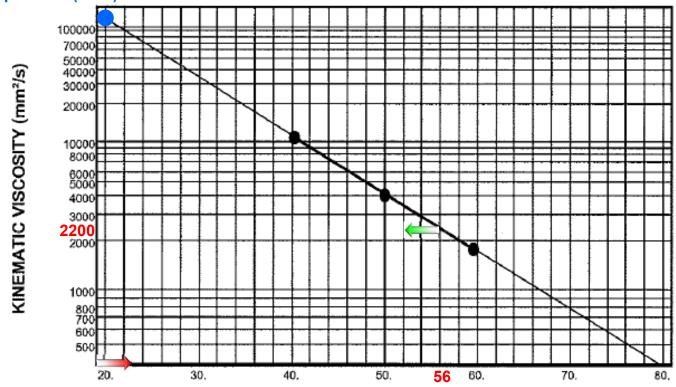


SW 1/4 of Section 35-78-25W4 Wabiskaw "A" - Gas/Bitumen Contact Structural Values


Reservoir & Fluid Characteristics (100/3-35-78-25W4)

WABISKAW "A" Marine Shoreline Deposit

- Fine-grained
- Coarsening upward
- Homogeneous & continuous
- Unconsolidated sand



- **Drilling Depth:** ≈ 450m
- **Porosity:** ≈ 31%
- **Permeability:** ≈ 5 Darcies
- Net Pay: ≈ 6m
- Oil Saturation: ≈ 70%
- **TAN:** 1.3
- Viscosity (core): Average 122,000 cp
- Viscosity (prod): Average 190,000 cp
- API: 8.8
- **Pressure** (current): ≈ 2,250 kPa

VISCOSITY - TEMPERATURE CHART

TEMPERATURE (Degrees Celsius)

100/03-35-078-25W4 Fluid Contacts

102/3-35-78-25W4 Mineral Composition in the Gas and Bitumen zones

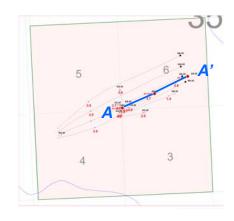
X-RAY DIFFRACTION ANALYSIS

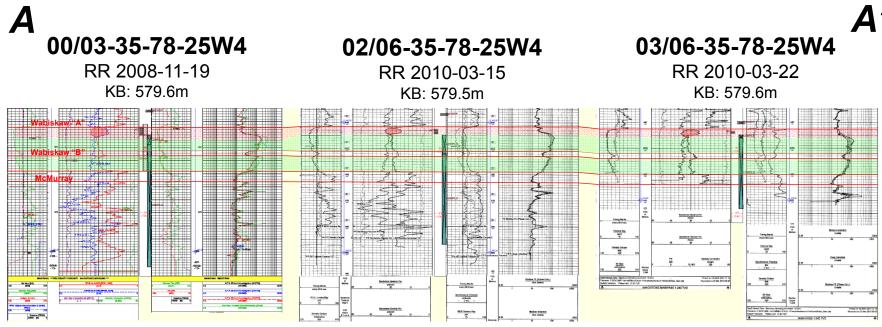
(combined mineral analysis)

Company: Husky Energy Inc. File No: 52135-08-2307B

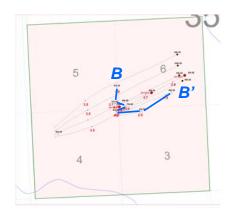
Analyst: S.H

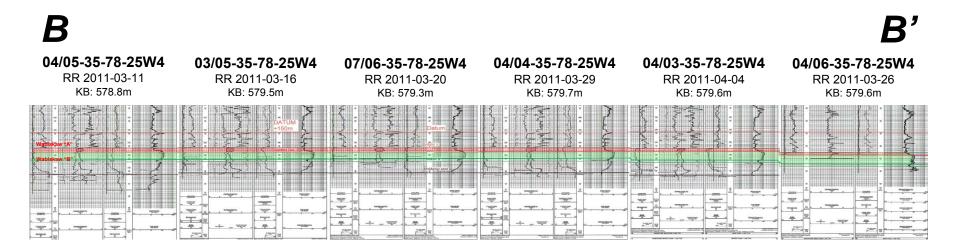
Gas Zone

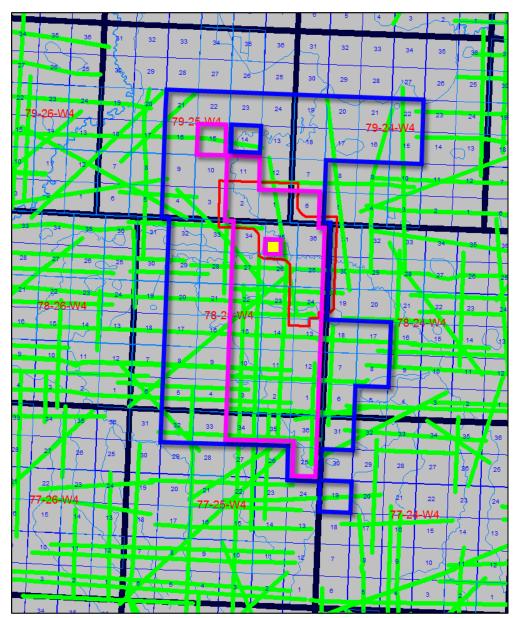

Bitumen Zone


	Oas Zone	Ditaille Lone						
	Husky 102 Pelican 3-35-78-25		Husky 1	102 Pelican 3-3	35-78-25			
Sample ID	OB2	OB3	OB4	OB5	OB7	OB8		
Depth Interval (m)	443.75	445.3	447.75	450.2	455.45	458.35		
Mineral	Whole Rock Weight %	Whole Rock Weight %						
Quartz	93	96	94	94	93	81		
K-Feldspar	0	0	1	1	1	2		
Plagioclase	0	0	0	0	0	0		
Anhydrite	0	0	0	0	0	0		
Calcite	0	0	0	0	0	0		
Dolomite	0	0	0	0	0	0		
Halite	0	0	0	0	0	0		
Siderite	0	0	0	0	0	0		
Pyrite	0	0	Trace	Trace	Trace	1		
Total Clay	7	4	5	5	6	16		
Total	100	100	100	100	100	100		
Clay Mineral	Relative Clay %		R	elative Clay	%			
Smectite	0	0	0	0	0	0		
Illite / Smectite *	3	8	4	5	9	7		
Illite	37	28	33	34	33	34		
Kaolinite	21	41	36	32	31	40		
Chlorite	39	23	27	29	27	19		
Total	100	100	100	100	100	100		

^{*} Illite / Smectite Mixed-Layer Clay


The percentage of smectite layers in 60-70% illite / smectite clay


Structural Cross-Section Between the 3 Injectors


Structural Cross-Section Between the 6 Observation Wells

Husky Seismic Coverage

Original Primary Recovery Scheme Boundary

Expanded Primary Recovery Scheme Boundary

TCP Recovery Scheme Boundary

Husky 3-D Seismic Coverage

Husky 2-D Seismic Coverage

Cap Rock Integrity Program

- Caprock (overlying Wabiskaw "A")
 - Clearwater shale sequence (~95 meters thick)
- Pilot mini-frac test
 - conducted in March 2010 on the 14-36-78-25W4 well (RR Oct 18, 2008)
 - interpreted in-situ minimum stress in cap rock shale = 8200 kPa
 - fracture gradient = 18.51 kPa/m
- ERCB scheme MOP Approval: 5000 kPa
- Injection pressures
 - during steaming phase: 2200 2500 kPa
 - during air injection phase: 2800 3000 kPa (prior to shut-in air injection)
 - air injection shut-in Sep 18, 2014
 - current pressures ~2250 kPa

Surface heave monitoring is not required

 due to the small volume of steam that was injected (8,311 m3 cold water equivalent) prior to start off continuous air injection

Drilling and Completions & Instrumentation in Wells

Metering and Monitoring

 Air injection will be measured on an individual well basis; four horizontal wells are equipped with production and sales tanks

Four Horizontal Oil Production Wells

- thermocouples every 25m along the horizontal section
- pressure sensors at the heel, middle and toe of the horizontal section
- wells equipped with gas chromatographs to monitor produced gas composition
- periodic oil & gas samples for analysis
- issues with malfunctioning thermocouples & pressure sensors

Three Air Injection Wells

- thermocouples placed at the mid-point of perforations (gas zone)
- two wells equipped with temperature sensors to indicate potential flow behind pipe

Six Observation Wells

- 12 thermocouples installed per well (2 above the gas zone, 3 gas zone & 7 bitumen zone)
- one well equipped with pressure sensors

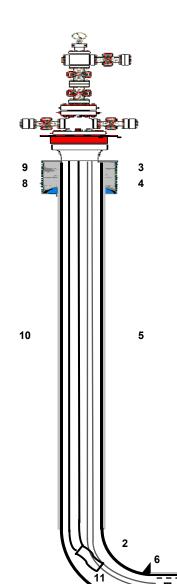
Offsetting Gas Wells

- 4 area gas wells equipped gas chromatographs for monitoring of produced gas composition
- periodic static gradients to monitor reservoir pressure

