Cenovus Foster Creek in-situ oil sands scheme (8623) update for 2014

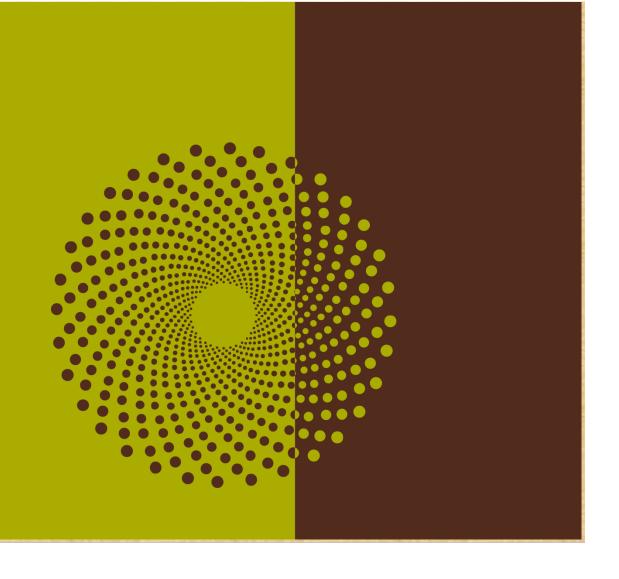
Subsurface Calgary | May 27, 2015

Advisory

This presentation contains information in compliance with:

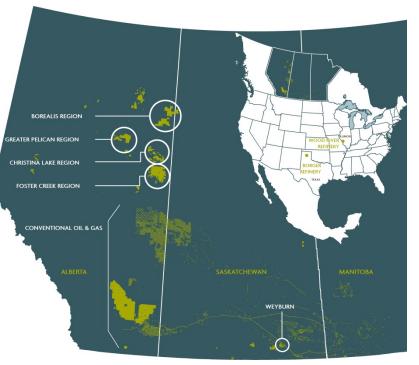
AER Directive 054 - Performance Presentations, Auditing, and Surveillance of In Situ Oil Sands Schemes

Section 3.1.1 Subsurface Issues Related to Resource Evaluation and Recovery


This document contains forward-looking information prepared and submitted pursuant to Alberta regulatory requirements and is not intended to be relied upon for the purpose of making investment decisions, including without limitation, to purchase, hold or sell any securities of Cenovus Energy Inc. The resources estimates contained herein are not reported in accordance with National Instrument 51-101 and are provided solely for the purpose of complying with Alberta regulatory requirements.

Additional information regarding Cenovus Energy Inc. is available at cenovus.com.

Current project status Subsection 3.1.1-1



Strong integrated portfolio

TSX, NYSE | CVE

Enterprise value	C\$25 billion
Shares outstanding	829 MM
2015F production	
Oil & NGLs	204 Mbbls/d
Natural gas	438 MMcf/d
2014 proved & probable reserves	3.9 BBOE
Bitumen	
Economic contingent resources*	9.3 Bbbls
Discovered bitumen initially in place*	93 Bbbls
Lease rights**	1.5 MM net acres
P&NG rights	5.6 MM net acres
Refining capacity	230 Mbbls/d net

Values are approximate. Forecast production based on midpoints of January 28, 2015 guidance. Cenovus land at December 31, 2014. *See advisory. **Includes an additional 0.5 million net acres of exclusive lease rights to lease on our behalf and our assignee's behalf.

Foster Creek – current project status

Aerial shot of Foster Creek facility, and steam and emulsion lines $% \left({{{\rm{A}}_{\rm{B}}}} \right)$

Note that production volumes refer to total cumulative production capacity

- Phase A 20k bbls/d on October 2001 (3,180 m3/d)
- 80 MW Cogen on Q1 2003
- Phase B 30k bbls/d (4,770 m3/d) complete 2004
- Phase C 60k bbls/d complete 2006 (9,534 m3/d)
- Phases D & E 120k bbls/d complete 2009 (19,078 m3/d)
- Water treating debottleneck and cooling loop complete 2010
- Phase F 150k bbls/d complete 2014
- Q1 2015 oil production 135,803 bbls/d (21,580 m3/d)
- Record oil production day 148,971 bbl (23,673 m3)
- Approved for Phases A J

Project status – phase D and E update

Main Plant:

- 120,000 bbls/d (19,078 m³/d) oil treating design capacity commissioned in 2009
- Debottleneck on water treating capacity complete in 2010
 - 2014 annualized average was 118,344 bbls/d (18,806 m³/d)
 - 2014 exit rate, Dec 2014, was 140,066 bbls/d (22,258 m³/d)

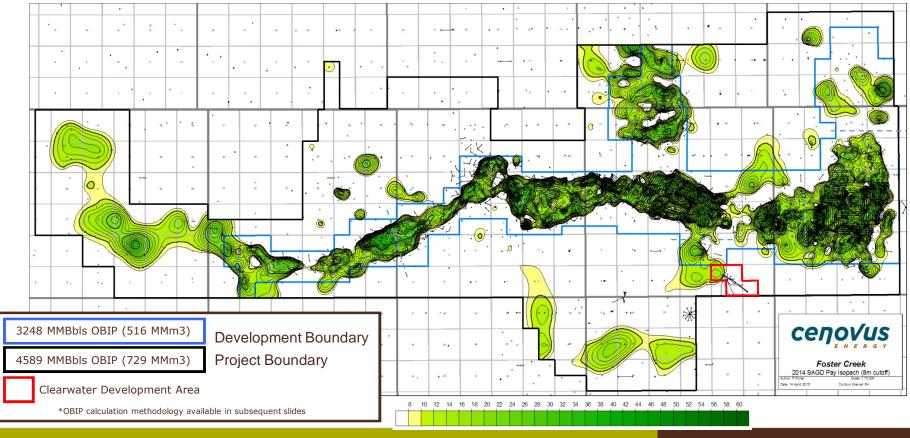
Phases A - E well update:

- E16 Wedge Well[™] technology pad on production in June 2014
- E20 Wedge Well[™] technology pad on production in August 2014
- E02 Wedge Well[™] technology pad on production in September 2014
- E03 Wedge Well[™] technology pad on production in November 2014
- E19 Wedge Well[™] technology pad on production in December 2014

Project status – phase F, G and H expansion

Expansions have the following design capacities:

- Phase F 30k bbls/d oil, online September 2014
- Phase G 30k bbls/d oil, first production target 2016
- Phase H 30k bbls/d oil, deferred


Phase F well update:

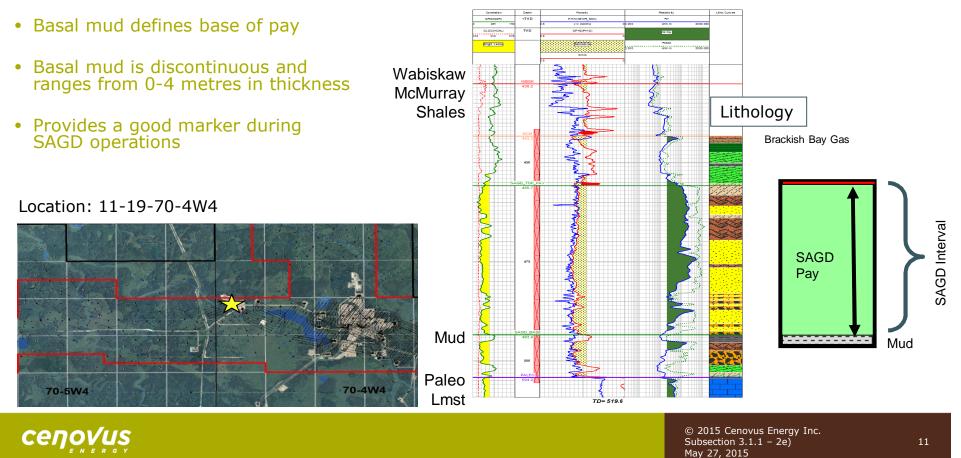
- E07 Pad on production in August 2014
- E14 Pad on production in October 2014
- E42 Pad on production in November 2014
- W06 Pad on production in November 2014
- W03 Pad on production in December 2014
- W08 Pad on production in March 2015

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 1) May 27, 2015

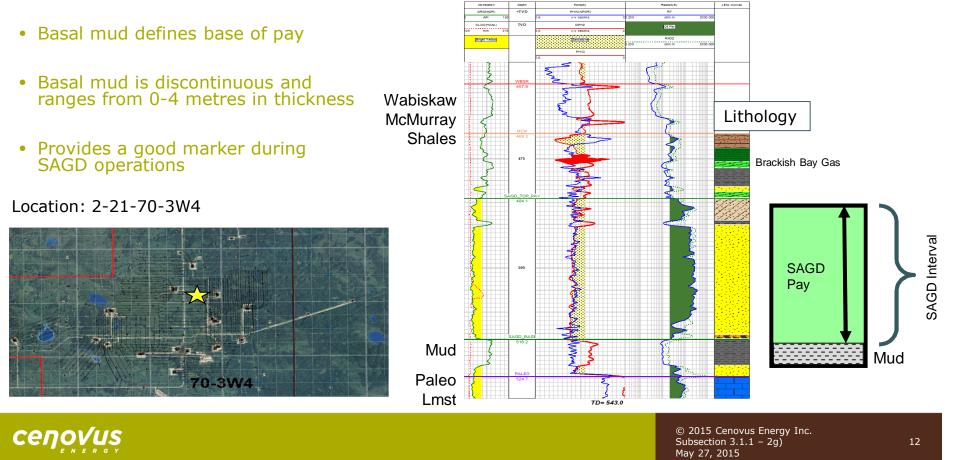
Current Project Status – SAGD Resource

© 2015 Cenovus Energy Inc. May 27, 2015

9


Reservoir characteristics

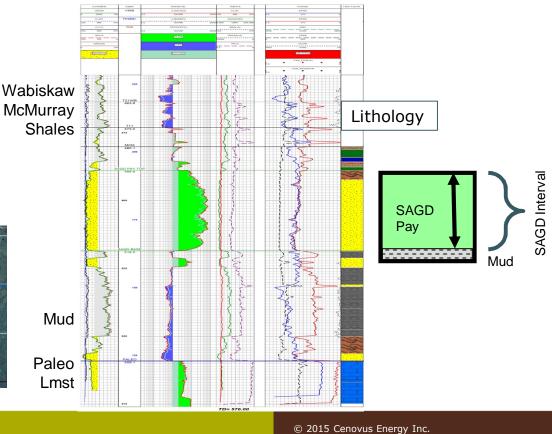
Reservoir Characteristic	West Area	Central Area	East Area
Depth (m subsea)	180 - 225	180 - 225	180 – 225
Thickness (m)	Up to 30+	Up to 30+	Up to 30+
Porosity (%)	34%	34%	32%
Horizontal Permeability (D)	Up to 10 D	Up to 10 D	Up to 8 D
Vertical Permeability (D)	Up to 8 D	Up to 8 D	Up to 6 D
Oil Saturation	~0.85 (0.50 in transition)	~0.85 (0.50 in transition)	~0.85 (0.50 in transition)
Water Saturation	~0.15 (0.50 in transition)	~0.15 (0.50 in transition)	~0.15 (0.50 in transition)
Original Pressure (kPa)	~2700	~2700	~2700
Original Temperature (°C)	12 °C	12 °C	12 °C


селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.1 - 2b) May 27, 2015

Composite type log: central wells

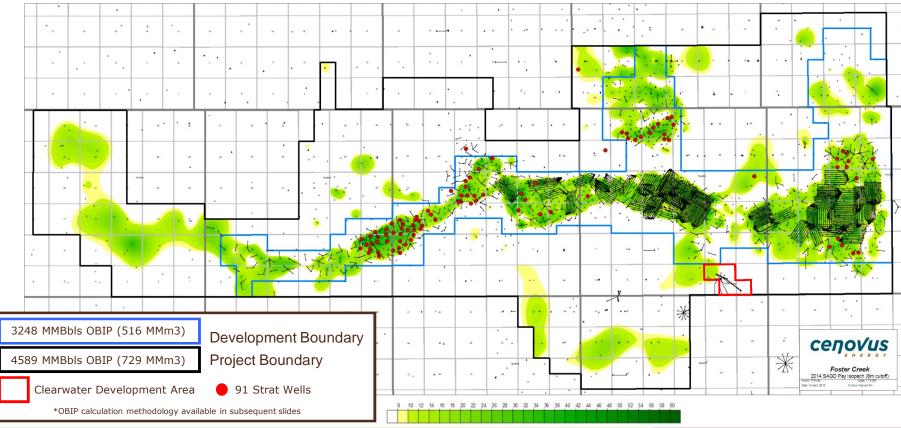
Composite type log: east wells


Composite type log: west wells

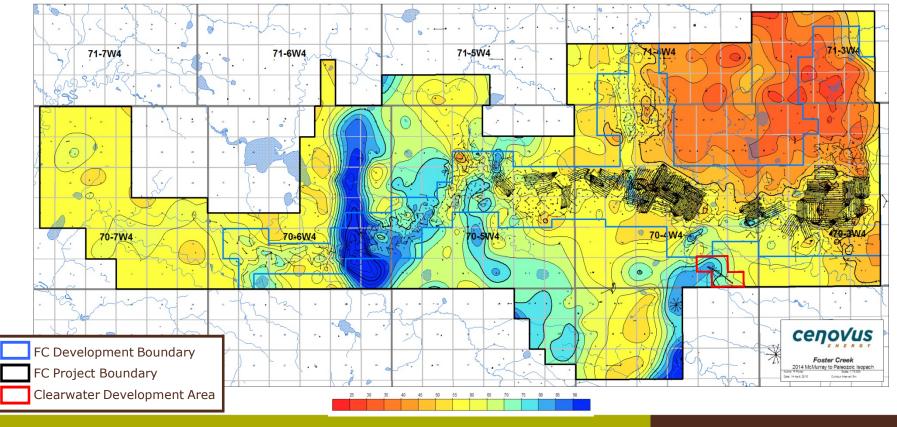
- Basal mud defines base of pay
 Basal mud is discontinuous and ranges from 0-4 metres in thickness
 Wabiskaw
 - Provides a good marker during SAGD operations

Location: 16-12-70-6W4

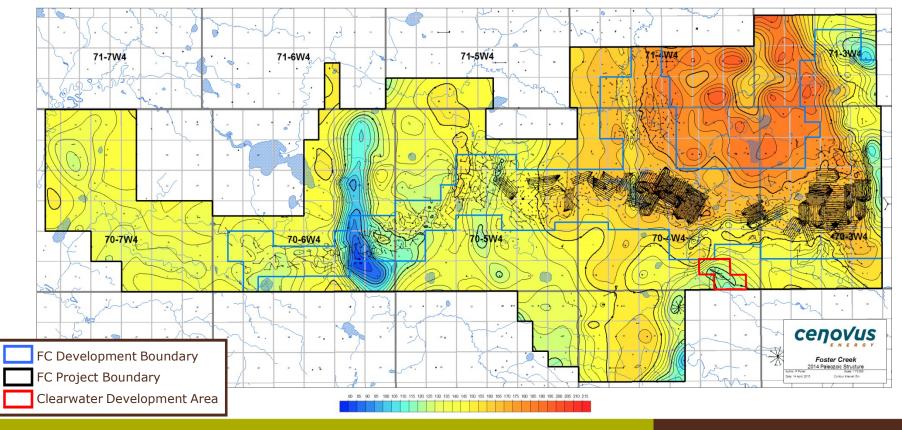
село/из


Subsection 3.1.1 – 2g) May 27, 2015 13

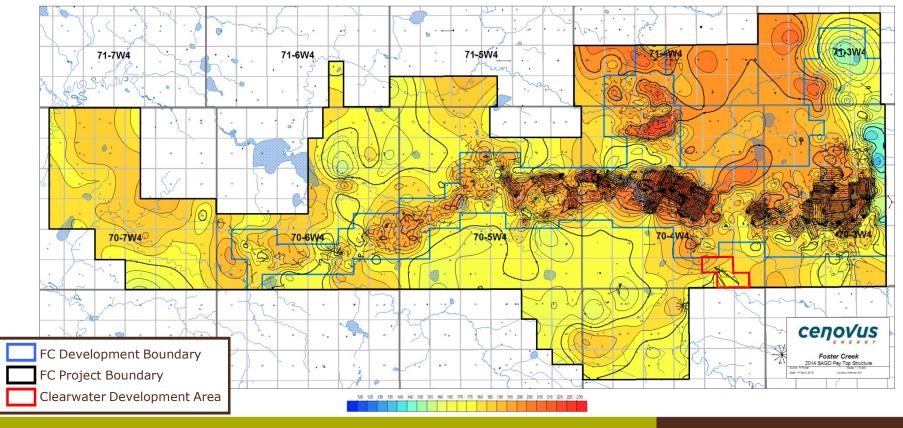
Maps and core Subsection 3.1.1 – 2, c, d and f)



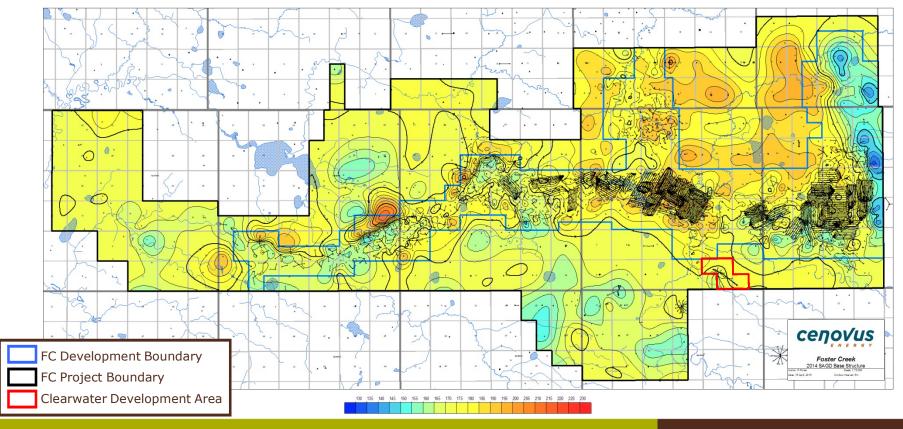
2014 SAGD Pay Isopach (2015 Strats)



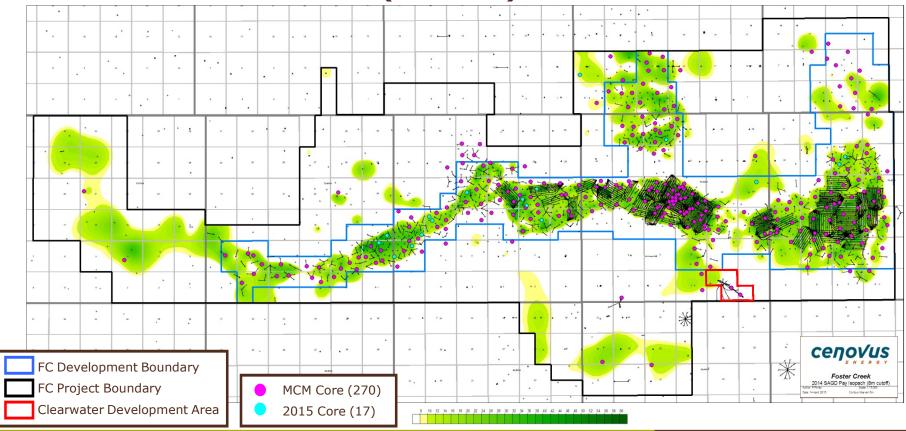
McMurray to Paleozoic Isopach


селоуиз

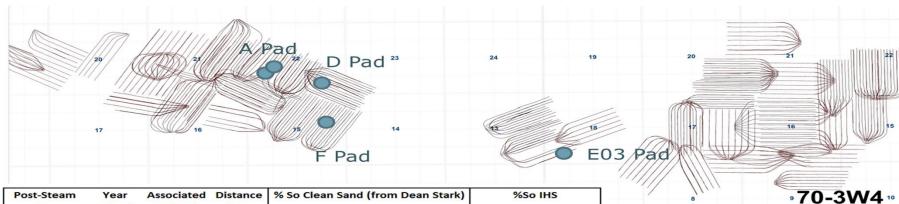
Paleozoic Structure


селоуиз

SAGD Pay Top Structure

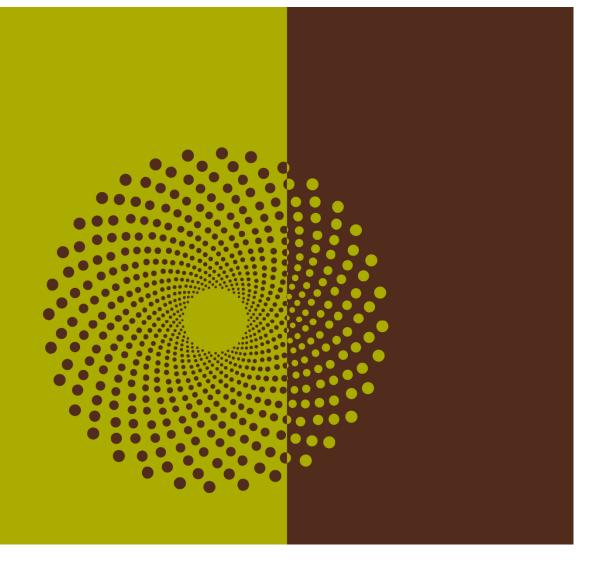

селоуиз

SAGD Base Structure

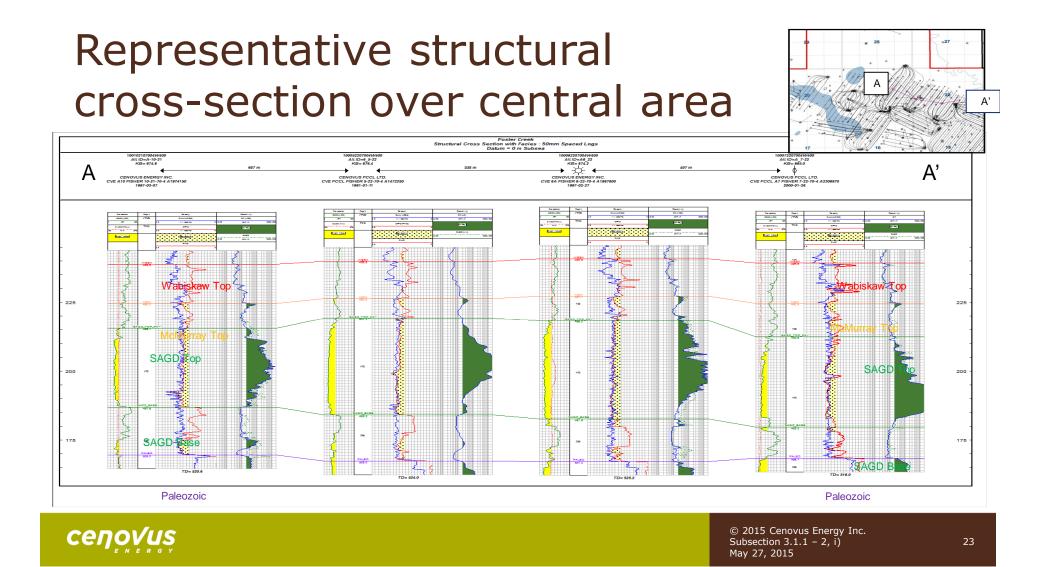


Cored Locations (2015)

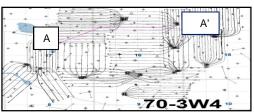
Post-steam core locations

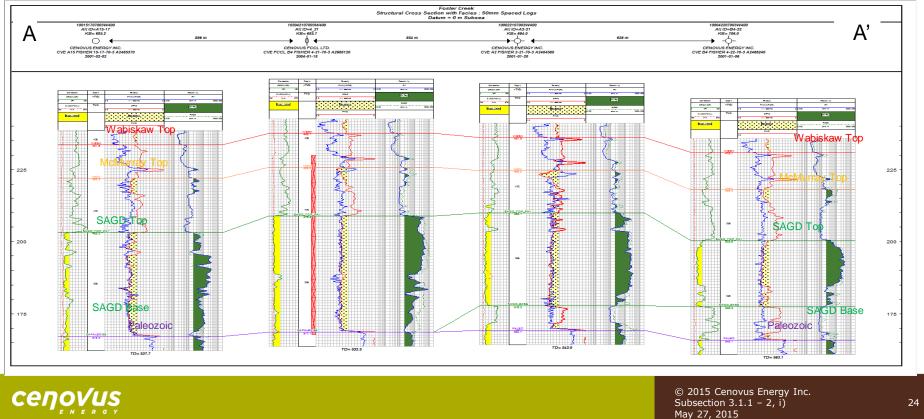

. obt otoutin		rissociated	Distance	/ o o o o o o o o o o o o o o o o o o o	(in one of our of and)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Core	Cored	Well Pair	from Well Pair	Pre	Post	Pre	Post
			a contra contra de la contra de l		(in steam chamber)		
3A5-22-70-4	2005	A3	10	92	11-26%	No Lats	No Lats
2D2-22-70-4	2010	D21	27	90	1-21%	65-83%	14-60%
5-22-70-4	2011	A3	17	88	3-20%	No Lats	No Lats
2B9-15-70-4	2012	FP4	32	90	2-34%	No Lats	No Lats
D14-18-70-3	2013	E0306	21	N/A	2-26%	N/A	8-80%

селоуиз

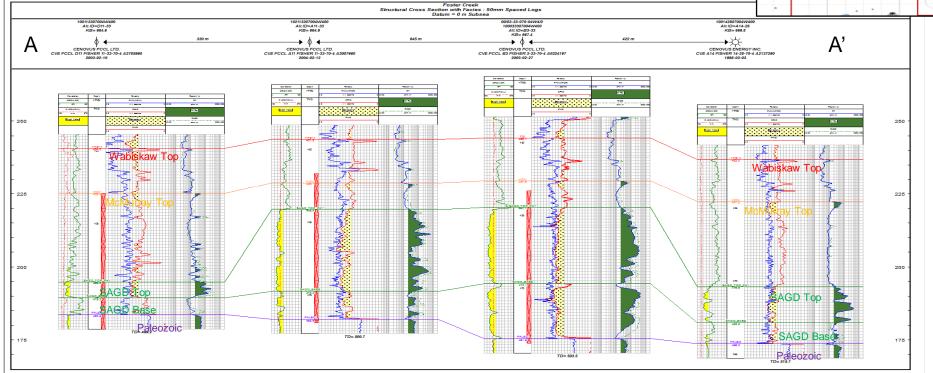

© 2015 Cenovus Energy Inc. Subsection 3.1.1 - 2f) May 27, 2015

21

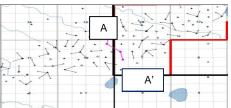

Cross-sections Subsection 3.1.1 - 2, i)






Representative structural cross-section over East area

Representative structural cross-section over North area



© 2015 Cenovus Energy Inc. Subsection 3.1.1 - 2, i) May 27, 2015

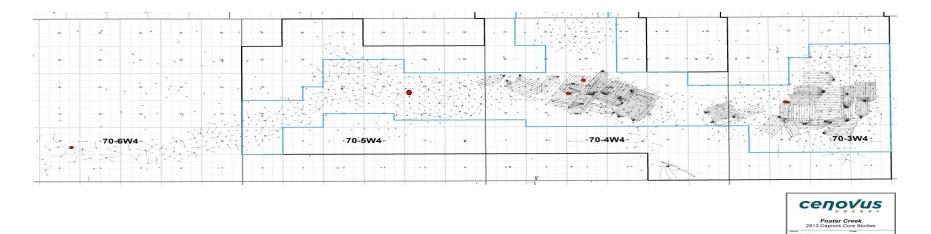
Representative structural cross-section over West area

26

Subsection 3.1.1 - 2, i)

May 27, 2015

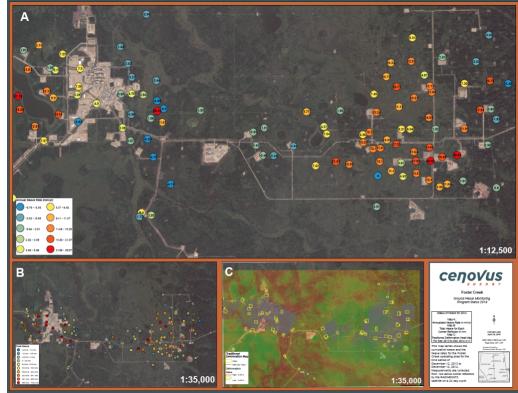
Geo-mechanical data Subsection 3.1.1 - 2, j)



Geomechanical data

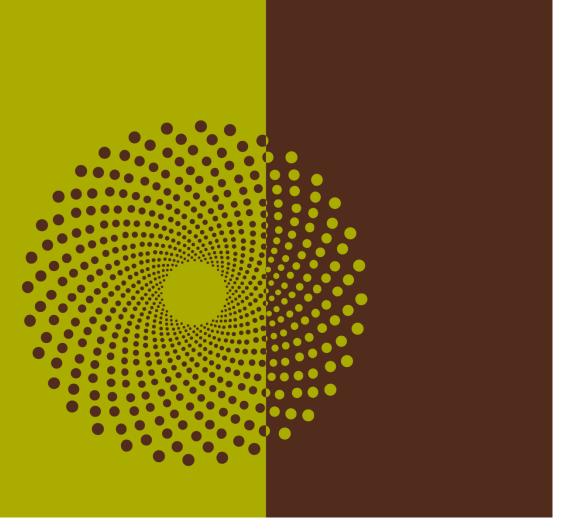
Caprock studies continue on Colorado Shale cores 104132107004W400 (JP09), 1021417003W400 (E12W8) and 105112107004W400, and 102052307005W400 (2015)

Mechanical testing of T31 Shale being carried out by Professor Chalaturnyk at University of Alberta on 1AA080807006W400

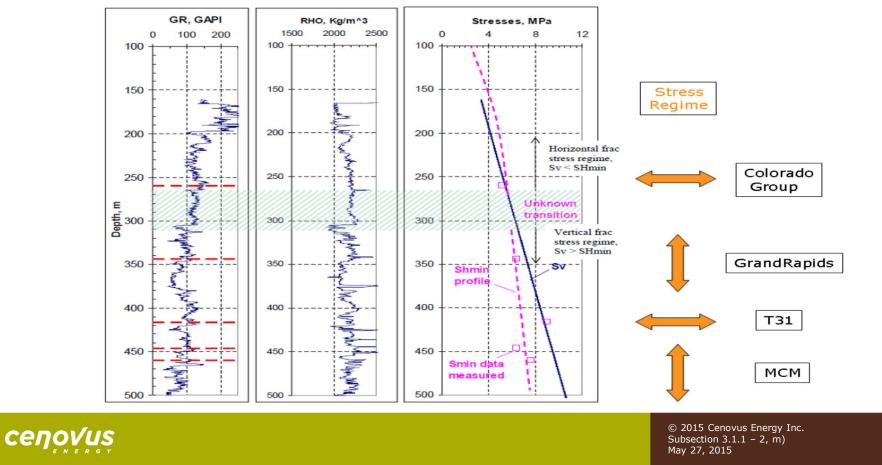

Subsection 3.1.1 – 2, k)