Thermal Cement Temperature Ratings

•	4 HZ Production Wells	Temp Rating	Type of Cement
	105/06-35-78-25W4	1000 deg C	LDP-C-310+0.20% SMS + 0.15% CDF-4P+0.40% CFL-6+0.30%+0.40% CFL-4
	108/06-35-78-25W4	1000 deg C	LDP-C-310+1%CFR-5+0.5% CFL-3+0.3% Citric Acid+6%Gypsum+1%TAE+0.15%CDF-4P
	109/06-35-78-25W4	1000 deg C	LDP-C-310+1%CFR-5+0.5% CFL-3+0.3% Citric Acid+6%Gypsum+1%TAE+0.15%CDF-4P
	110/06-35-78-25W4	1000 deg C	LDP-C-310+1%CFR-5+0.5% CFL-3+0.3% Citric Acid+6%Gypsum+1%TAE+0.15%CDF-4P
•	3 Air Injection Wells	Temp Rating	Type of Cement
	100/03-35-78-25W4	360 deg C	Thermal 40 Expandomix + 1.00% CaCl2 + 0.25% CFR-2 + 0.35% CFL-3
	102/06-35-78-25W4	1000 deg C	UHTC + 3.0% CFL-6 + 0.20% SMS + 0.20% CR-2 slurry @ 1900 kg/m3
	103/06-35-78-25W4	1000 deg C	UHTC + 3.0% CFL-6 + 0.20% SMS + 0.20% CR-2 slurry @ 1900 kg/m3
•	6 Observation Wells	Temp Rating	Type of Cement
	104/05-35-78-25W4	1000 deg C	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
	103/05-35-78-25W4	1000 deg C	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
	104/06-35-78-25W4	1000 deg C	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
	104/04-35-78-25W4	1000 deg C	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
	104/03-35-78-25W4	1000 deg C	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P
	107/06-35-78-25W4	1000 deg C	LDP-C-310+0.1% CR-2 + 0.3% CFL-6 + 0.2% SMS + 0.15% CDF-4P

• 1000 deg C cement is a **special cement** that was ordered from Chesapeake Virginia



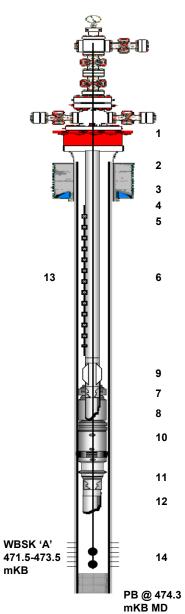
100/03-35-78-25W4 drilled in Nov 2008 as an evaluation well

- thermal cement rated for 360°C
- the Project location was based on core and log data from this well
- was converted to an air injection well for the Project
- Observed temperatures in the 100/03-35-78-25W4 air injection well
 - max temp of 220°C during the 30 day steaming phase (Oct 2011)
 - temperatures constant 20 25°C since start of air injection (Dec 2011)
- Peak combustion temperatures were recorded in two observation wells
 - 103/05-35 and 104/04-35-78-25W4 wells
 - highest combustion temperatures observed in the gas zone ~330°C
- There has been no indication of wellbore integrity issues within the Project

Producing HZ Well- 105/06-35-078-25W4

Well:	Husky HZ 105 Pelican 6-35-78-25	KB (m):	584.09	Rig:	Precision Drilling #102	TD (mKB MD):	992.00
Unique ID:	105/06-35-078-25W4/00	GL (m):	579.62	Spud Date:	06/24/2011 @ 04:00 Hrs	TVD (mKB MD):	454.40
Surface Location:	05/04-35-078-25W4	CF (m):	579.62	Rig Release Date:	07/05/2011 @ 23:59 Hrs	PBTD (mKB MD):	981.59
License #	0430310	KB-CF (m):	4.47	Profile:	Horizontal	PB (mKB MD):	

Casing Details:


Surface Hole:	444.5 mm Hole Drilled From 0.00 – 206.00 mKB
Surface Casing:	16 Jts – 339.7 mm, 81.01 kg/m, J-55, ST&C. Landed @ 205.70 mKB
Surface Casing Cement:	32.50 T – Proteus Core + 2.00% Cacl2
Returns	12.00 m3
Intermediate Hole:	270 mm Hole Drilled From 206.00 – 585.00 mKB
Intermediate Casing:	46 Jts - 219.1 mm, 47.621 kg/m, K-55, ST&C. Landed @ 584.90 mKB
Intermediate Casing Cement:	40.00 T – LDP-C-310 + 0.20% SMS + 0.15% CDF-4P + 0.40% CFL-6 + 0.30% CFL-3 + 0.40% CFL-4
Returns:	0.80 m3
Liner Hole:	200 mm Hole Drilled From 585.00 – 992.00 mKB MD
Liner Casing:	35 Jts – Slotted Liner, 139.7 mm, 25.29 kg/m, L-80, GEOCONN. Landed @ 982.00 mKB MD, Liner hanger top @ 557.60 mKB MD

Tubing String Details:

Size: (mm) OD:	88.9	Kg/m:	13.84	Grade:	J-55	Landing De	epth:	(mKB MD): 550.0
No.								No.	
				iples Landed @ 970.			70.0, 845.0,	7.	38.1mm Coil Tubing Cointaining Both Instrumentation Strings - Landed @ 961.00 mKB MD
			#2 - Thermocou 69.0, 770.0, 569.	iples Landed @ 969. 0 mKB MD	.0, 770.0, 569.0	0 mKB MD	+ Pressure	8.	R&M Energy - Hi-Temperature Tubing Rotator
3.	1 - Tul	bing Hanger						9.	1 - 114.3 mmx 88.9mm Cross-Over
4.	1 - 60.	3mm x 52.4mm	Cross-Over					10.	56 - 88.9mm. L-80 Tubing With Bevelled Couplings. Landed @ 501.3 mKB MD
5.	57 - 52	2.4mm Tubing J	t.					11.	PCP - pump intake landed at 501.30 mKB MD
6.	1 - 52.	4mm Mule Shoe	e Jt.						

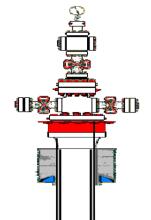
Injection Well- 102/06-35-078-25W4

Well:	Husky 102 Pelican 6-35-78-25	KB (m):	579.46	Rig:	Precision Drilling #164	TD (mKB MD):	529.00
Unique ID:	102/06-35-078-25W4/00	GL (m):	575.32	Spud Date:	3/15/2010 3:30:00 PM	TVD (mKB MD):	492.12
Surface Location:	04/06-35-078-25W4	CF (m):	575.41	Rig Release Date:	3/15/2010 11:59:00 PM	PBTD (mKB MD):	522.20
License #	0418707	KB-CF (m):	4.05	Profile:	Directional	PB (mKB MD):	474.30 (Cement Top)

Casing Details:

Surface Hole:	349 mm Hole Drilled From 0.00 – 199.00 mKB MD
Surface Casing:	15 Jts – 244.5 mm, 48.068 kg/m, H-40, ST&C. Landed @ 199.00 mKB MD
Surface Casing Cement:	22.00 T – Proteus CO + 2.00% CaCl2 + 1.00% CFR-2
Returns	4.00 m3
Production Hole:	222 mm Hole Drilled From 199.00 – 529.00 mKB MD
Production Casing:	44 Jts + 1 Marker Jt - 177.8 mm, 34.228 kg/m, L-80, QB2. Landed @ 529.00 mKB MD
Production Casing Cement:	Scavenger - 1.00 T - UHTC; Lead - 15.40 T – UHTC + 0.30% CFL-6 + 0.20% CR-2 + 0.20% SMS
Returns:	2.00 m3

Tubing String Details:


Size: (mm) OD: 88.9 Kg/m: 13.84	Grade:	J-55 Landing Depth: (mKB MD):
No.		No.	
1	1 - 179.4 mm × 88.9 mm Tubing Hanger	8	1 - 88.9 mm Box Up x 101.6 mm Mule Shoe Down
2	1 - 88.9 mm Tubing Jt.	9	1 - 88.9 mm x 101.6 mm x 4.50 m Thermal PermaPack Locating Assembly
3	1 - 88.9 mm x 3.10 m Pup Jt.	10	1 - 177.8 mm Thermal PermaPack Permanent Seal Bore Packer c/w 101.6 mm x 4.50 m Integral Seal Bore
4	1 - 88.9 mm x 1.80 m Pup Jt.	11	1 - 114.3 mm x 69.9 mm SXN Nipple (67 mm No-Go Nipple)
5	1 - 88.9 mm x 1.20 m Pup Jt.	12	1 - 114.3 mm Wireline Re-Entry Guide
6	47 - 88.9 mm Tubing Jt.	13	Thermocouples @ 472.50, 472.50, 443.00, 415.00, 387.00, 358.00, 330.00, 302.00, 275.00, 247.00 mKB MD
7	1 - 88.9 mm x 69.9 mm SX Nipple	14	Thermocouples @ 473.50, 472.25 mKB MD

Isolation Equipment:

Date Set	Make:	Model:	Depth Set (mKB MD):	Pressure Tested:
July 14, 2011	Logan	177.8 mm Thermal PermaPack Permanent Seal Bore Packer	465.00	7 MPa @10 mins
April 17, 2011	Sanjel	1.20 m3 LDP-C-310 (UHTC) + 0.30% CFL-6 + 0.20% SMS + 0.10% CR-2	522.20-482.60	
July 13, 2011	Sanjel	1.30 T - LDP-C-310 (UHTC) + 0.30% CFL-6 + 0.20% SMS + 0.10% CR-2	482.60-474.30	;

Observation Well- 104/03-35-078-25W4

Well:	Husky 104 Pelican 3-35-78-25	KB (m):	579.60	Rig:	Precision Drilling #163	TD (mKB MD):	487.00
Unique ID:	104/03-35-078-25W4/00	GL (m):	575.40	Spud Date:	03/30/2011 @ 12:45 Hrs	TVD (mKB MD):	464.83
Surface Location:	04/04-35-078-25W4	CF (m):	575.65	Rig Release Date:	04/04/2011 @ 20:00 Hrs	PBTD (mKB MD):	
License #	0419607	KB-CF (m):	3.95	Profile:	Directional	PB (mKB MD):	430.14 (Cement Top)