2014 surface heave

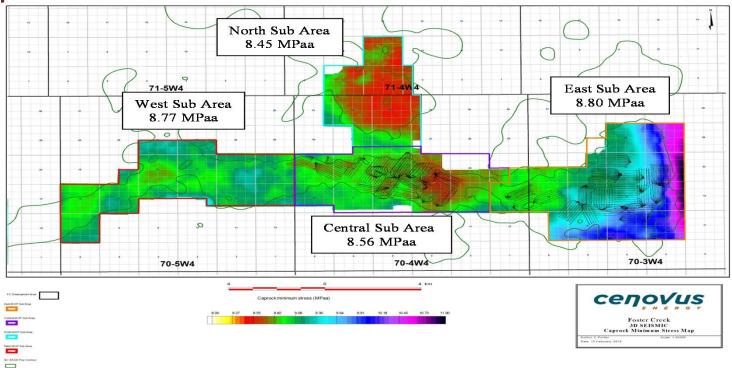
Active CRs122New installs – west area14



© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 2, k) May 27, 2015


30

Caprock integrity Subsection 3.1.1 – 2, m)



Caprock minimum in-situ stress

Minimum in-situ stress values in the caprock vary across the project Smallest minimum in-situ stress values in each sub-area are shown in the above map

селоуия	© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 2, m) May 27, 2015	33
---------	--	----

Criteria for determining caprock integrity

Cenovus determines the minimum in-situ stress of the caprock over the project area through mini frac testing and seismic mapping

Minimum in-situ stresses have shown variability across our development area

Current project contains four regions with different approved MOP values

- North 6.6 MPag
- Central 6.7 MPag
- West 6.9 MPag
- East 6.9 MPag

Operating pressures in the project vary through the various well stages

- steam stimulation/circulation: (5.5 6.6 MPa)*
- ramp-up: (3.5 5.5 MPa)
- normal operating conditions: (2.0 3.5 MPa)

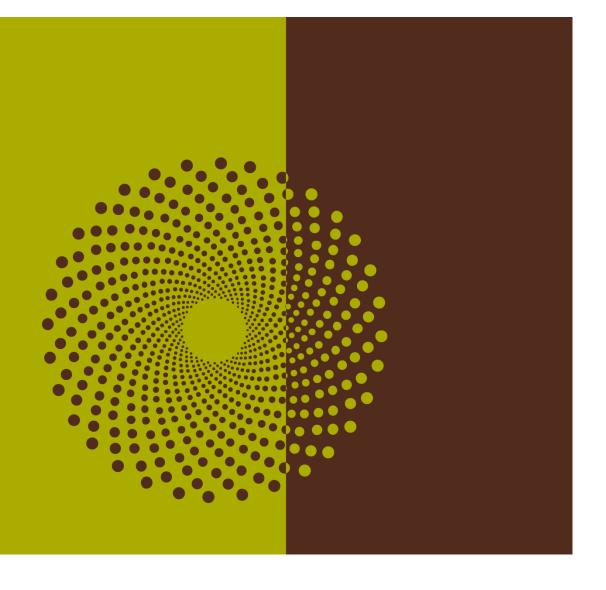
* - Note that this upper limit is specific to the MOP of each region

селоѵиѕ	© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 2, m) 3 May 27 2015
ENERGI	May 27, 2015

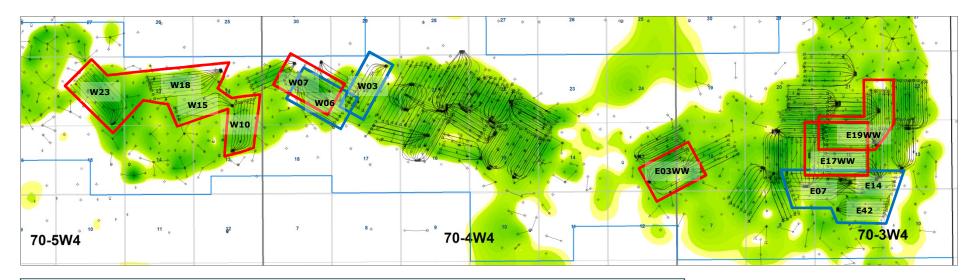
Caprock Monitoring Plans

Cenovus monitors caprock integrity through:

1. SAGD injection pressure monitoring


2. Piezometer monitoring in the T31 caprock

- Previously 3 locations
- Added an additional 3 locations in 2015
- 3. Heave monitoring
- 4. 4D seismic monitoring


© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 2, m) May 27, 2015

Drilling and completions Subsection 3.1.1 - 3)

2014-2015 New SAGD Well Pairs & Infill Drilling

Steam Requirements:

-Phase F steam allocated to new phase F pads

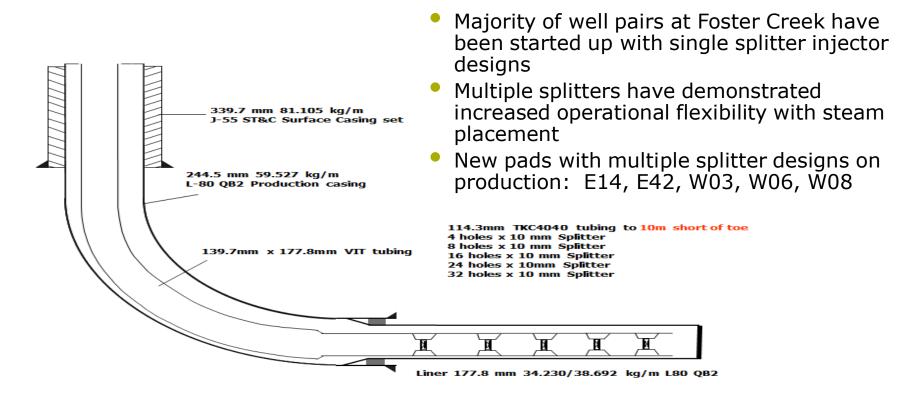
-Existing A-E steam allocated to maintain and optimize reservoir pressures at A-E pads.

2014-2015 Drilling
 2014-2015 On Production

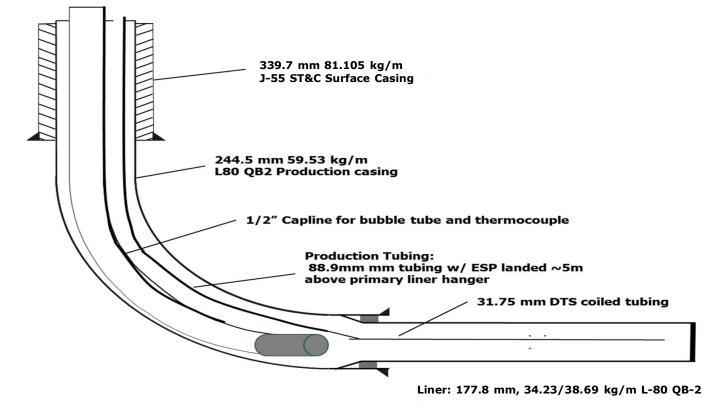
селоуия	© 2015 Cenovus Energy Inc. May 27, 2015	37
---------	--	----

Re-drills and re-entries

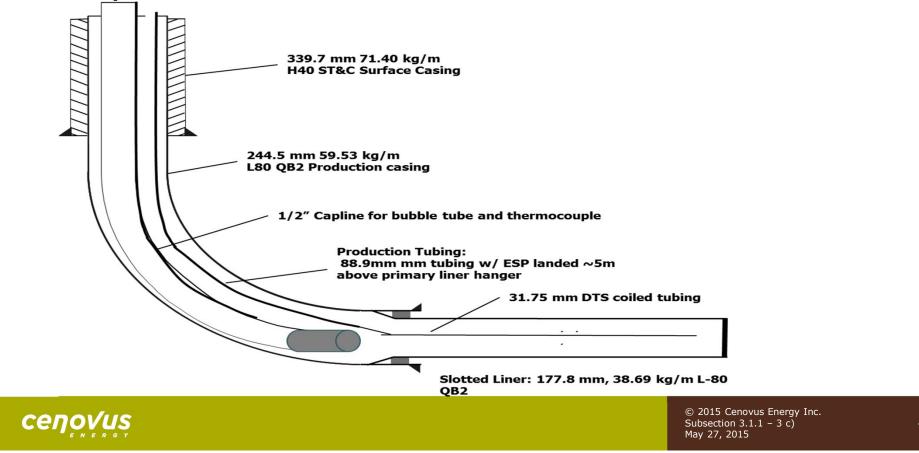
List of re-drill and re-entry wells in Foster Creek since January 1, 2014


Well	Туре	Drill Start	Drill End	Reason for remediation
W02P05-1	Step-out	2014-01-14	2014-01-29	Primary Liner failure in the Hz slotted section of the well
E12P06-1	Step-out	2014-04-16	2014-04-29	Intermediate casing failure
E16P05-1	Step-out	2014-04-20	2014-05-02	Primary Liner failure in the Hz slotted section of the well
E12P04-1	Step-out	2014-04-30	2014-05-16	Intermediate casing failure
E08P04	Re-entry	2014-05-21	2014-05-26	Primary Liner failure in the Hz slotted section of the well
E25P05	Re-entry	2014-05-31	2014-06-06	Primary Liner failure in the Hz slotted section of the well
E04P01-1	Step-out	2014-05-31	2014-06-12	Primary Liner failure in the Hz slotted section of the well
E24P05-1	Step-out	2014-06-14	2014-06-22	Primary Liner failure in the Hz slotted section of the well
E12P07-1	Step-out	2014-06-24	2014-07-04	Intermediate casing failure
E15P11-1	Step-out	2014-07-13	2014-07-23	Primary Liner failure in the Hz slotted section of the well
E03P01-1	Step-out	2014-07-14	2014-07-24	Primary Liner failure in the Hz slotted section of the well
E15I10	Re-entry	2014-08-06	2014-08-13	Re-develop to access new reserves
E19P11	Re-entry	2014-08-18	2014-08-26	Primary Liner failure in the Hz slotted section of the well
E25P01	Re-entry	2014-10-28	2014-11-07	Primary Liner failure in the Hz slotted section of the well
E25I01-1	Step-out	2014-11-10	2014-11-23	Primary Liner failure in the Hz slotted section of the well
E08P01	Re-entry	2014-11-18	2014-11-24	Primary Liner failure in the Hz slotted section of the well
E21I01-1	Step-out	2014-11-28	2014-12-08	Re-develop to access new reserves
E12I09-1	Step-out	2014-12-08	2015-01-16	Re-develop to access new reserves
E12P08-1	Step-out	2015-01-18	2015-01-28	Primary Liner failure in the Hz slotted section of the well
E24P06-3	Step-out	2015-02-01	2015-02-11	Primary Liner failure in the Hz slotted section of the well

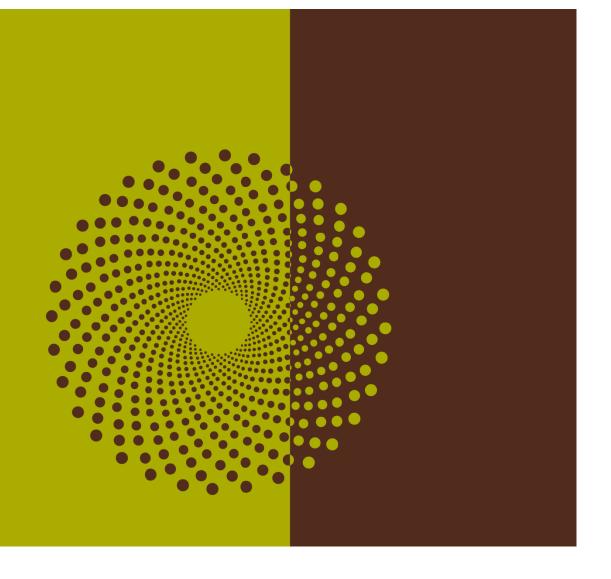
*Liner failures caused by steam jetting.


© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 3 a) May 27, 2015

Standard injector completion



Standard producer ESP completion



Standard Wedge Well[™] technology completion

Artificial lift Subsection 3.1.1 - 4)

Artificial lift

Electric submersible pumps (ESPs)

 all operating SAGD pairs (~ 190 producers) are currently equipped with ESPs. Rod pumps were used previously for wells with difficult start-up.

Rod pumps

- 34/98 operating wells utilizing Wedge Well[™] technology are equipped with rod pumps
- rod pumps at Foster Creek can range from about 0 – 350 m3/d

	ESPs	Rod pumps
Turn down (m ³ /d)	120	0
Max. rate (m ³ /d)	1200	350
Max. operating temp (°C)	218	200+
Number of pumps	254	34
Average run life (months)	12.7	5.0

селоүиş

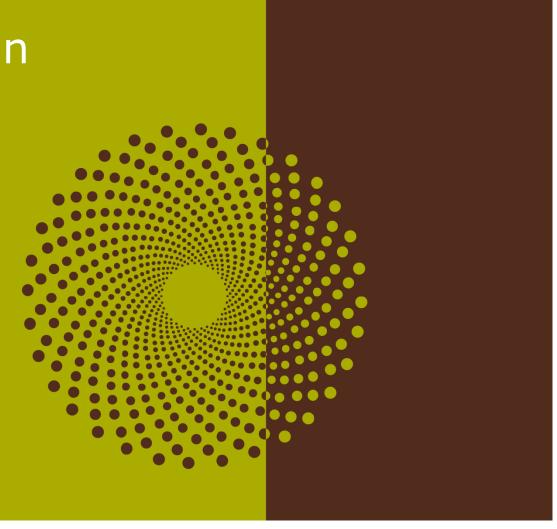
© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 4 a) May 27, 2015

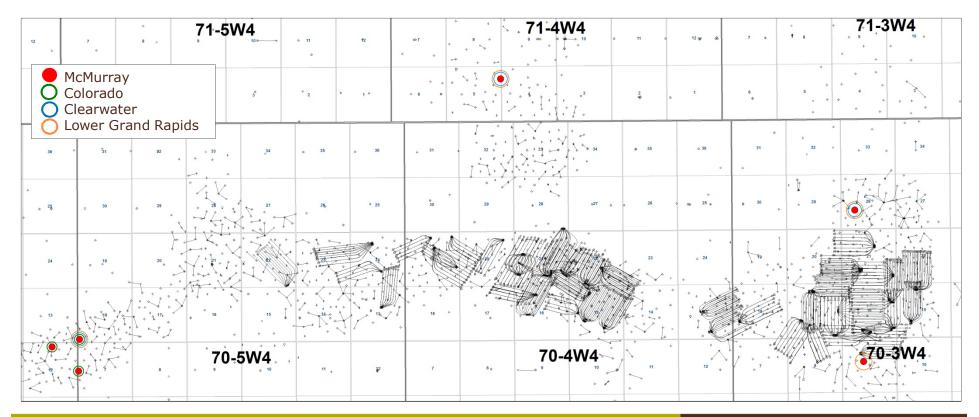
Artificial lift – new technology

ESPs

Working with vendors to increase runtime.