Casing Details:

	odding Details.		
Surface Hole:	349 mm Hole Drilled From 0.00 – 171.00 mKB MD		
Surface Casing:	13 Jts – 244.5 mm, 48.068 kg/m, H-40, ST&C. Landed @ 171.00 mKB MD		
Surface Casing Cement:	20.00 T – Proteus Core + 2.00% CaCl2 + 1.00% CFR-2 + 0.15% CDF-4P		
Returns	5.00 m3		
Production Hole:	222 mm Hole Drilled From 171.00 – 487.00 mKB MD		
Production Casing:	35 Jts + 3 Marker Jt - 114.3 mm, 14.14 kg/m, J-55, ST&C . Landed @ 484.20 mKB MD		
Production Casing Cement:	29.40 T – LDP-C-310 + 0.10% CR-2 + 0.20% SMS + 0.30% CFL-6 + 0.15% CDF-4P		
Returns:	5.00 m3		
Liner Hole:	N/A		
Liner Casing:	N/A		

PB @ 430.14 mKB MD

WBSK 'A'

Tubing String Details:

No.	
1	Instrumentation String #1 (Outside Of Casing): Thermocouples @ 476.27, 475.14, 474.01, 472.01, 471.75, 470.62, 469.49, 468.36, 467.22, 464.96, 452.52, 451.38 mKB MD
2	Instrumentation String #2 (Outside Of Casing): Thermocouples @ 470.62, 464.53 mKB MD & Pressure Sensors @ 470.62, 465.53 mKB MD

HZ 105/06-35 and HZ 108/06-35-078-25W4 production wells

- currently equipped with high temperature metal to metal 80MET1000 PCP
- initially equipped with a high temperature 12-ML-17 PCP (rated for a max of 175 deg C)
- HZ 105/06-35 on prod Nov 2012

HZ 109/06-35-078-25W4 production well

- currently equipped with high temperature metal to metal 80MET1000 PCP
- initially equipped with a high temperature 12-ML-44 PCP
- changed to a 16-ML-44 PCP (rated for a max of 175 deg C)
- on production September 2013

HZ 110/06-35-078-25W4 production well

- currently equipped with high temperature metal to metal 80MET1000 PCP
- initially equipped with a high temperature 16-ML-44 PCP (rated for a max of 175 deg C)
- on production October 2013

HZ 108/06-35-078-25W4 production well

- equipped with high temperature 12-ML-17 PCP
- well started back up October 2014
- on production October 2013 (shut-in December 2nd 2013)

Lateral distribution of heat

• too small to be resolved on 3D or 4D seismic surveys

4D seismic data

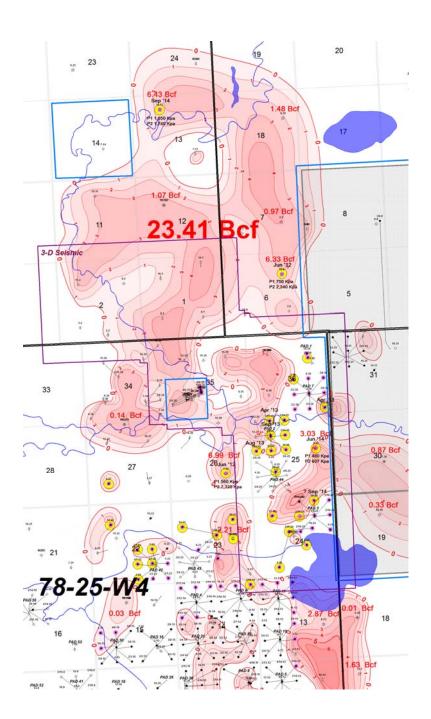
• no plans to acquire at this time

TCP Scheme Performance

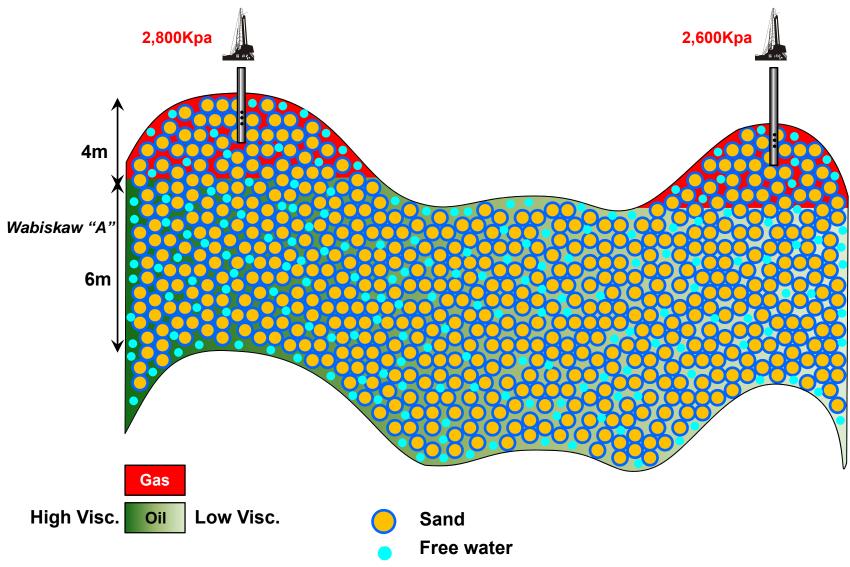
First steam injection on September 28, 2011 First air injection on December 8, 2011 Shut-in air injection on September 18, 2014

HZ 105/06-35 on production November 1, 2012
HZ 109/06-35 on production September 30, 2013
HZ 110/06-35 on production October 6, 2013
HZ 108/06-35 on production October 18, 2013 (SI Dec 2/13)
HZ 108/06-35 re-start on production October 8, 2014

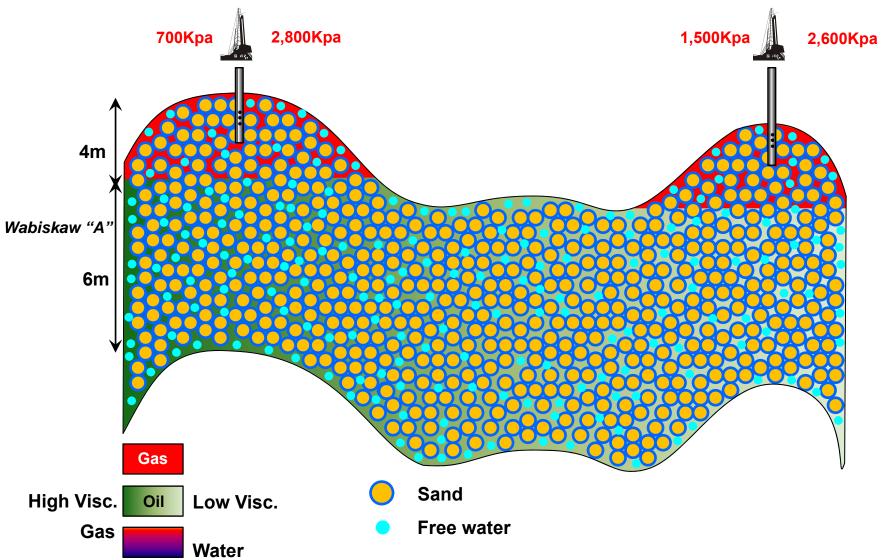
The purpose of the initial steam injection was to raise the formation temperature in each of the 3 injection wells to 180 – 200 deg C to allow for ignition when switching over to air injection. The criterion for the start-up of each HZ well was that 9 of the 16 thermocouples located along the horizontal section of the wellbore would be heated to a temperature of at least 56 deg C, which would result in a bitumen viscosity of 2,200 cp or less and a flow rate of 25 m³/d or higher.


Injection & Production History

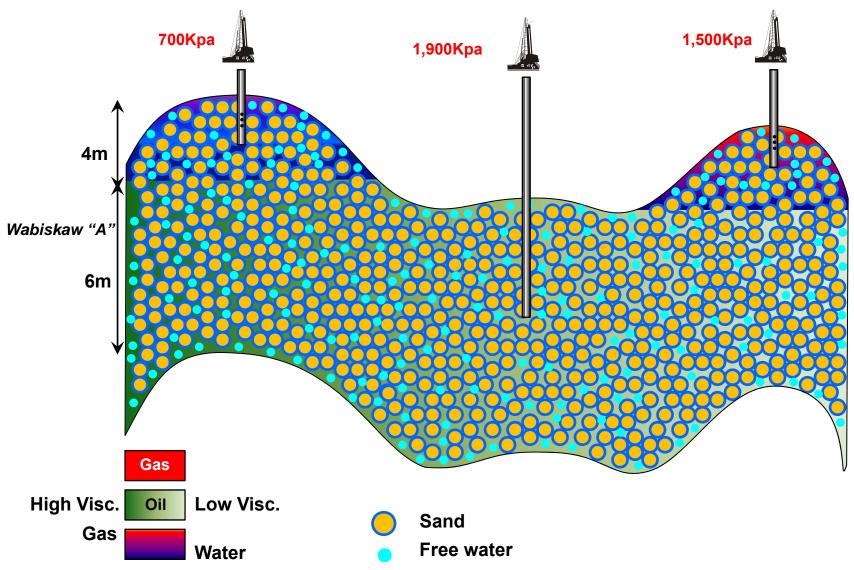
- Start-up of air injection on December 8, 2011
 - injection rate increase to 15 e3m3/day on Dec 12, 2011
 - injection rate increase to 20 e3m3/day on Dec 28, 2011
 - injection rate increase to 25 e3m3/day on Jan 30, 2012
 - injection rate increase to 40 e3m3/day on Feb 17, 2012
 - injection rate increase to 45 e3m3/day on Mar 16, 2012
 - injection rate increase to 55 e3m3/day on Apr 24, 2012
 - injection rate increase to 65 e3m3/day on Jul 16, 2012 (two trains)
 - injection rate increase to 90 e3m3/day on Oct 17, 2012 (third train)
 - shut-in air injection on September 18, 2014 (2 years & 10 months)
- **Shut-in of air injection** was due to increasing concentrations of nitrogen observed in several of Husky's surrounding primary wells in the area and the potential risk of shutting in even more primary oil production
- HZ 105/06-35-78-25W4 on initial production for 4 days in August 2012
 - shut-in due to the detection of H2S, production re-start was on November 1, 2012
- HZ's 109/06-35, 110/06-35 & 108/06-35-78-25W4 were placed on production in September and October 2013
 - 108/06-35 shut-in on Dec 2, 2013 to allow bitumen zone to be further heated; was placed back on production October 8, 2014


Wells monitored for N₂

Wells with N₂ detected


N₂ Breakthrough Mechanism -Gas Discovery-

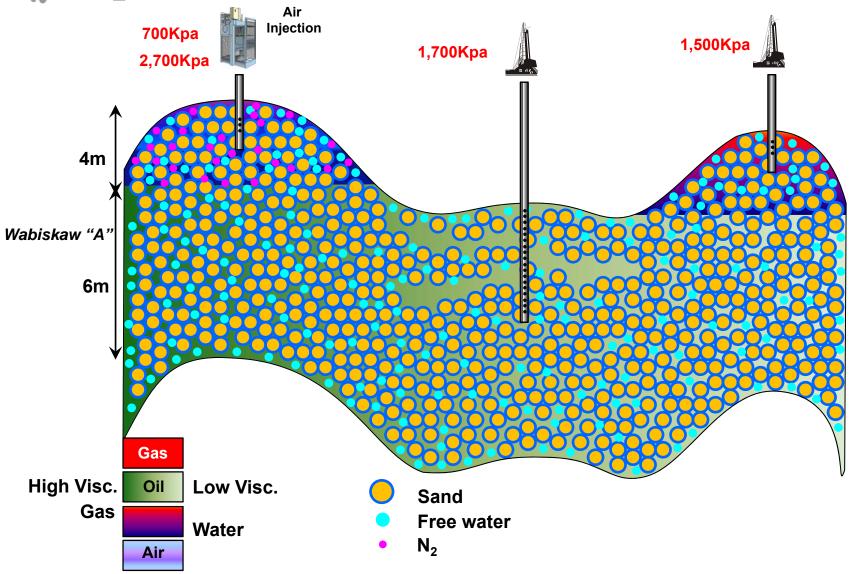
This slide illustrates two gas wells (4 m gas over 6 m bitumen) drilled at initial reservoir pressures ranging from 2600 to 2800 kPa


N₂ Breakthrough Mechanism -Gas Depletion-

The two gas wells are placed on production, depleting the reservoir pressure (700 – 1500 kPa) and eventually filling the void space in the gas cap with formation water from the underlying bitumen zone

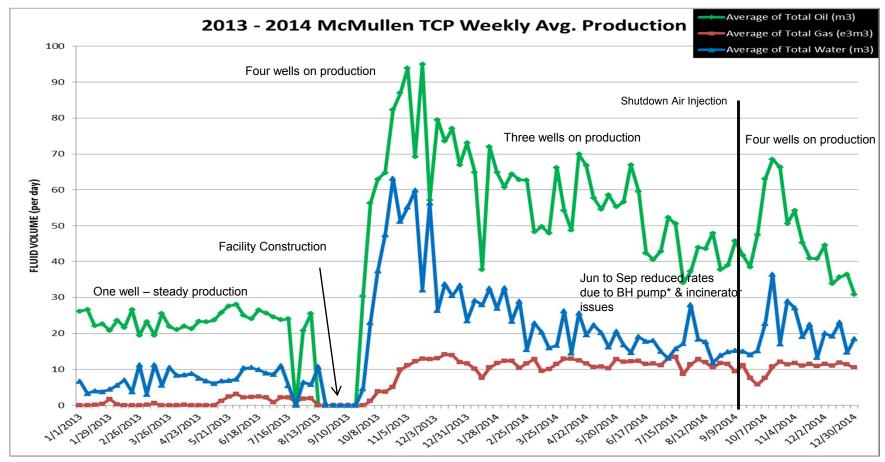
N₂ Breakthrough Mechanism -Bitumen Discovery-

A bitumen well is drilled for primary production, the reservoir pressure is depleted (1900 kPa) due to the production from the two offsetting gas wells


N₂ Breakthrough Mechanism -Bitumen Production-

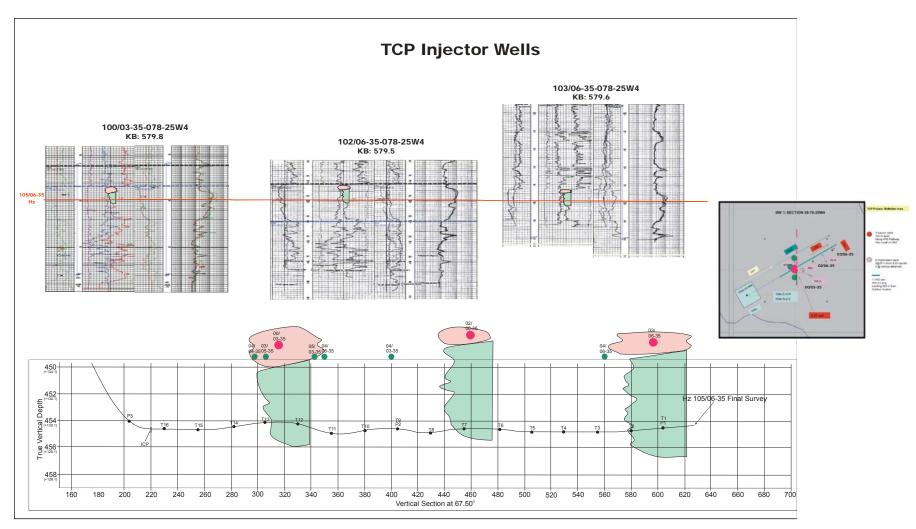
The bitumen well is placed on primary production which creates wormholes in the reservoir and the pressure is further reduced (1700 kPa)

4

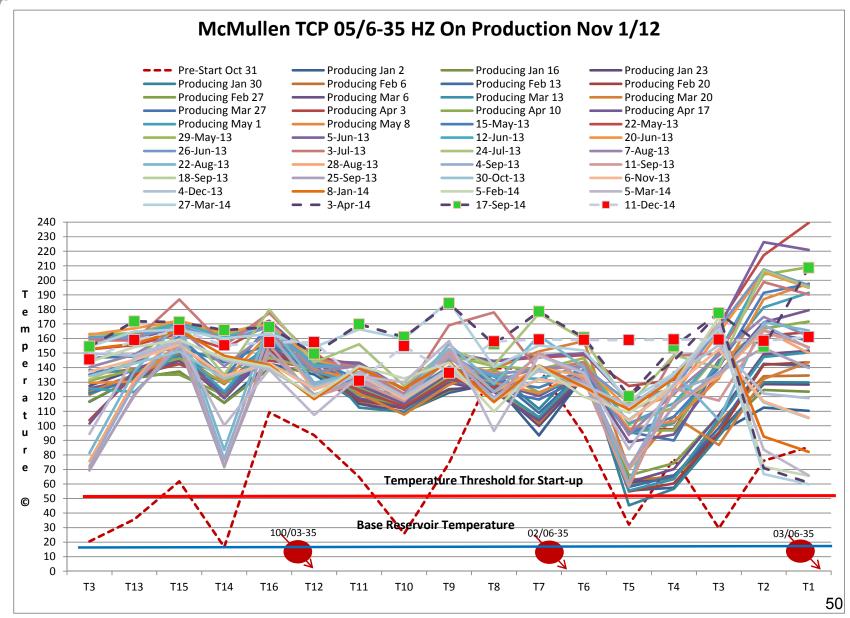

N₂ Breakthrough Mechanism -Air Injection-

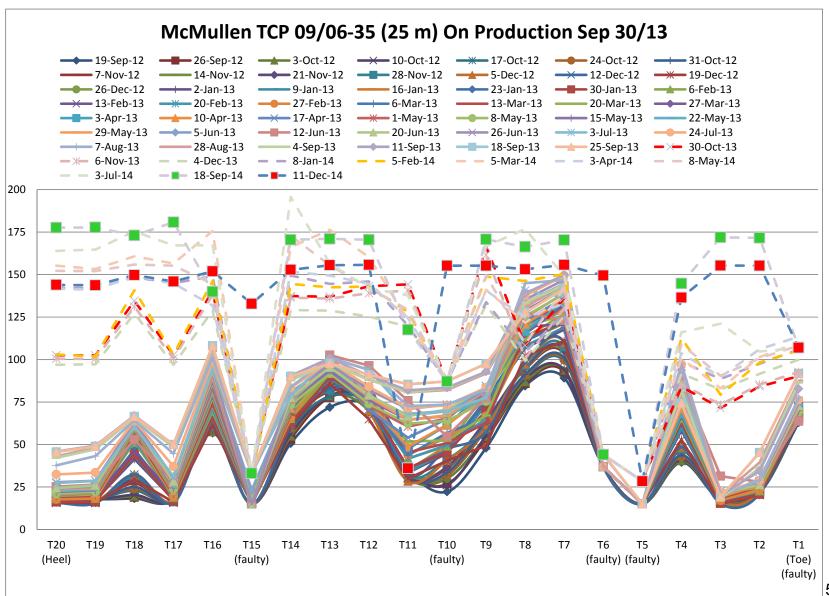
An air injection well is drilled in the depleted gas cap and continuous air injection increases the pressure from 700 kPa to 2700 kPa. Oxygen (O_2) is spent at the combustion front while nitrogen (N_2) travels from the injection well through the bitumen zone and ends up being produced (breakthrough) at both the offsetting primary bitumen and gas wells.