Rod pumps


- Previously utilizing Wedge Well[™] technology
- higher maintenance pump than ESPs, have had problems with sand bridging and can result in slower ramp up to peak production
- All new Wedge Well[™] pads to be produced via ESP

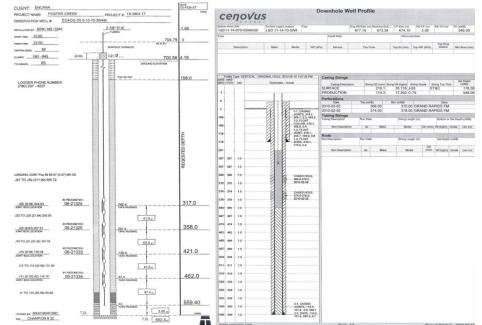

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 4 a) May 27, 2015

Instrumentation in wells Subsection 3.1.1 – 5)

Foster Creek 2015 piezometer locations

село <u>уи</u> я	© 2015 Cenovus Energy Inc. May 27, 2015	46

Piezometer details

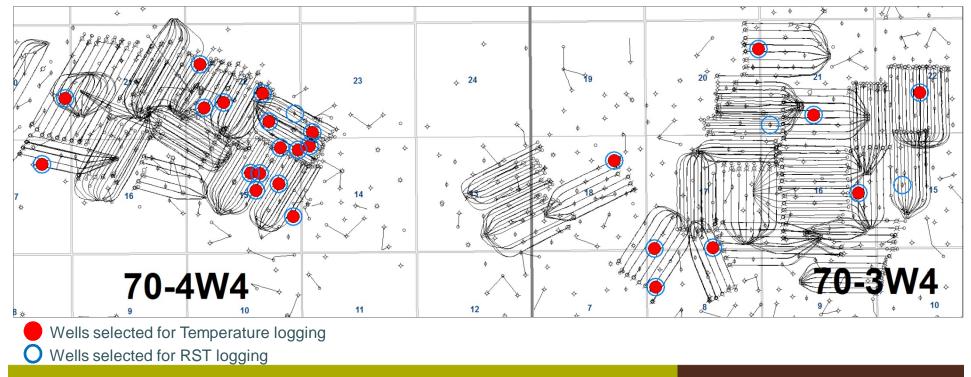

Three installation types:

Cemented tubing - vibrating wire piezometers mounted on tubulars and cemented in place (14 wells)

Hanging wire – pressure / temperature gauges hung from the wellhead to about 10-15m above perforations (9 wells)

Cemented casing – High temperature Optical pressure sensors strapped and cemented to the production casing (29 wells)

Six new McMurray piezometers installed



© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 5 b) May 27, 2015

Foster Creek temperature and RST data

24 observation wells logged to acquire temperature data 27 observation wells logged to acquire RST data

селоуиз

© 2015 Cenovus Energy Inc. May 27, 2015

Instrumentation in SAGD wells SAGD steam injector

blanket gas for pressure measurement

SAGD producer

- 1/2" capline strapped to tubing for bubble tubes and single point thermocouple
- Distributed temperature sensing (DTS) strings installed in all new wells

SAGD using our patented Wedge Well™ technology

- no downhole instrumentation with rod pumps
- new wells with ESPs to be equipped with ½" capline strapped to production tubing string to measure pressure and temperature
- * Schematics can be seen in subsection 3.1.1 3 c)

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 5 b) May 27, 2015

Subsection 3.1.1 – 5 c) and d) – instrumentation data

Requirements under Subsection 3.1.1 5c) and d) are located in the Appendix

 \odot 2015 Cenovus Energy Inc. Subsection 3.1.1 – 5 c) and d) May 27, 2015

Wellbore Integrity Update

Well Integrity – Updates

1. Intermediate Casing Failures:

- Measured by pressure tests
- Concentrated within the Joli Fou but have been noted elsewhere in the Colorado Shale Group, 200-300m SS

2014 Intermediate Casing Failures – all CLOSED

• E12P06; E12P04; GP6; E12P07; E24P02; E12I06

Q1 2015 Intermediate Casing Failures - CLOSED

• E20P06

Селоуиз

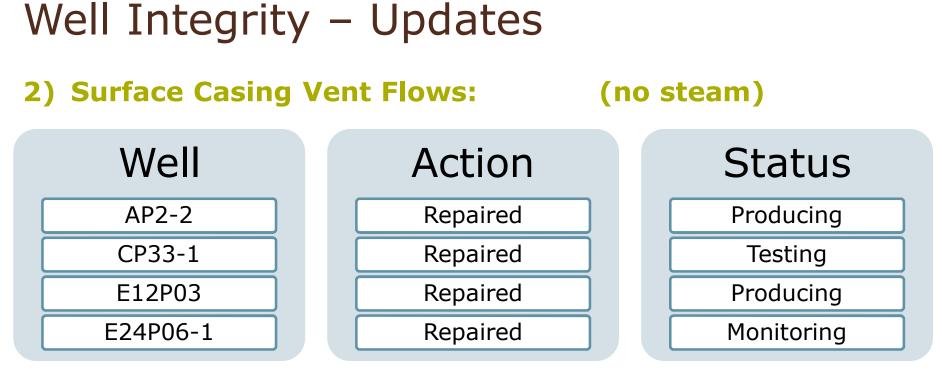
 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. May 27, 2015

2014 Well Integrity – Actions

Strain monitoring wells installed

- Baseline data in non-thermally affected zones
 - 1AB/03-23-070-05W4/00 (W20 Pad)
 - 1AD/05-23-070-05W4/00 (W20 Pad)
 - 100/05-28-070-03W4/00 (E26 Pad)
- >Modelling, geo-mechanical lab testing, core sampling
- Routine Monitoring
 - Scraper/gauge ring runs

© 2015 Cenovus Energy Inc. May 27, 2015


2014 Well Integrity – Actions

> Joint Industry Projects

- Thermal Well Casing Connection Evaluation Protocol (TWCCEP)
- Synergistic Impacts of Thermal-Mechanical Loading & Environmental Corrosion Cracking on Tubular Materials for Thermal Wells
- NSERC/Foundation CMG Industrial Research Chair in Reservoir Geomechanics for Unconventional Resources

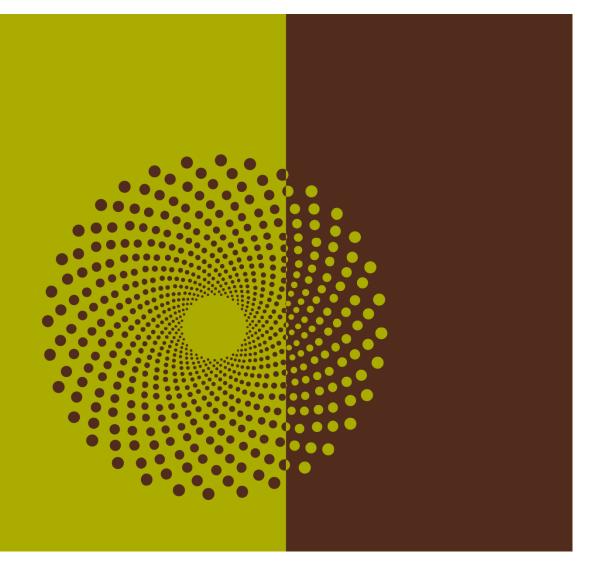
© 2015 Cenovus Energy Inc. May 27, 2015

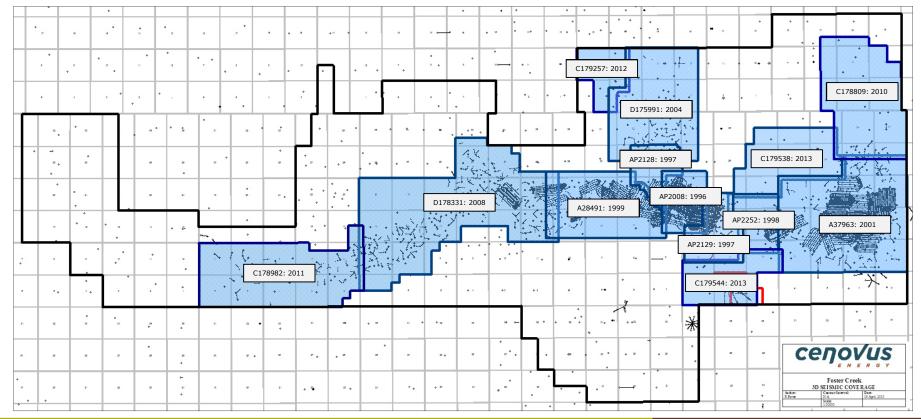
SWS investigation on-going

селоуия	© 2015 Cenovus Energy Inc. May 27, 2015	55
---------	--	----

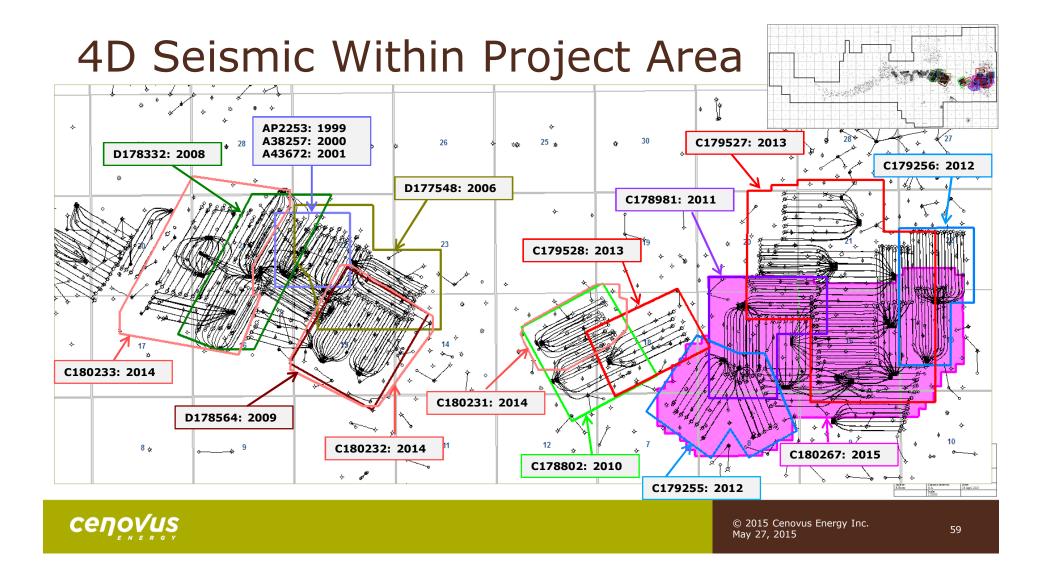
Well Integrity – Updates

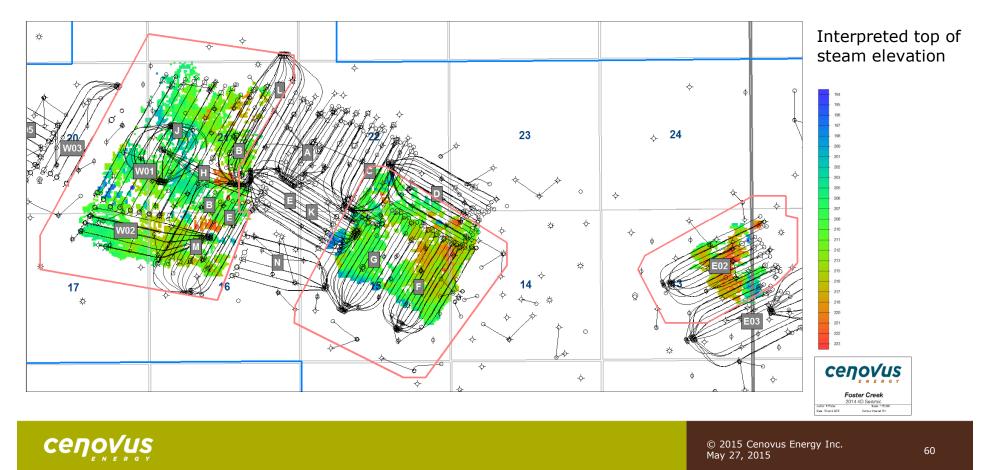
3) Surface Casing Corrosion:

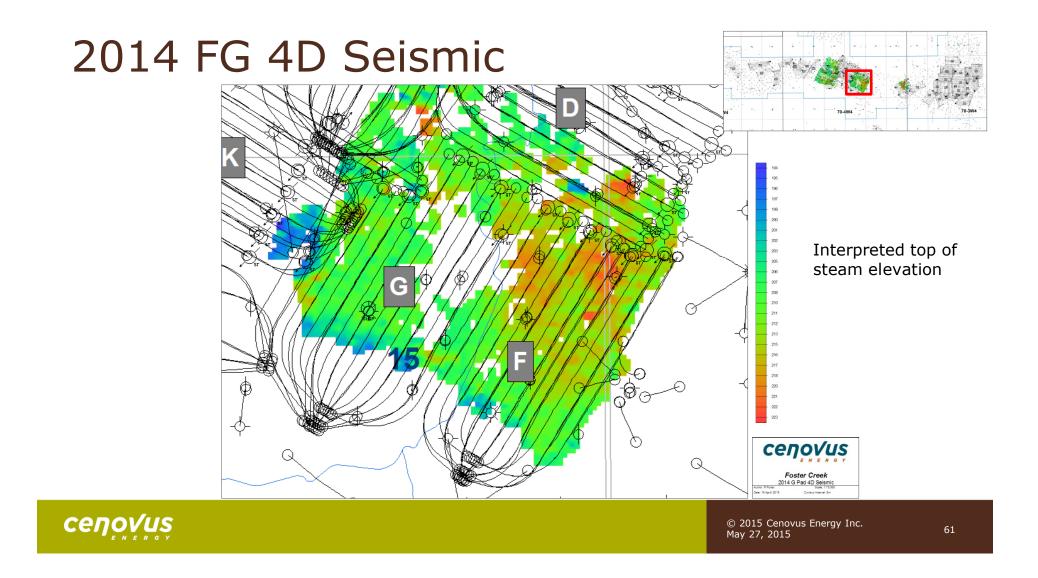

Corrosion Location	Status
Surface Casing Exterior	Mitigation on-going
Surface Casing Interior / Intermediate Casing Exterior	Investigation on-going
Pack-Off	Investigation on-going

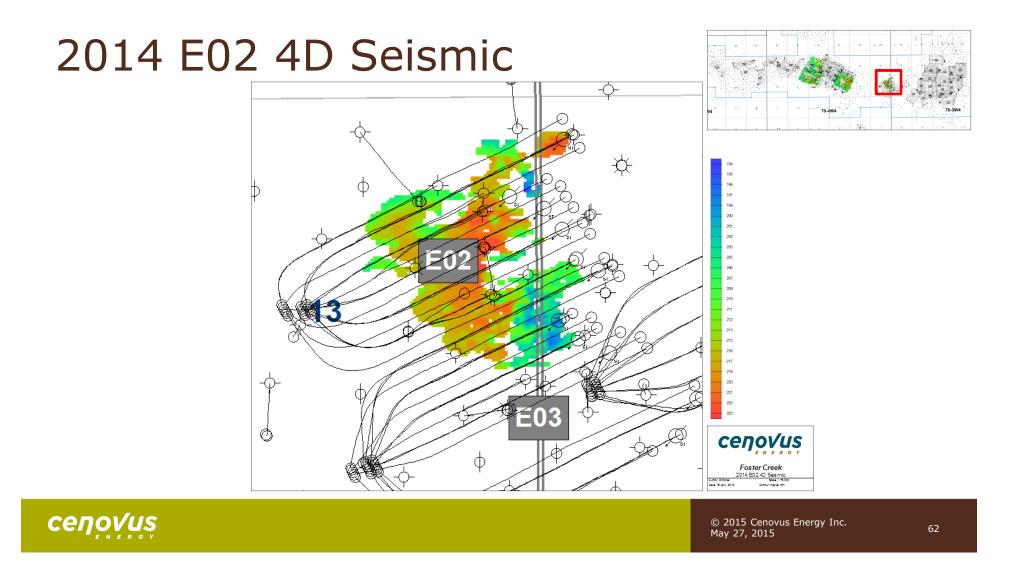

© 2015 Cenovus Energy Inc. May 27, 2015

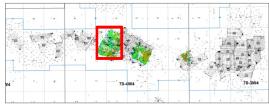
4D seismic Subsection 3.1.1 - 6)

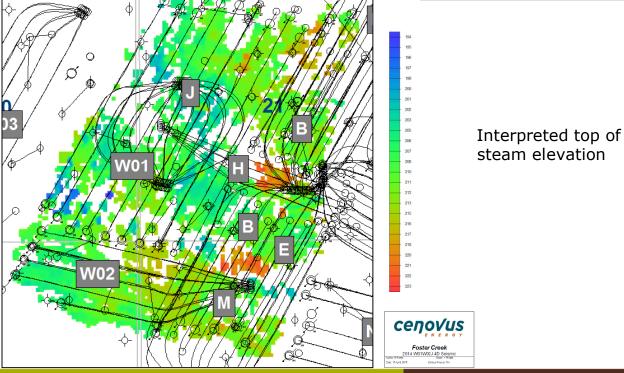

3D Seismic Within Project Area




© 2015 Cenovus Energy Inc. May 27, 2015


58

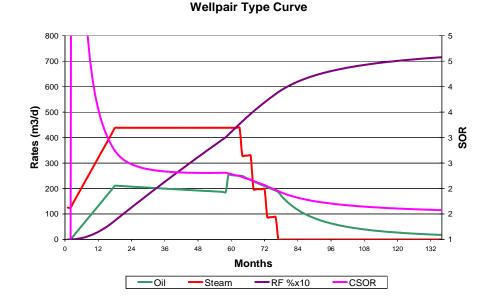

2014 4D Seismic



© 2015 Cenovus Energy Inc. May 27, 2015

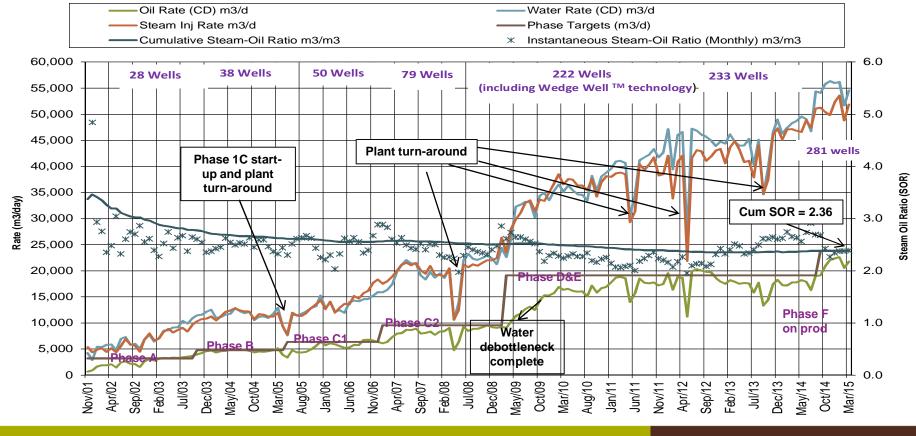
63

Scheme performance Subsection 3.1.1 – 7 a)



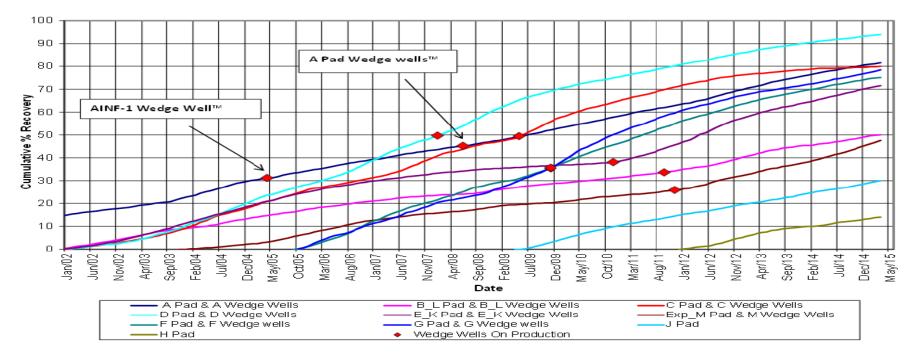
Scheme performance prediction

Predict well pair performance based on modified Butler's equation


Predict well pair CSOR using published CSOR correlations (*Edmunds & Chhina 2002***)**

Generate overall scheme production performance by adding individual well forecasts over time to honour predicted steam capacity and water treating availability

FOSTER CREEK SAGD Totals


селоуиз

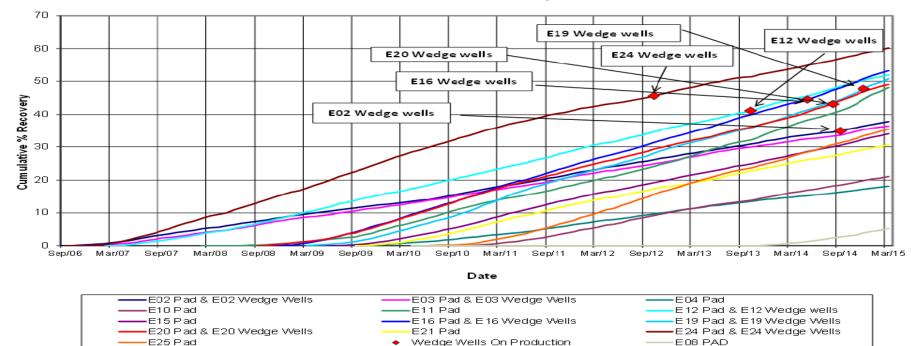
© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7a, ii) May 27, 2015

66

Central - cumulative % recovery SOIP

Foster Creek - Central Pads Cumulative % Recovery SOIP

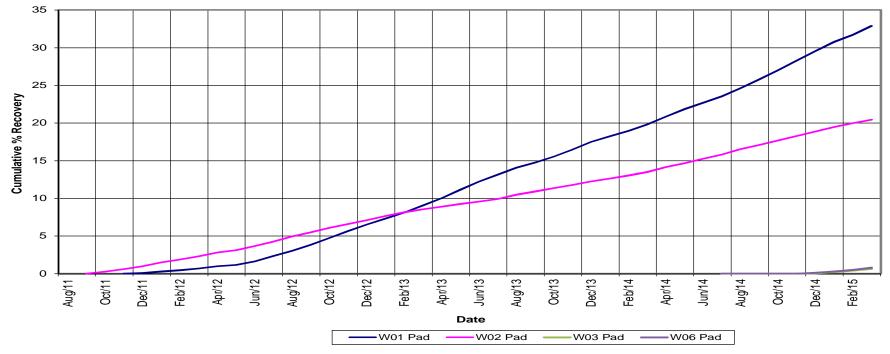
*Note –A35, AINF-6 & AINF-7 volumes included in E Pad


*Note that SOIP calculation methodology is available in subsequent slides

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7a, ii) May 27, 2015

East - cumulative % recovery SOIP

Foster Creek - East Pads Cumulative % Recovery SOIP



*Note that SOIP calculation methodology is available in subsequent slides

селоуиз	© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7a, ii) May 27, 2015	68
		68

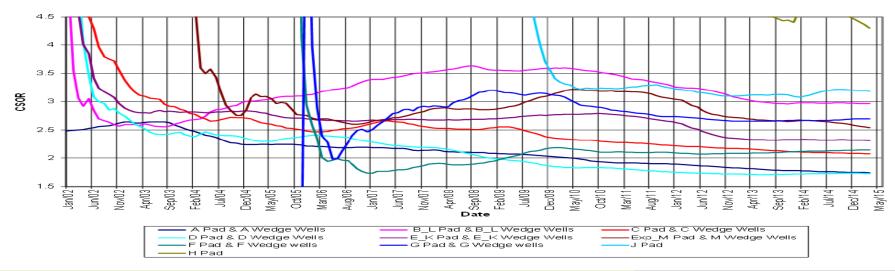
West - cumulative % recovery SOIP

Foster Creek - West Pads Cumulative % Recovery SOIP

*Note that SOIP calculation methodology is available in subsequent slides

Селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.1 - 7a, ii) May 27, 2015


Cumulative steam oil ratio – central pads

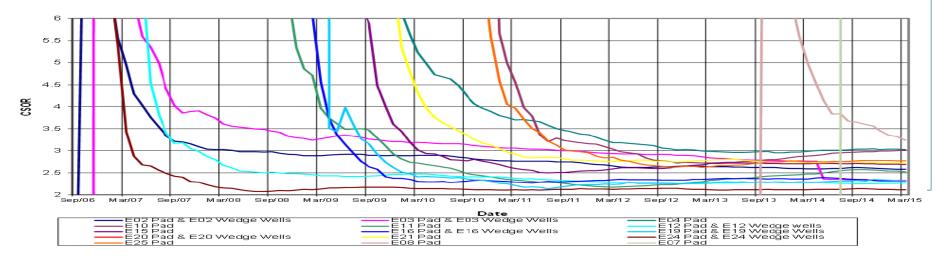
B / L and EXP / M Pad SORs high due to shut-in periods of wells on pad that were affected by the Colorado Shale issue

D, C, A, F and G pads have superior SORs as a result of wells drilled utilizing our patented Wedge Well[™] technology

D,C and A pad also have started methane co-injection

*Note –A35, AINF-6 & AINF-7 volumes included in E Pad

Foster Creek - Central Pads Cumulative Steam Oil Ratio

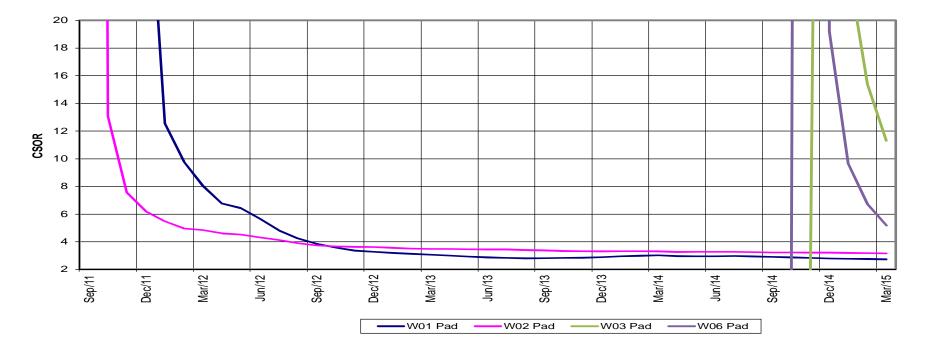

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7a, ii) May 27, 2015

Cumulative steam oil ratio – East pads

E02 & E03 pads - geology in this area is more heterogeneous than in most areas at Foster Creek and start-up was difficult, requiring several steam stimulations, resulting in a higher CSOR

E24, E16, E19, E20 and E12 pads – all very good geology and well performance, thus, low SORs

E10 & E11 pads have seen some water influx in a couple of wells



Foster Creek - East Pads Cumulative Steam Oil Ratio

Cumulative steam oil ratio – West pads

Foster Creek - West Pads Cumulative Steam Oil Ratio

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7a, ii) May 27, 2015

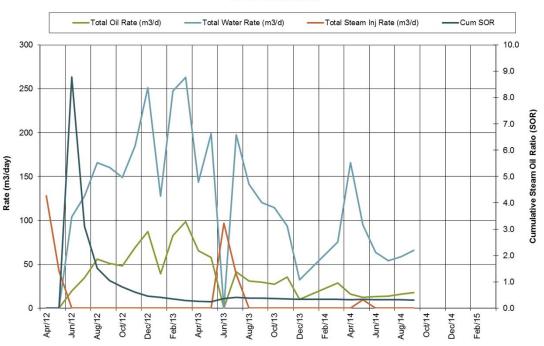
Actual production vs. approval capacity

Foster Creek has met the target rate in Phase A, Phase B, Phase C and Phase D&E applications

- Phase D&E (Pads J, E04, E08, E11, E15, E16, E19, E20, E21, E25, W01, W02, H) 120,000 bbl/d (19,080 m3/d)
- Phase F (Pads E07,E14,E42, W06, W03, W08) 30,000 bbl/d (4767 m3/d)
- Target daily production between 120,000- 150,000bbl/d throughout the remainder of the year

*wells drilled utilizing Wedge Well tm technology have been drilled and are on production

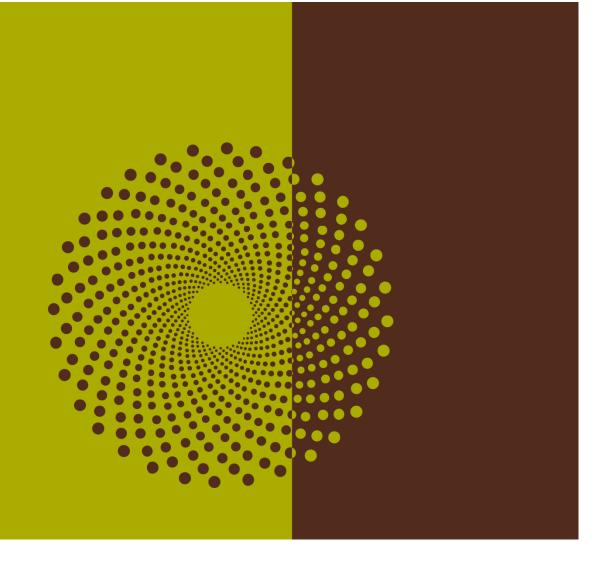
Note that production volumes refer to cumulative production capacity on a total production basis



© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7a, iii) May 27, 2015

LP10 Performance (Secondary Pay)

- LP10 is the only secondary pay well with production history to date
- Produced at low rates with an extremely low SOR
- Currently shut in, no immediate plans to bring back on production
- Secondary pay wells are not being further reviewed at this time in the current low oil price environment


FOSTER CREEK LP10 Performance

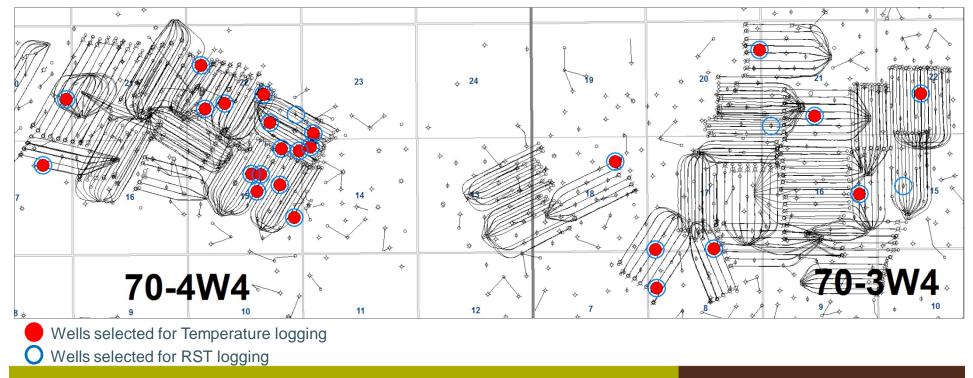
селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7a, iii) May 27, 2015

Steam chamber development Subsection 3.1.1 – 7 b)

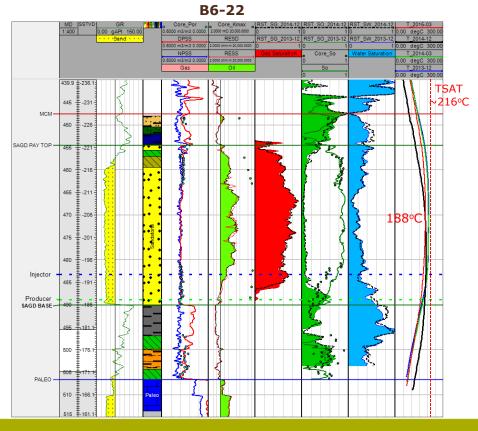
Methods for monitoring chamber development

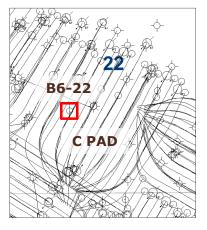
Cenovus uses the following methods for monitoring chamber development:


- Observation wells
- Specialized logging and coring
- Seismic
- Volumetrics

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7 b) May 27, 2015

Foster Creek temperature and RST data

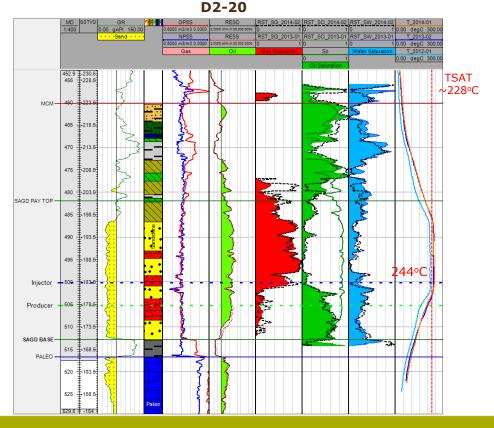

24 observation wells logged to acquire temperature data 27 observation wells logged to acquire RST data