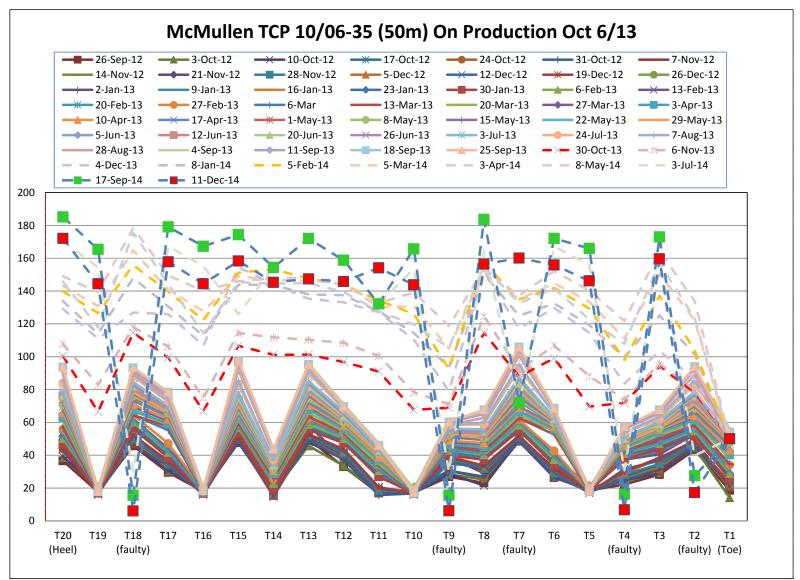
McMullen TCP Update – Dec 31, 2014

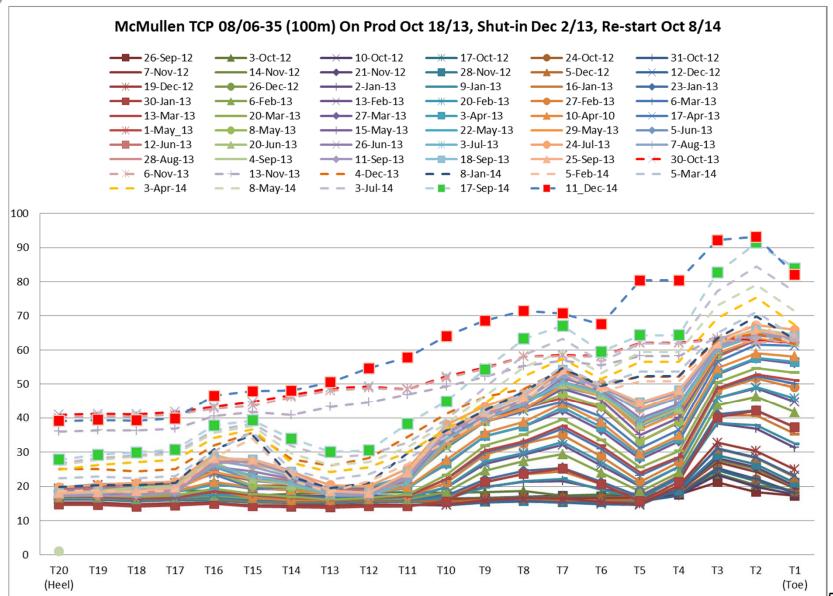


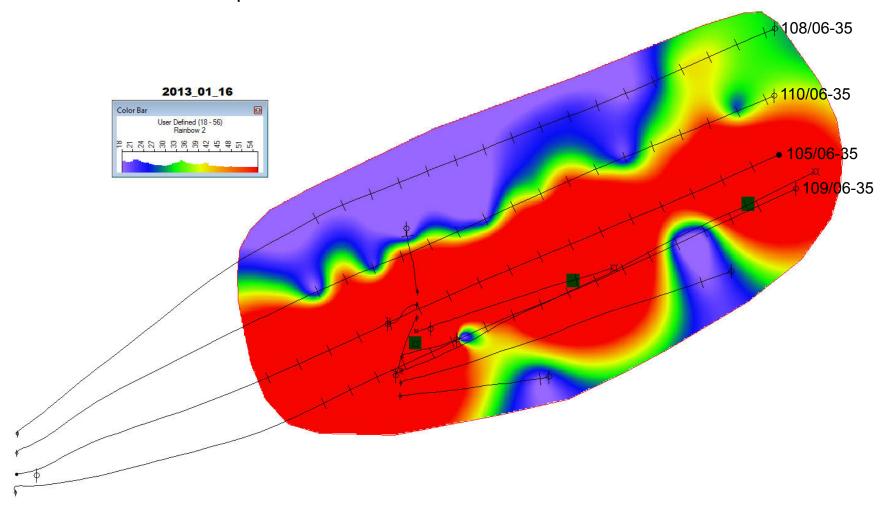
- Cum oil of 32.0 e3m3 (201.5 mbbl), 41% recovery to date, 50% estimated final
- Process performs as expected based on produced gas analysis and observed temperatures
 - produced gas is predominately combustion gases (79% N2, 17% CO₂ plus small amounts of reservoir gas)
- Oil production from 4 wells 35 m3/day (220 bopd)


^{*} The original elastomer stator PC pumps were replaced by metal to metal PCP's.

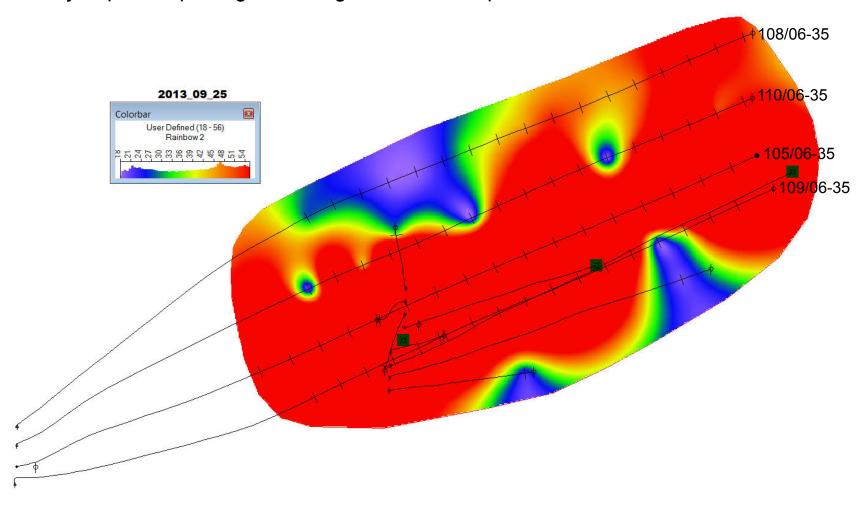

HZ 105/06-35-78-25W4 Thermocouple Placement



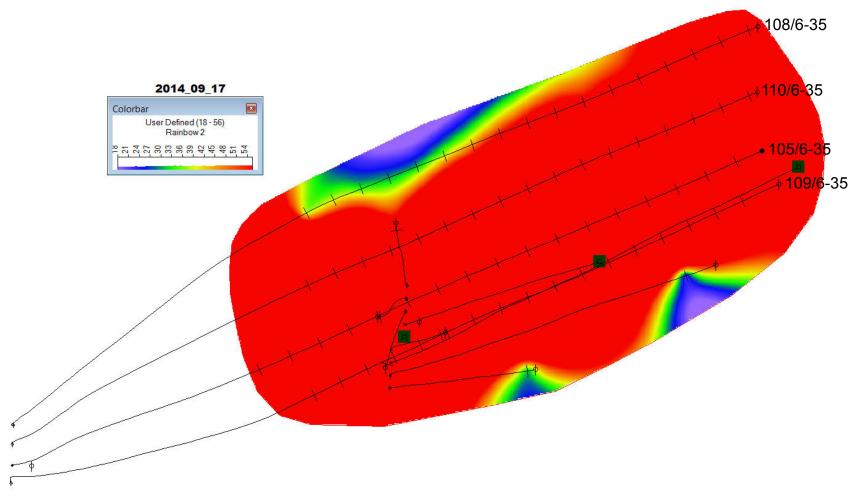




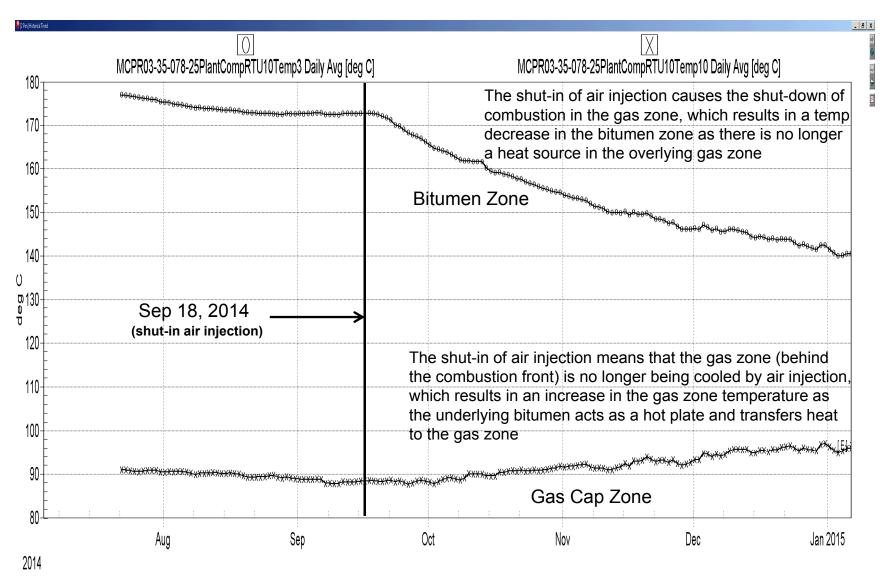
McMullen TCP – Heat Response – January 16, 2013


- 13 months after start of air injection
- first HZ well on production Nov 2012

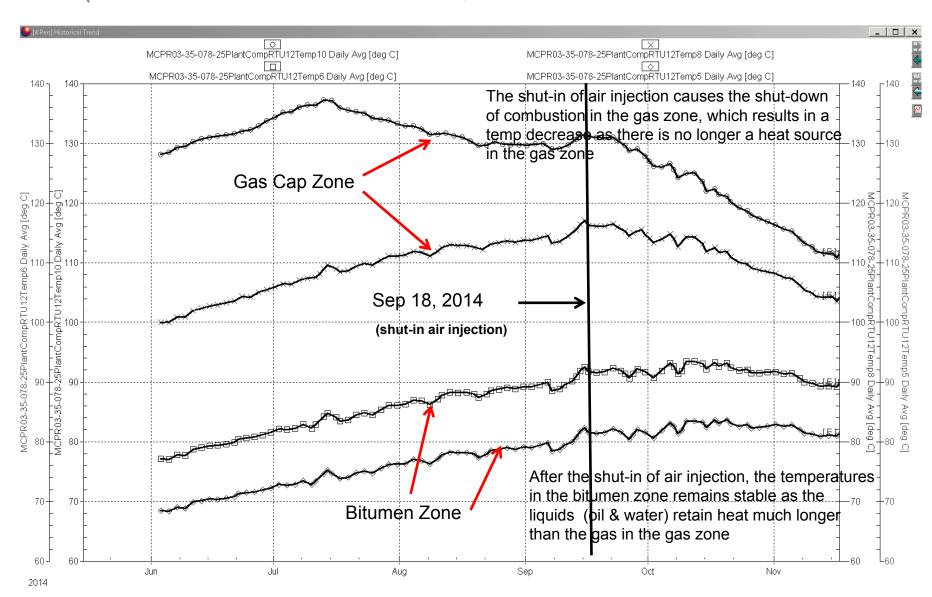
McMullen TCP – Heat Response – September 25, 2013

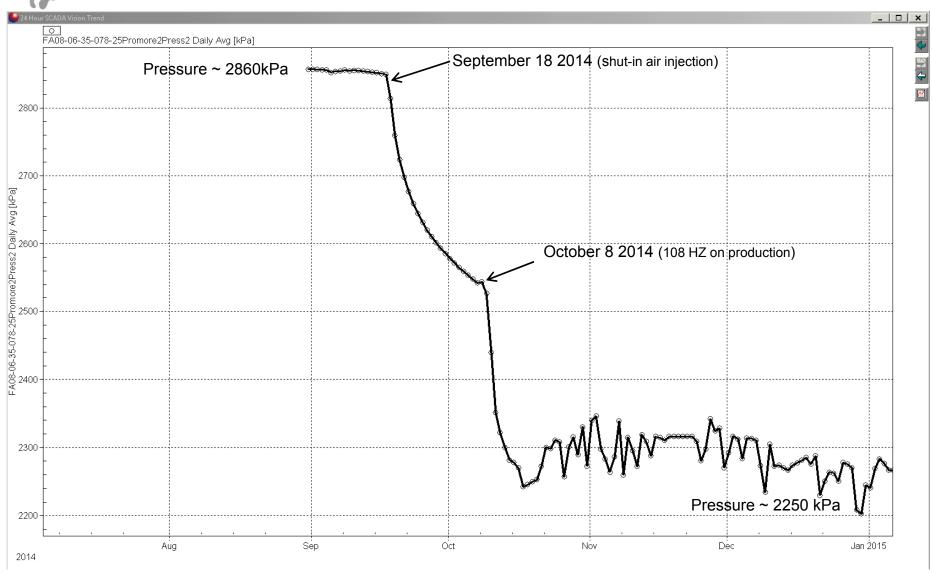

- 21 months after start of air injection
- just prior to placing remaining 3 HZ wells on production

McMullen TCP – Heat Response – September 17, 2014


- 34 months after start of air injection
- just prior to shut-in air injection on Sep 18, 2014

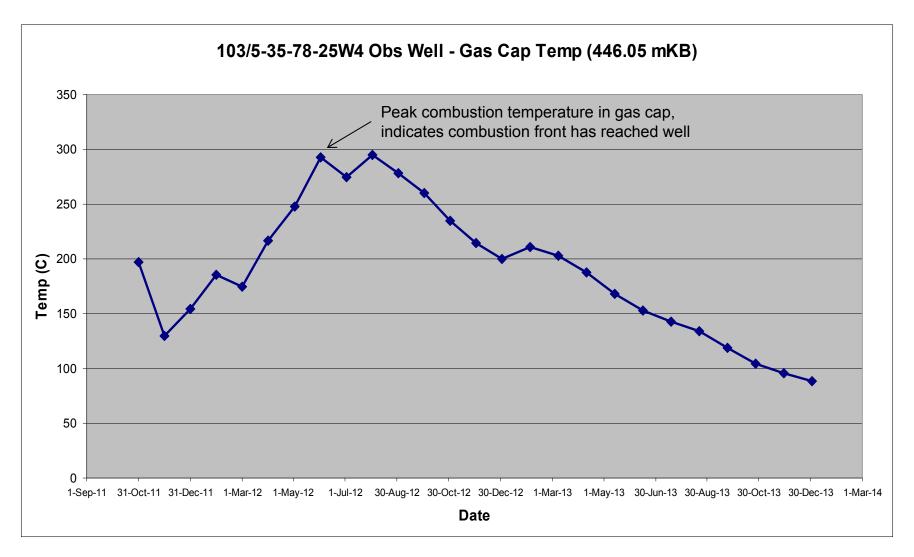
103/5-35-78-25W4 OBS Well – Temperatures


(25 m from 100/03-35-78-25W4 air injector)


104/5-35-78-25W4 OBS Well – Temperatures

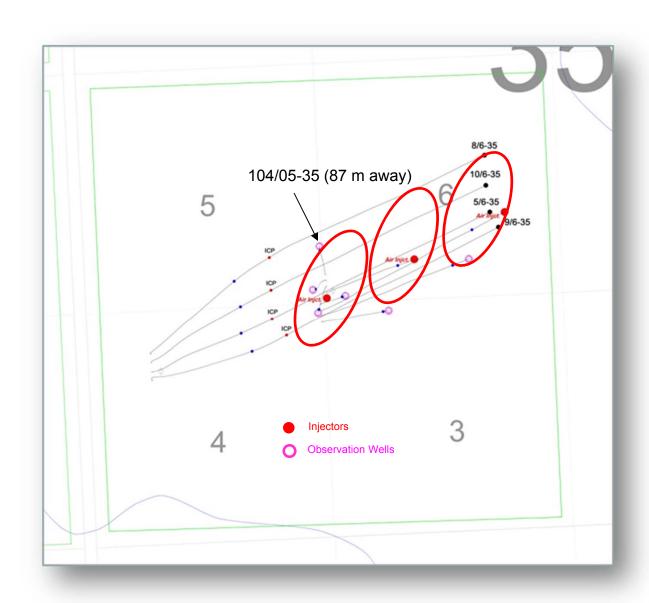
(87 m north of 100/03-35-78-25W4 air injector, ahead of the combustion front)

HZ 108/6-35-78-25W4M Well – Pressures


Calculated Combustion Radius vs Time for a 4 meter thick gas cap

Calculated					Calculated			
Years	GIP	Inj Air	Cum Inj	Front velocity	Front velocity	Radius	Comments	
	m3	m3/day	E3m3	m/d	ft/d	m		
2012	29,851	52,900	20,896	0.134	0.440	53	actual	
2013	76,727	89,900	53,709	0.080	0.263	82	actual	
2014	103,759	72,500	72,632	0.048	0.160	96	actual	
2015	145,474	80,000	101,832	0.048	0.159	114	estimated	
2016	187,188	80,000	131,032	0.041	0.137*	129	estimated	

^{*}Technical literature recommends a minimum burning velocity of 0.125 ft/d in order to have satisfactory combustion (Nelson and McNeil, "How to engineer an in-situ combustion project", Oil and Gas Journal June 5, 1961).