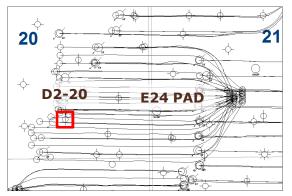


селоуиз

© 2015 Cenovus Energy Inc. May 27, 2015

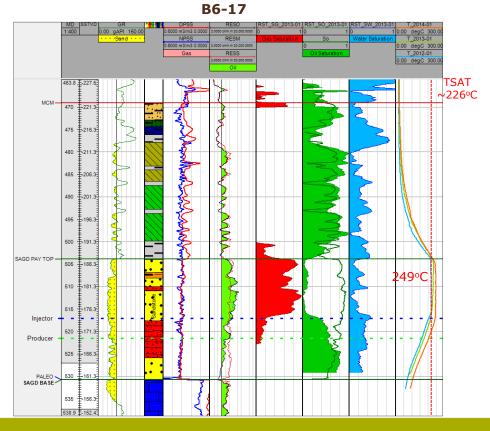
Foster Creek temperature wells

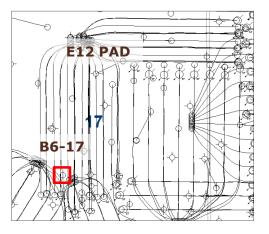



• 10m offset C11 Well Pair

 $\ensuremath{\textcircled{C}}$ 2015 Cenovus Energy Inc. May 27, 2015

Foster Creek temperature wells

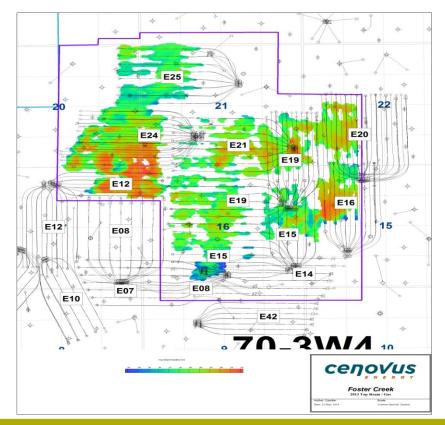



 5m from E24W05 wedge well and 30m away from E24-03 well pair

Селоуиз

 $\ensuremath{\textcircled{}^{\circ}}$ 2015 Cenovus Energy Inc. May 27, 2015

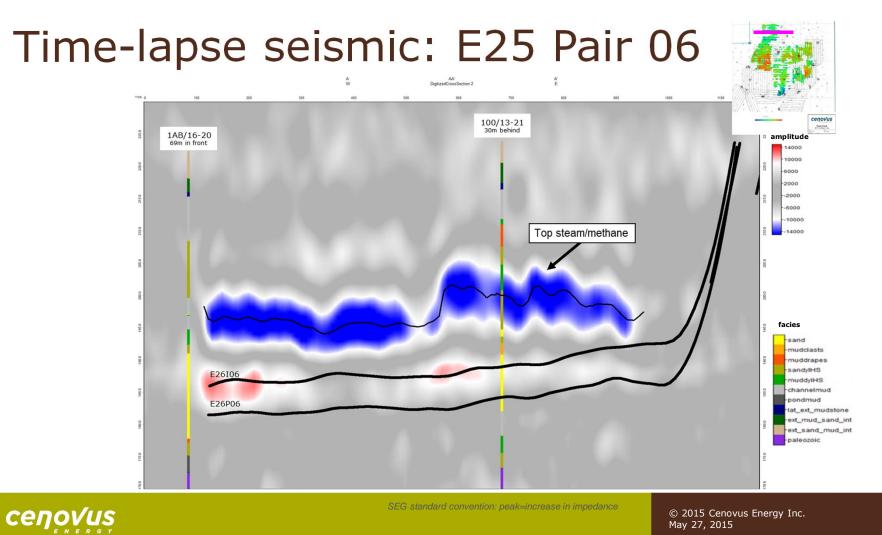
Foster Creek temperature wells

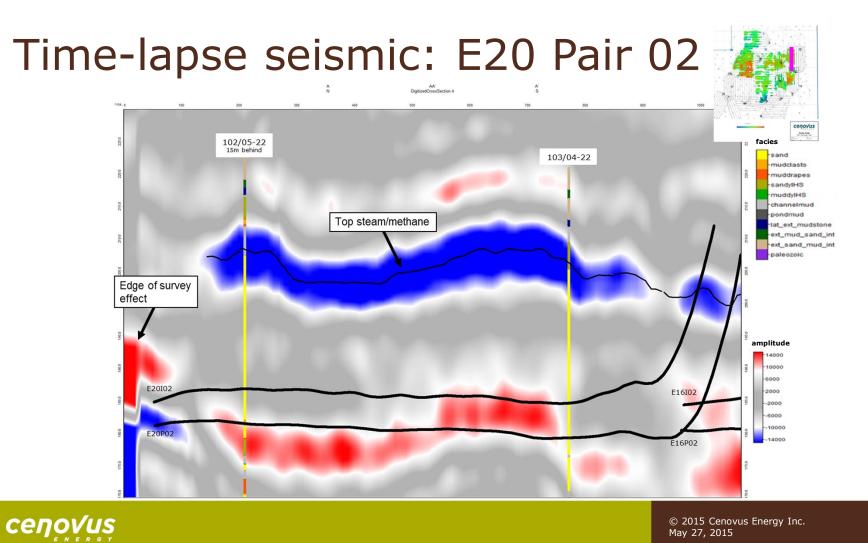


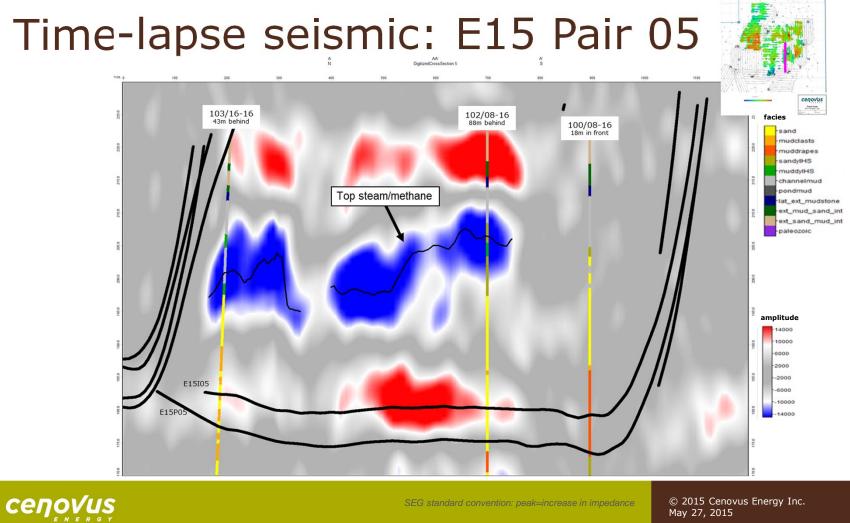
 9m away from E12-02 well pair

Селоуиз

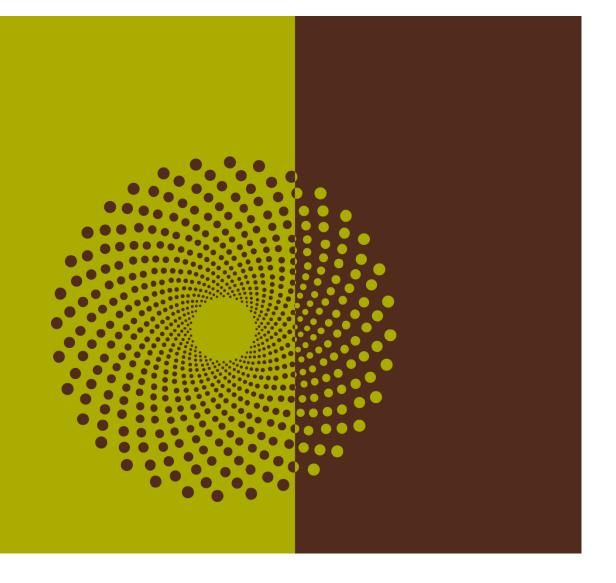
 $\ensuremath{\textcircled{}^{\circ}}$ 2015 Cenovus Energy Inc. May 27, 2015


East 4D Seismic (2013)




East 4D acquired in 2013 processed and interpreted

© 2015 Cenovus Energy Inc. May 27, 2015



SEG standard convention: peak=increase in impedance

© 2015 Cenovus Energy Inc. May 27, 2015

OBIP Subsection 3.1.1 – 7c

Oil in place: SAGDable OIP (SOIP) vs. Productive OIP (POIP)

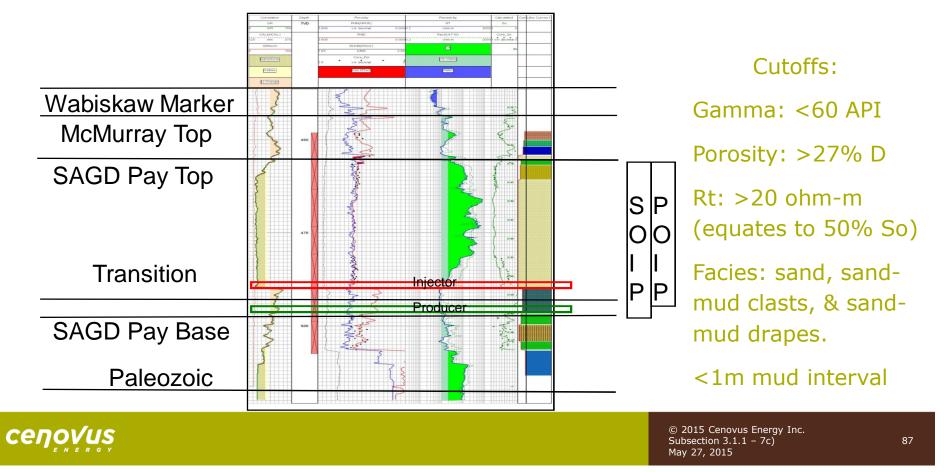
Two types of Oil in Place (OIP) are provided:

SAGDable OIP and Productive OIP

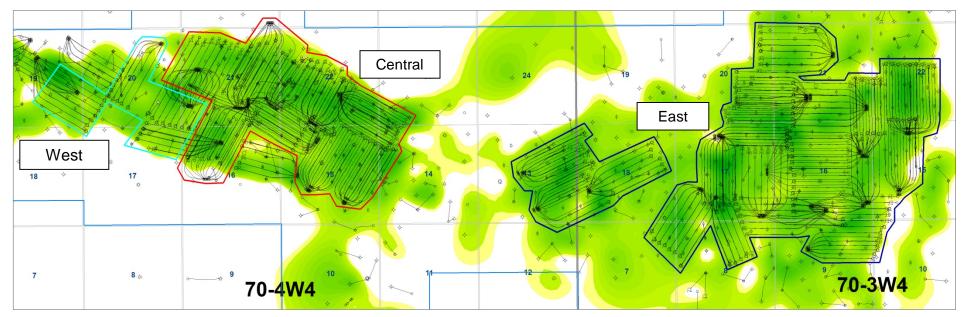
SAGDable OIP defined as:

- (Planned Length) x (Spacing) x (Net SAGD Pay: Base to Top SAGD) x (So) x (Ø)
 - used drilled length for existing well pairs but will use planned length for all future pairs
- a "before-drilling" OOIP, used during planning phase
- doesn't change after well pair plans finalized
- used to plan additional wells (Wedge Well™ technology, bypassed pay producers, re-drills, new pairs)
- this is essentially a "planned" OOIP, as we would aim to drill the full planned length (typically 800m), and drill the producer well as low as possible in relation to Base SAGD

Productive OIP defined as:


- (Effective Length) x (Spacing) x (Effective Pay: Producer to Top SAGD) x (So) x (Ø)
- an "after-drilling" OOIP, based on well pair potential
- changes with time and interpretation (obs. wells, 4D seismic, MWD error, etc.)
- used to plan blowdown strategy
- this reflects actual well pair performance
 - incorporates actual overlapping slotted liner lengths initially (including blank sections <100m)
 - incorporates actual location of the producing well

Productive OIP almost always < SAGDable OIP


Internally updated reserves definitions and methodology in 2010 and review annually. Change in various pads SOIP and POIP values from year to year to better reflect well lengths, placement, recovery factors and production performance

SOIP and POIP intervals

OIP – location of areas

East: 17 pads Central: 10 pads West: 4 pads

селоуиз

© 2015 Cenovus Energy Inc. May 27, 2015

OIP & percent recovery - central

Ultimate recoveries in the central area are now forecasted higher than originally expected due to:

- Wells drilled utilizing our patented Wedge Well[™] technology have been successful
- Indications of lower residual oil than originally expected

C, D & G Pads – currently re-evaluating SOIP, POIP and ultimate recoveries, expectation is that these volumes will increase

P	AD	SOIP Mm3	POIP Mm3	Cum Oil Mm3 (to Mar 31, 2015)	Recovery % SOIP	Recovery % POIP	Expected Ultimate Recovery Mm3	Ultimate Recovery as % of SOIP
A PA	D*-**	3,228	2,952	2,632	82	89	2,900	90%
B_L	PAD	4,330	3,274	2171	50	66	2,947	68%
C P	AD**	4,592	3,957	3,672	80	93	3,900	85%
D P.	AD**	4,695	4,198	4,418	94	105	4,600	98%
E_K	PAD*	4,625	3,820	3,315	72	87	3,700	80%
EXP_	M PAD	4,156	3,110	1,975	48	64	2,593	62%
F P.	AD**	4,211	3,541	3,166	75	89	3,500	83%
G P	AD**	3,265	2,274	2,559	78	113	2,700	83%
HF	PAD	721	504	102	14	20	420	58%
J F	PAD	4,170	3,118	1,249	30	40	2,227	53%
Total	Central	37,994	30,748	25,260	66	82	29,487	78%
Tota	al FC	116,819	88,350	52,270	45	59	76,752	66%

*Note - A35, AINF-6 7 AINF-7 excluded from A pad volume and recovery and included in E_K pad.

**Note – includes wells drilled utilizing Wedge Well™ technology

Pad, area, and Foster Creek totals based on sum of wells

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, i, ii) May 27, 2015

To Mar 31, 2015

OIP and percent recovery - east

Ultimate recovery includes only existing wells.

Cenovus anticipates infill drilling on most pads that will significantly increase the ultimate recovery, but has not quantified these increases at this time.

*Note – does not include future Wedge Well^{TM} technology recoverables

**Note – includes wells drilled utilizing Wedge Well^m technology

Pad, area, and Foster Creek totals based on sum of wells

PAD	SOIP Mm3	POIP Mm3	Cum Oil Mm3 (to Mar 31, 2015)	Recovery % SOIP	Recovery % POIP	Expected Ultimate Recovery Mm3	Ultimate Recovery as % of SOIP
E02 PAD	2,993	2,051	1131	38	55	1,749	58%
E03 PAD	3,042	2,079	1104	36	53	1,985	65%
E04 PAD	3,568	2,407	647	18	27	1,925	54%
E07 PAD	2,606	1,849	32	1	2	1,479	57%
E08 PAD	4,676	4,049	244	5	6	3,239	69%
E10 PAD	2,061	1,492	435	21	29	1,194	58%
E11 PAD	3,912	3,409	1884	48	55	2,727	70%
E12 PAD	7,023	4,831	3656	52	76	4,598	65%
E15 PAD	7,397	5,646	2522	34	45	4,517	61%
E16 PAD	3,486	3,119	1856	53	60	2,512	72%
E19 PAD	6,307	5,850	3200	51	55	4,680	74%
E20 PAD	5,882	4,909	2891	49	59	4,022	68%
E21 PAD	3,930	2,863	1203	31	42	2,291	58%
E24 PAD	5,256	4,931	3162	60	64	4,008	76%
E25 PAD	4,137	3,390	1469	36	43	2,712	66%
Total East	66,276	52,875	25,436	38	48	43,638	66%
Total FC	116,819	88,350	52,270	45	59	76,752	66%

To March 31, 2015

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, i, ii)	90
May 27, 2015	

OIP and percent recovery – west

W01 & W02 pads came online in late 2011

W03 & W06 pads came online in late 2014

PAD	SOIP Mm3	POIP Mm3	Cum Oil Mm3 (to Mar 31, 2015)	Recovery % SOIP	Recovery % POIP	Expected Ultimate Recovery Mm3	Ultimate Recovery as % of SOIP
W01	3,697	3,224	1,215	33	38	2,402	65%
W02	1,753	1,503	358	20	24	1,226	70%
W03	2,532	1,998	15	1	1	1,568	62%
W06	4,566	3,735	36	1	1	2,861	63%
Total West	12,549	10,460	1,625	13	16	8,057	64%
Total FC	116,819	94,083	52,322	45	56	81,182	69%

*Note – does not include future Wedge Well[™] technology recoverable

Pad, area, and Foster Creek totals based on sum of wells

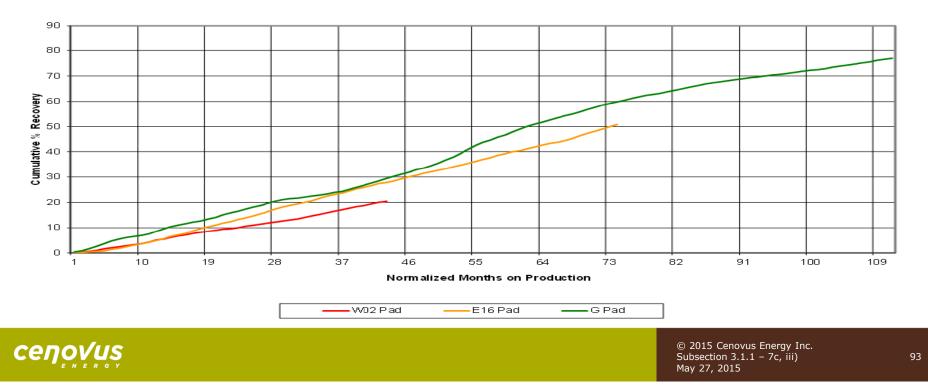
To March 31, 2015

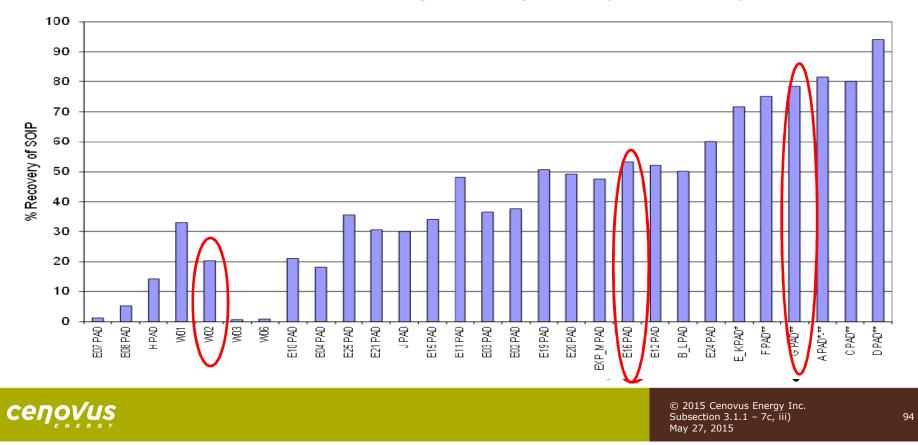
© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, i, ii) May 27, 2015

Recovery examples

W02 pad low ultimate recovery example with focus on W02-03 well pair

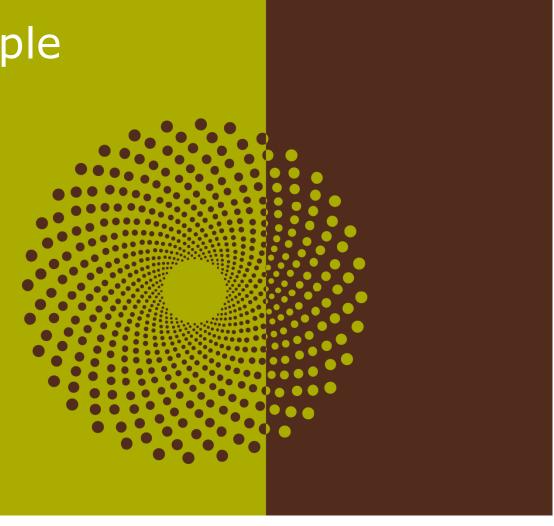
E16 pad medium ultimate recovery example with focus on E16-02 well pair


G pad high ultimate recovery example with focus on GP01 well pair


© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015

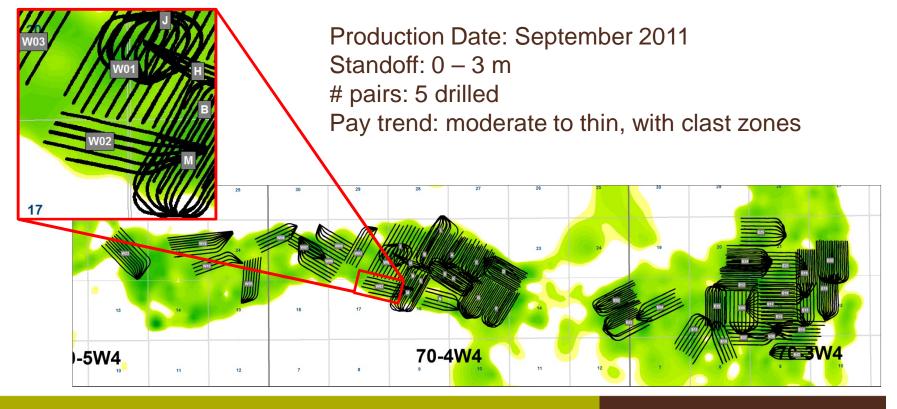
Recovery examples cumulative percent recovery SOIP

Foster Creek - W02, E16, & G Pads Cumulative % Recovery SOIP Normalized


Current percent recovery of SOIP: pad totals

Foster Creek - % Recovery of SOIP per Pad (Mar 31, 2015)

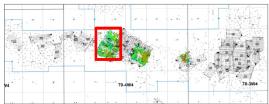
OBIP – low example W02 pad Subsection 3.1.1 – 7 c, iii)

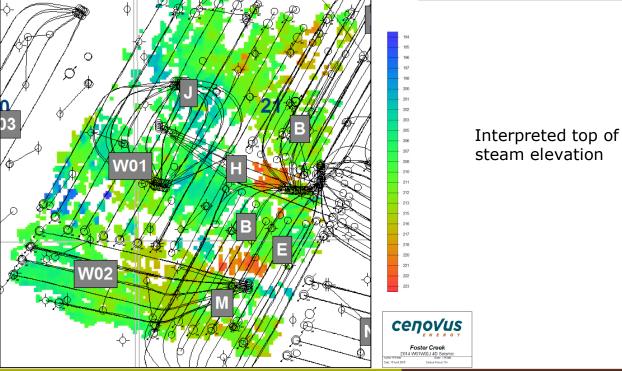


W02 pad overview

- W02 pad began production in September 2011 (five pairs)
- Generally good quality geology on the edge of the valley, some small variations in SAGD base between well pairs
- Pad started up using ESPs, steam stimulations were successful on every well
- Initial operating pressures ~3 Mpa until pad started communicating with rest of central pad
- Remedial work on P02, P03, and P05 in 2013 Q1 2014
- Currently at ~20% recovery of SOIP
- CSOR is currently 3.29, expected to drop as pad is in early life

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015


W02 Pad SAGD Pay



селоуиз

© 2015 Cenovus Energy Inc. May 27, 2015

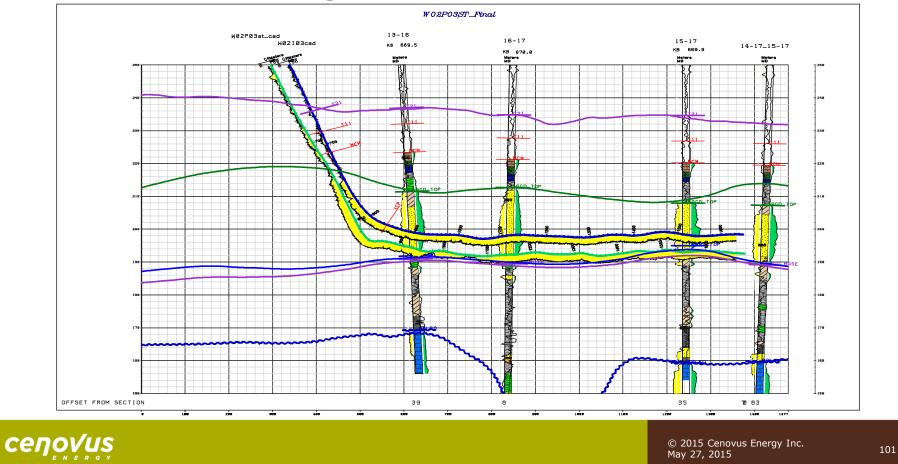
© 2015 Cenovus Energy Inc. May 27, 2015

W02 pad - extent of chamber development

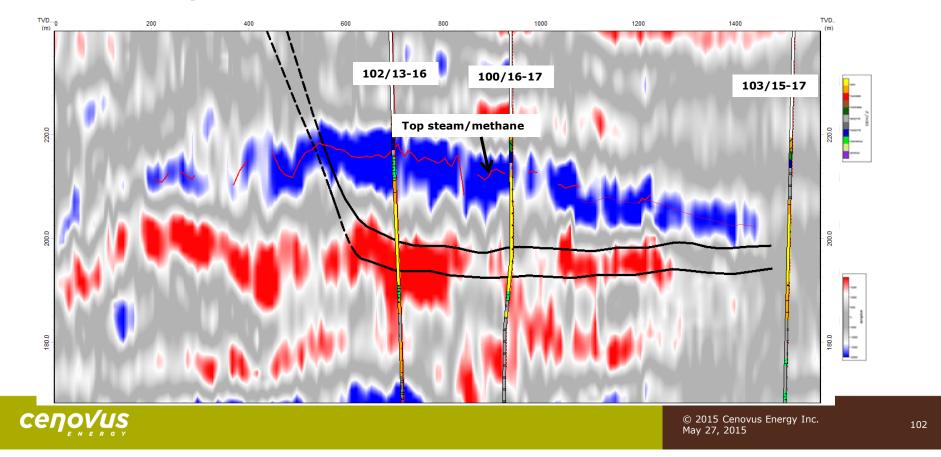
PAD	PAIR	SOIP Mm3	POIP Mm3	Cum Oil Mm3	% Recovery SOIP	% Recovery POIP
W02 PAD	W02-01	443	355	64	14	18
W02 PAD	W02-02	348	301	50	15	17
W02 PAD	W02-03	450	395	106	23	27
W02 PAD	W02-04	389	360	77	20	21
W02 PAD	W02-05	124	92	62	50	67
Total	W02 PAD	1,753	1,503	358	20	24

Expected ultimate recovery (70% of SOIP) = 1,226 Mm3

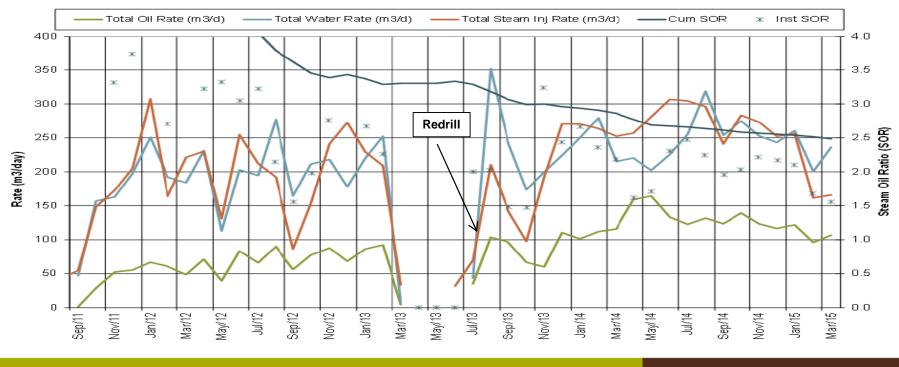
To March 31, 2015


селоуиз	© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) 99 May 27, 2015
Селоуия	Subsection 3.1.1 – 7c, İli) 99

W02 pad performance


FOSTER CREEK W02 Pad Performance

W02-03 Geological Profile



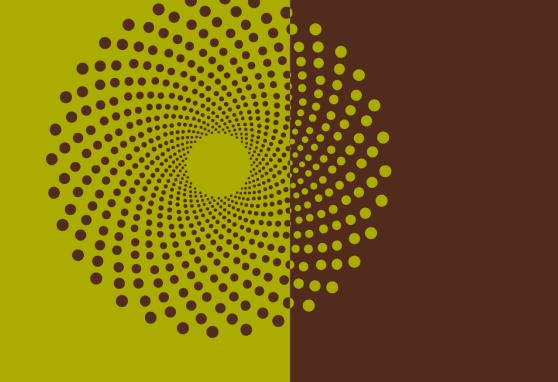
Time-lapse seismic: W02 Pair 3

W02-03 performance plot

W02-03 Well Pair Performance

селоуиз

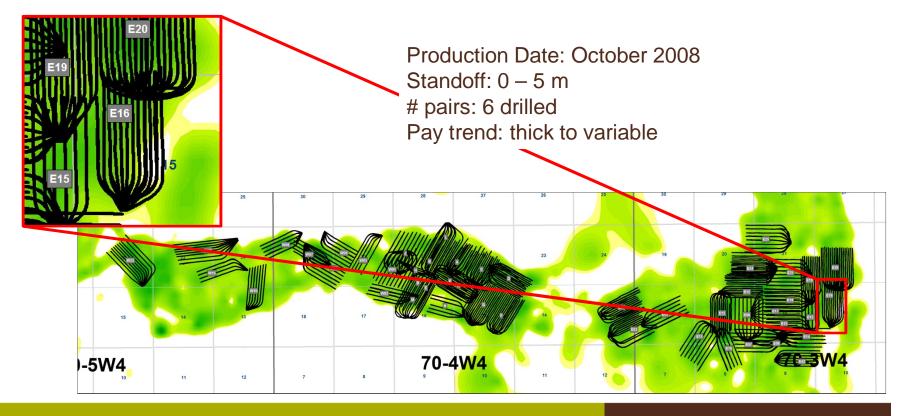
© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015


W02 pad conclusions

- Pad recovery expected to be ~70% of SOIP
- Pad is merged with central pod
- Optimization of pad underway after remedial work
- Currently at 20% recovery of SOIP

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015

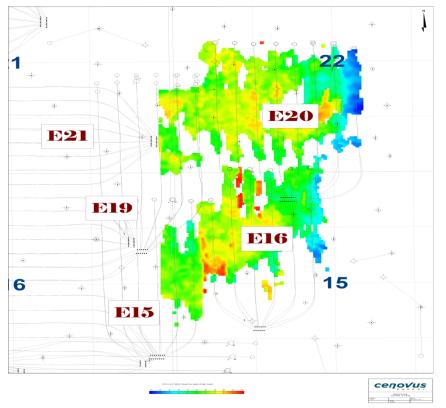
OBIP – medium example E16 pad Subsection 3.1.1 – 7 c, iii)


E16 pad overview

- E16 pad began production in August 2008 (six pairs)
- Steam stimulation start-up method was successful for all pairs
- Geology consists of thick to moderately thick channel sands that are fairly consistent throughout, pay trend and thickness slopes down dip to the east
- Expected ultimate recovery of this pad is 72% of SOIP
- Overall performance is very good to date, with a CSOR of 2.33
- Wells utilizing our patented Wedge Well[™] technology were drilled in Q4 of 2013