103/5-35-78-25W4 OBS Well Gas Cap Temperatures (25 m from 100/03-35-78-25W4 Air Injector)

Estimated Combustion Front Position

Ultimate Recovery - Volumetric Method

Average Reservoir Parameters:

- Net Oil Pay = 6 m, Oil FVF = 1.00 m3/m3
- Porosity = 31%, So = 70%
- Recovery Factor = 50%

Entire approval area - 64 ha (SW/4 section 35-78-25W4)

- OBIP = 833 e3m3
- ROIP = 416.5 e3m3

Planned operating portion of the scheme - 13 ha (prior to shut-in of air injection)

- OBIP = 169 e3m3
- ROIP = 84.5 e3m3

Actual operating portion of the scheme - 6 ha (after shut-in of air injection)

- OBIP = 78 e3m3
- Cum oil produced = 32 e3m3
- RF to date = 41%

- McMullen TCP Pilot estimated > 50%
 - simulation to confirm (current RF is 41%)
- Other In-Situ Fields
 - Suplacu de Barcau Field, Romania 56%, in operation since 1965
 - Balol/Santhal Fields India 39/45%, in operation since 1990
 - Bellevue, Louisiana 60%, in operation since 1970
- SAGD 45 to 65%
- CSS 25 to 45%

Temporary Steam – Pressure, Temperature and Quality

No steam injection in 2012, 2013 and 2014

McMullen TCP Performance to December 2014

Reservoir pressure

original 1750 kPa to 3000 kPa; current ~2250 kPa (since shut-in of air injection)

H2S concentration

between 400 – 2200 ppm (average ~ 1000 ppm)

Oil production rate

- peak rate 90 m3/day (560 bopd Nov 2013)
- current 35 m3/day (220 bopd Dec 2014)

Cumulative oil production

32.0 e3m3 (201.5 mbbl) - recovery factor 41% (Dec 2014)

Total air injected (3 injectors)

218 e6m3 (7.7 Bcf) - as of shut-in on Sep 18, 2014

- Safe and continuous operation of the air injection facilities
- Successful heating of the underlying bitumen through thermal conduction
 - oil rates as predicted (25 m3/d, 25-30% BS&W)
 - recovered 32.0 e3m3 (201.5 mbbl)
- Successful ignition and continuous combustion
 - based on produced gas analysis and observed temperatures
- Combustion front radius
 - travelled a distance of ~96 m after 34 months of air injection and the front radius was estimated to travel 130 m after 5 years
- Effect of N₂ on offsetting primary production
 - future design process requires a waste gas management program for the handling of produced gases

Pilot Future Plans – 2015

Request extension of scheme approval/confidential period

- submission letter sent on February 26, 2015
- request extension of scheme approval to July 31, 2018 and confidential status to July 31, 2016
- current approval expires July 31, 2015

Ongoing monitoring of the Pilot Project

- gather additional key performance data to assess thermal effect without air injection and combustion; key to future development
- effect of nitrogen on offsetting primary wells

Waste gas management program (for handling of produced gases)

 future options: membrane, cryogenic and PSA solutions for gas processing and design capabilities – uneconomic at current oil price

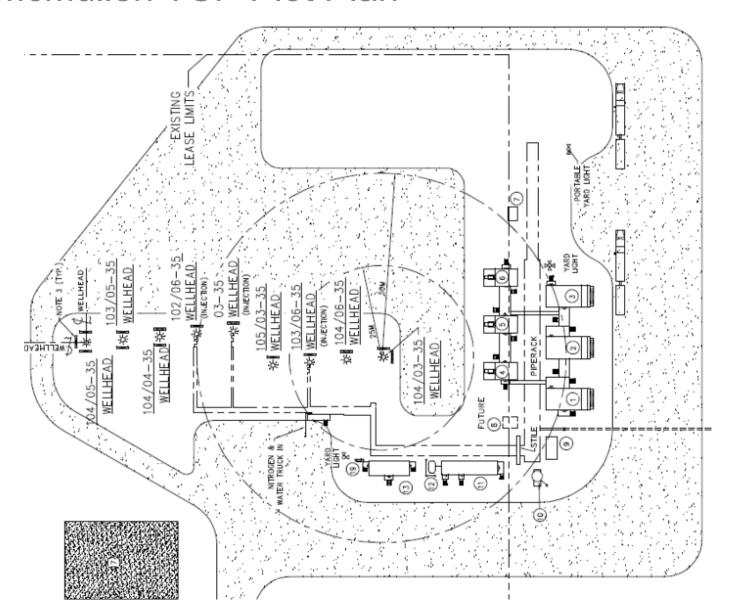
Pilot expansion application activities

- CMG numerical simulation, geological study
- no expansion activities are planned as Project is not economic at current oil price

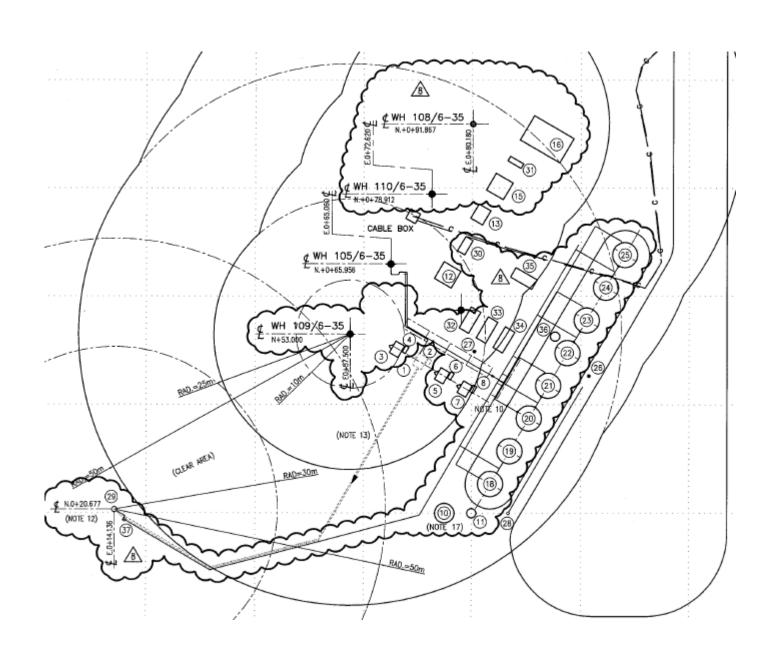
3.1.2 Surface Operations, Compliance, and Issues Not Related to Resource Evaluation and Recovery

3.1.2 Surface Issues – Table of Contents

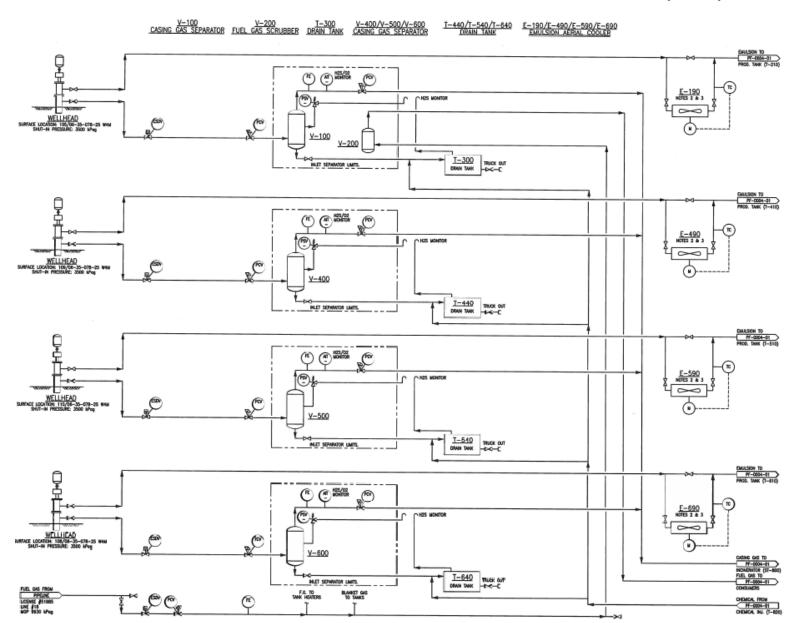
- **1.** Facilities slide 71
- **2. Facility Performance** slide 76
- **3. Measurement & Reporting** slide 79
- 4. Water Production & Injection slide 81
- 5. Sulphur Production slide 82
- **6.** Environmental Issues slide 84
- 7. Compliance Statement slide 85
- **8.** Future Plans slide 86



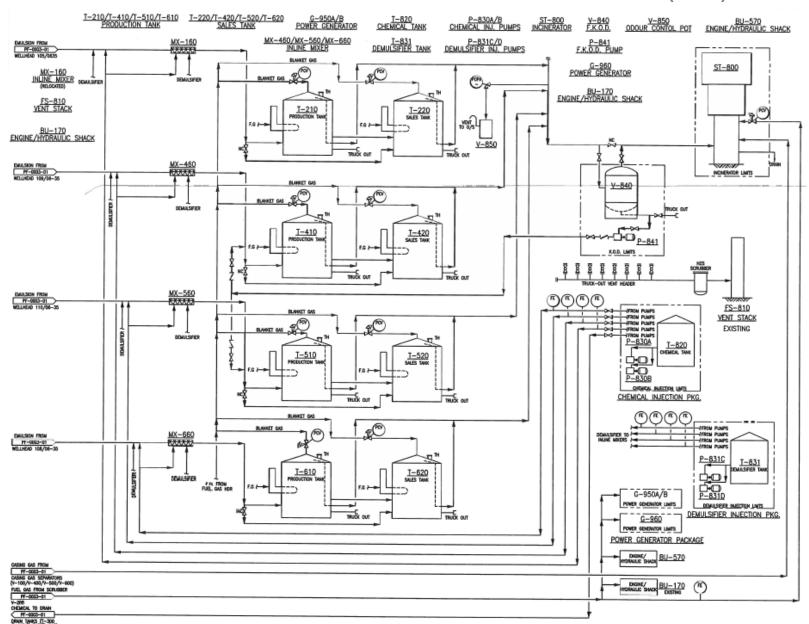
McMullen TCP Project Site (November 7, 2013)



McMullen TCP Plot Plan



McMullen TCP - Production Facilities Plot Plan



McMullen TCP – Production Process Flow (1/2)

McMullen TCP – Production Process Flow (2/2)

Bitumen treatment

- bitumen sales started in November 2012
- H2S scavenger injected to neutralize emulsion to meet sales specifications
- majority of the bitumen was trucked to Tervita High Prairie in 2014

Water treatment

- water trucking started in November 2012
- primarily disposed at Husky's 16-11-078-25W4 (No. 9056B) disposal facility after being treated with H2S scavenger (on site tanks)

Steam generation

there was no steam generation in 2014

- **Power consumed in 2014 -** generated onsite by a 151 kW unit at the injection pad and a 151 kW unit at the production pad
- Fuel gas usage in 2014

	Monthly	y Volume (e3m3)	
Month	04-35-078-25W4 Prod. Pad	03-35-078-25W4 Inj. Pad	Total
Jan-14	108.1	758.2	866.3
Feb-14	99.3	661	760.3
Mar-14	107.6	753	860.6
Apr-14	104.8	634.3	739.1
May-14	105.2	522.7	627.9
Jun-14	96.4	492.4	588.8
Jul-14	95.2	506.2	601.4
Aug-14	98.7	493.6	592.3
Sep-14	90.4	253.5	343.9
Oct-14	100.5	0	100.5
Nov-14	108.7	0	108.7
Dec-14	109	0	109
Grand Total	1223.9	5074.9	6298.8

Shut-in air injection on Sep 18, 2014

Latest facility design for the additional production wells

• incorporates the incineration of all tank vapors and casing gas produced

Green house gas emissions:

	044 0	Oca Frainciana		EDCD License	Exceed ERCB
	014 Green House		ERCB License	License	
CO ₂	CH₄	N₂O	CO₂E	CO ₂	CO ₂
tonnes/year	tonnes/year	tonnes/year	tonnes/year	tonnes/year	Yes/No
13,535.42	221.85	0.21	19,144.9	51,319.00	No

2014 NOx and	d CO Emissions	ERCB License	Exceed ERCB License?
NO _X	СО	NO _x	NO _x
tonnes/year	tonnes/year	tonnes/year	Yes/No
90.64	76.50	182.82	No

Measurement & Reporting

Well production

		105			109		110			108		
Month	Oil (m3)	Water (m3)	Gas (e3m3)	Oil (m3)	Water (m3)	Gas (e3m3)	Oil (m3)	Water (m3)	Gas (e3m3)	Oil (m3)	Water (m3)	Gas (e3m3)
Jan-14	548.9	129.4	27.9	380.3	320.3	107.9	997.9	412.9	169.3	0.0	0.0	8.4
Feb-14	395.0	124.0	20.4	463.7	304.1	150.0	904.1	336.9	152.7	0.0	0.0	7.2
Mar-14	272.9	96.6	82.8	382.4	175.0	103.1	994.8	304.2	156.4	0.0	0.0	0.0
Apr-14	553.5	123.2	173.3	507.8	296.5	155.8	740.8	223.3	42.6	0.0	0.0	0.0
May-14	244.5	53.6	70.4	492.5	236.1	132.9	1042.1	278.5	151.2	-35.2	35.2	0.0
Jun-14	298.1	54.8	34.6	448.8	232.5	171.1	829.3	226.8	148.7	0.0	0.0	0.0
Jul-14	265.6	78.6	62.9	411.7	159.1	140.7	712.5	208.8	143.5	0.0	0.0	0.0
Aug-14	189.3	137.2	73.0	365.8	244.8	157.4	735.4	215.4	141.7	0.0	0.0	0.0
Sep-14	60.5	8.0	0.0	305.1	188.7	99.5	891.0	238.1	194.0	0.0	0.0	3.7
Oct-14	416.3	104.3	62.7	278.5	145.1	104.8	926.0	250.6	103.4	250.7	246.0	22.8
Nov-14	202.5	82.6	77.4	272.5	141.8	99.2	716.1	234.8	130.3	171.2	199.2	33.2
Dec-14	161.4	66.7	64.7	285.5	184.6	113.2	565.5	176.8	145.7	151.3	149.7	29.5
Total	3608.5	1059.0	750.2	4594.5	2628.6	1535.6	10055.4	3106.9	1679.3	537.9	630.1	104.7

Each well is treated as a single well battery:

• liquids: sales = production

gas: individual orifice meter used to measure gas production

Proration factors – N/A

- Optimization of test durations N/A
- New measurement technology No

2014 Injection volumes

- no steam was injected in 2014
- air injection volumes
 - air is compressed through a screw and a reciprocating compressor
 - air is then metered using an orifice plate for each individual well

Air Injection Volumes at 03-35-078-25W4 Injection Pad - Per Well

Month	Volume (e3m3)	Daily Rate/Well (e3m3/d)
Jan-14	8525	91
Feb-14	7126	84
Mar-14	8155	87
Apr-14	7053	78
May-14	6020	65
Jun-14	5434	60
Jul-14	5719	61
Aug-14	5701	61
Sep-14	3161	35
Oct-14	0	0
Nov-14	0	0
Dec-14	0	0

Shut-in air injection on Sep 18, 2014

Produced water volumes

	105	109	110	108
2014 Total Water (m3)	1059.0	2628.6	3106.9	630.1

- No produced water recycle volumes or percent
- Disposal wells
 - 16-11-078-25W4 and 10-23-078-25W4
 - Approval No. 9056B

• There is no sulphur recovery (all produced gas is incinerated at 04-35-78-25W4)

Summary of 2014 Quarterly SO ₂ Emissions										
Months	Monthly Sulphur (tonnes)	Monthly SO ₂ ^{a)} (tonnes)	Quarter	Quarterly SO2 (tonnes)						
January	0.49	0.99								
February	0.47	0.94	1	2.92						
March	0.50	0.99								
April	0.31	0.62								
May	0.47	0.95	2	3.49						
June	0.96	1.92								
July	0.46	0.91								
August	0.48	0.96	3	2.95						
September	0.54	1.08								
October	0.41	0.82								
November	0.51	1.01	4	1.84						
December	0.00	0.00								

Sulphur balance

SO₂ emissions based on 100% conversion of H₂S to SO₂

Sulphur emissions

 expected to remain far below 1 tonne/d in the near future, therefore no sulphur recovery methods will be required

Facility

approved for 0.41 tonnes of SO₂ per day

Month/Year	Jan-2014	Feb-2014	Mar-2014	Apr-2014	May-2014	Jun-2014	Jul-2014	Aug-2014	Sep-2014	Oct-2014	Nov-2014	Dec-2014
Daily Peak SO2 (t/d)	0.040	0.037	0.038	0.028	0.040	0.037	0.036	0.041	0.043	0.036	0.038	0.000
AESRD Approved SO2 (t/d)	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
Exceeds Approval limit (Yes/No)	No											

McMullen Project - Under EPEA approvals

there is no requirement to monitor ambient air quality

Environmental Issues - Reporting

Annual Monitoring and Reporting (March 31st)

- Air emission and summary and evaluation report
- Industrial wastewater and runoff report
- Groundwater monitoring program
 - shallow groundwater no indication of adverse impacts
 - Quaternary channel thermal temp increase ~2.5°C (from baseline)
 - Dissolved arsenic concentrations consistent with baseline values
 - Continue monitoring per EPEA Approval

Other Monitoring and Reporting

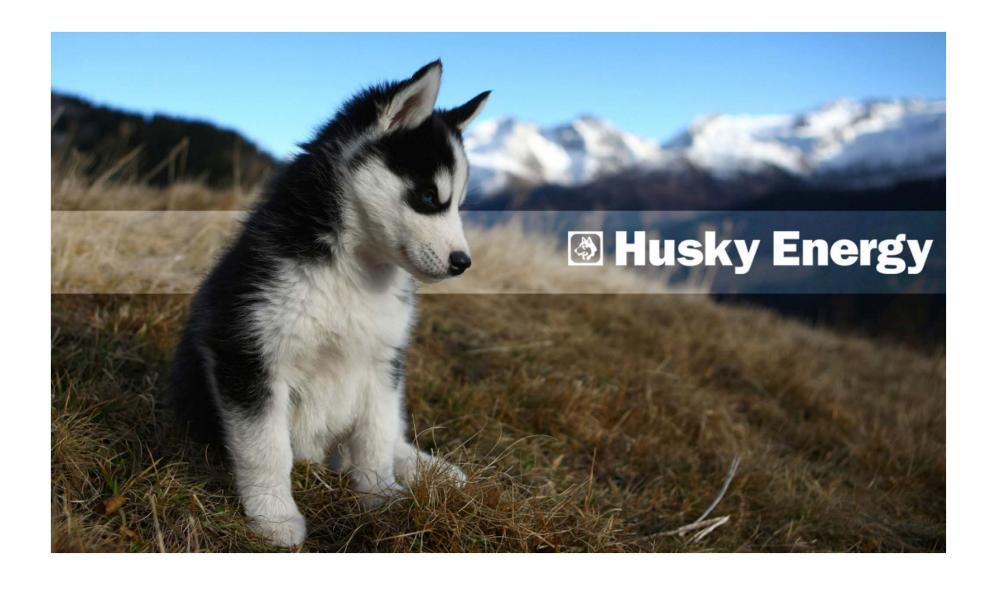
- Soil monitoring (2014 and 2018)
- Soil management Plan Proposal 2015
- Soil management Program 2015
 - required as a result of salinity exceedance in the top 15 cm of soil near the tank farm load outs
- Participation in Alberta Biodiversity Monitoring Institute (ABMI)

Compliance

• To the best of Husky's knowledge, we are currently compliant with all regulatory approval conditions and associated requirements

Future Plans – Major Activities & Target Dates

Request for extension of scheme approval and confidential period


Approval to July 31, 2018 and confidential status to July 31, 2016

Ongoing monitoring Pilot Project performance

- thermal effect without air injection and combustion
- gather additional key performance data
- critical learnings for future development design

Pilot expansion application activities (future development)

- CMG numerical simulation completed in 2015
- no expansion activities are planned as Project is not economic at current oil price