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015


E16 Pad SAGD Pay

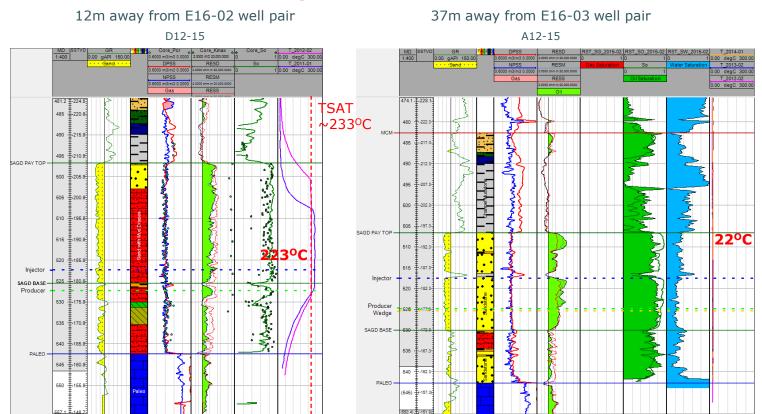
селоуиз

© 2015 Cenovus Energy Inc. May 27, 2015

E16 and E20 4D seismic (2012)

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015

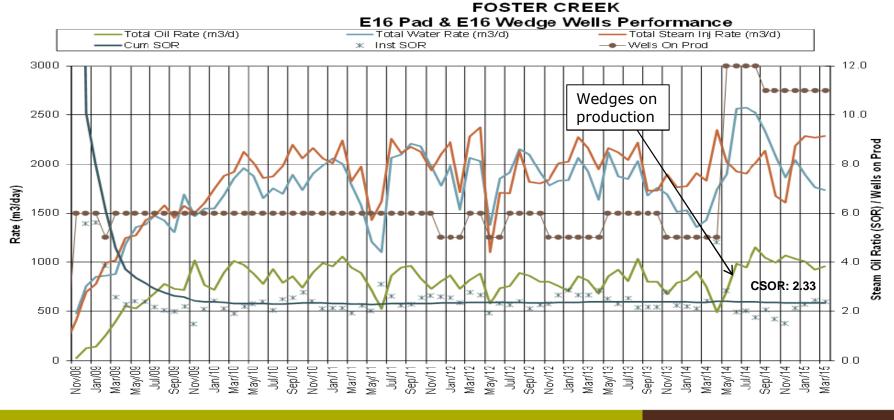
E16 pad - extent of chamber development


PAD	PAIR	SOIP Mm3	POIP Mm3	Cum Oil Mm3	% Recovery SOIP	% Recovery POIP
E16 PAD	E16-01	515	490	357	69	73
E16 WEDGE	E16W01					
E16 PAD	E16-02	689	659	427	62	65
E16 WEDGE	E16W02					
E16 PAD	E16-03	696	575	347	50	60
E16 WEDGE	E16W03					
E16 PAD	E16-04	586	527	256	44	49
E16 PAD	E16-05					
E16 PAD	E16-05	508	442	194	38	44
E16 WEDGE	E16W05					
E16 PAD	E16-06	492	426	194	39	46
E16 WEDGE	E16W06					
Total	E16 PAD	3,486	3,119	1,775	51	57

Expected ultimate recovery (72% of SOIP) = 2,512 Mm3

To March 31, 2015

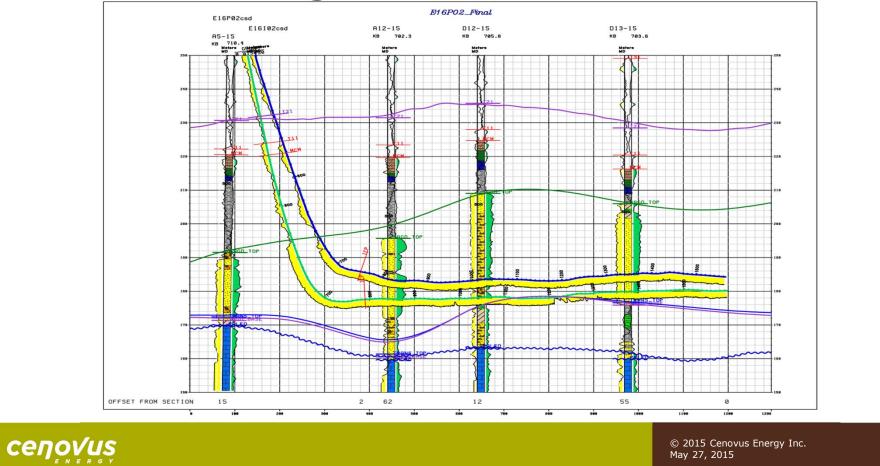
E16 Pad Temperatures



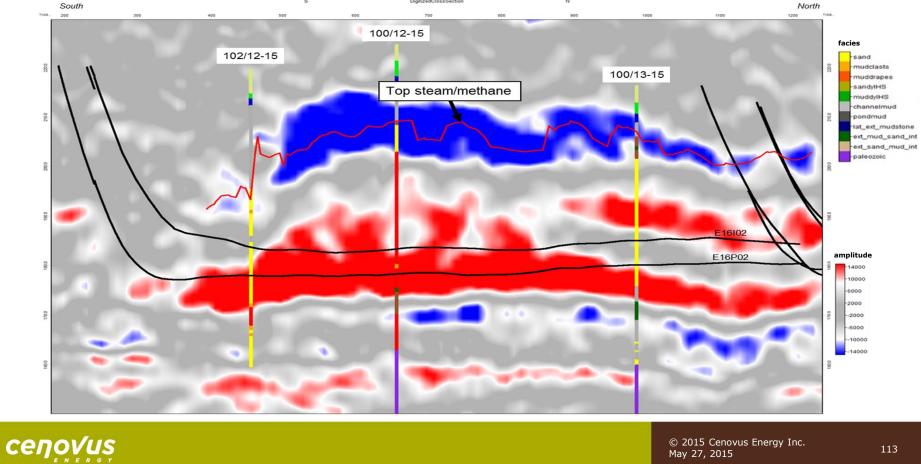
E16 D12-15 A12-15 D15 C

Селоуиз

© 2015 Cenovus Energy Inc. May 27, 2015


E16 pad performance

селоуиз


© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015

E16-02 Geological Profile

May 27, 2015

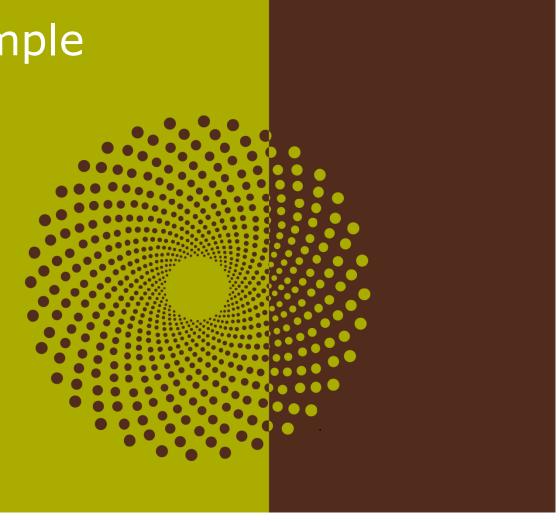
Time-lapse seismic: E16 Pair 2

113

May 27, 2015

E16-02 well pair performance

E16-02 Well Pair Performance


E16 pad conclusions

- Ultimate recovery is based on 72% of SOIP
- Differences between POIP and SOIP are primarily due to standoff from SAGD base
- Ramp up took approximately 20 months to hit peak rates
- 4D seismic was shot in 2012, showing good chamber growth along pairs 1 – 4; remedial work was performed on pairs 5/6 which were redrilled to improve conformance and chamber growth
- Wells utilizing our patented Wedge Well[™] technology on production June 2014
- Will continue to use observation wells to help determine changes to steam chamber growth in the future

CENOVUS EN ERGY (© 2015 Cenovus Energy Inc. Subsection 3.1.1 - 7c, iii) May 27, 2015

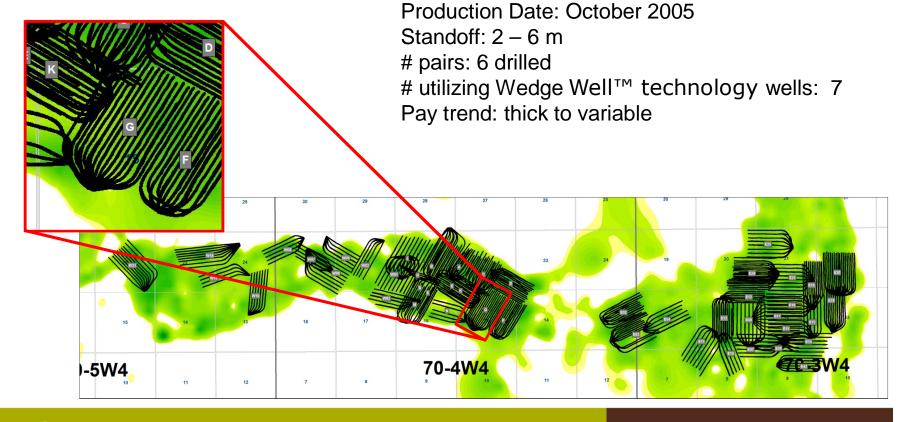
OBIP – high example G pad Subsection 3.1.1. – 7c, iii

G pad overview

- G pad began production in October 2005 (six pairs)
- Thick and high quality geology with slight variation in the depth of the SAGD base and a relatively lower SAGD top at the heel of all the wells
- All wedges were started in Q4 of 2009 and Q1 of 2010
- Steam decline in mid 2010 to operate pad at central pod pressure, pad production performance as expected
- Currently total recovery is 76% of SOIP

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015

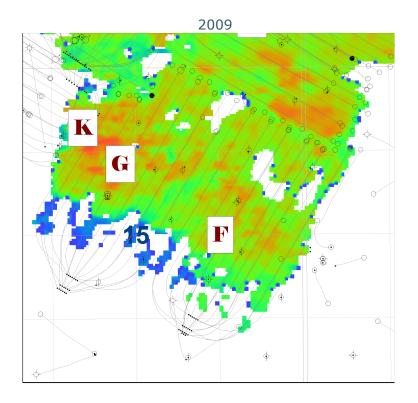
G pad - extent of chamber development

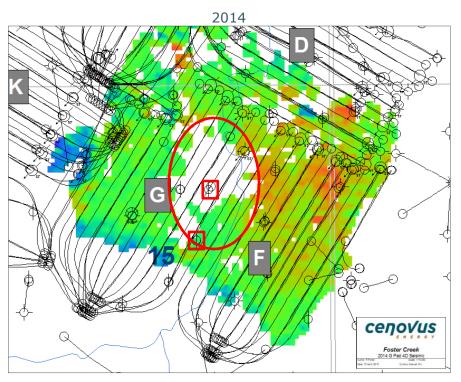

PAD	PAIR	SOIP Mm3	POIP Mm3	Cum Oil Mm3	% Recovery SOIP	% Recovery POIP
G PAD	GW01	0	0	55		
G PAD	G1	580	422	327	68	93
G PAD	GW02	0	0	74		
G PAD	G2	644	413	306	62	97
G PAD	GW03	0	0	116		
G PAD	G3	687	471	369	70	102
G PAD	GW04	0	0	109		
G PAD	G4	647	470	308	68	94
G PAD	GW05	0	0	156		
G PAD	G5	396	261	267	102	154
G PAD	GW06	0	0	113		
G PAD	G6	312	237	224	100	132
G PAD	GW07	0	0	65		
Total	G PAD	3,265	2,274	2,490	76	110

- only ½ of the cum production from GW01 is shown, the other ½ is allocated to F Pad

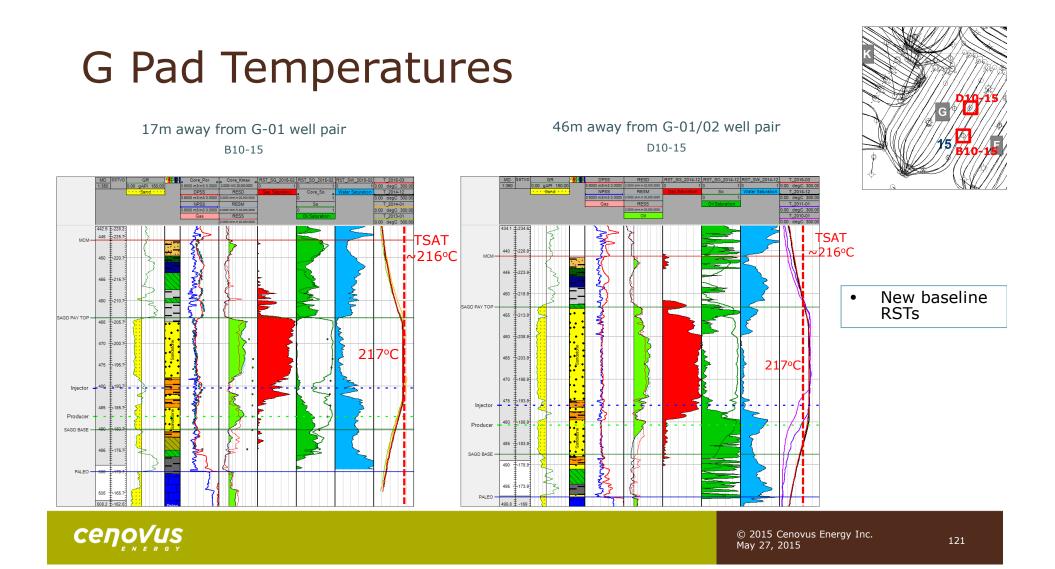
To March 31, 2015

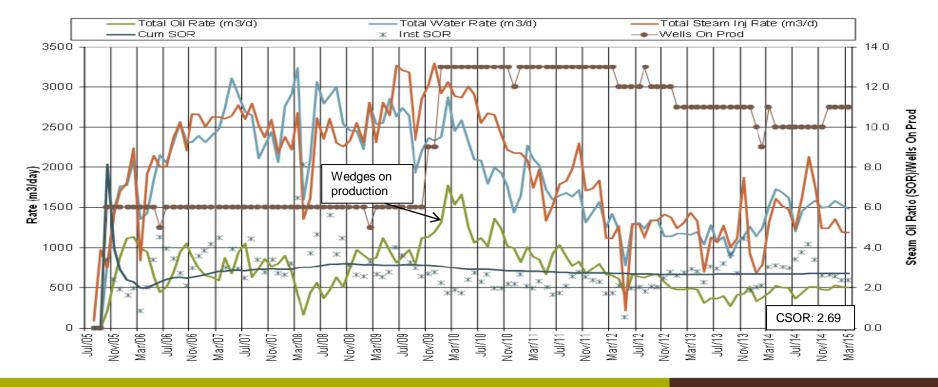
селоуиз	© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015	118
	11dy 27, 2015	


G Pad SAGD Pay

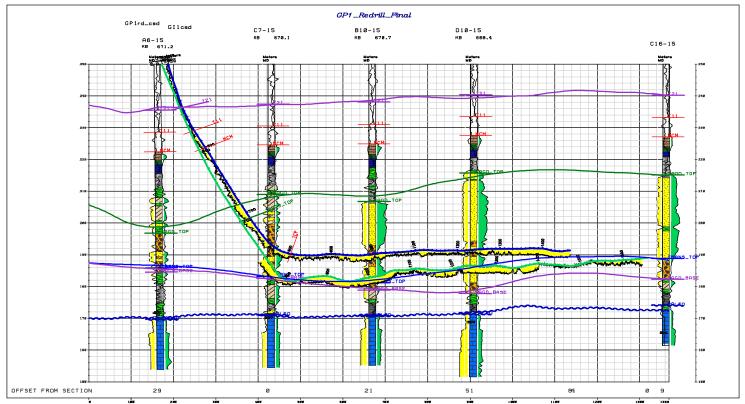


© 2015 Cenovus Energy Inc. May 27, 2015


G Pad 4D Seismic (2009 vs 2014)

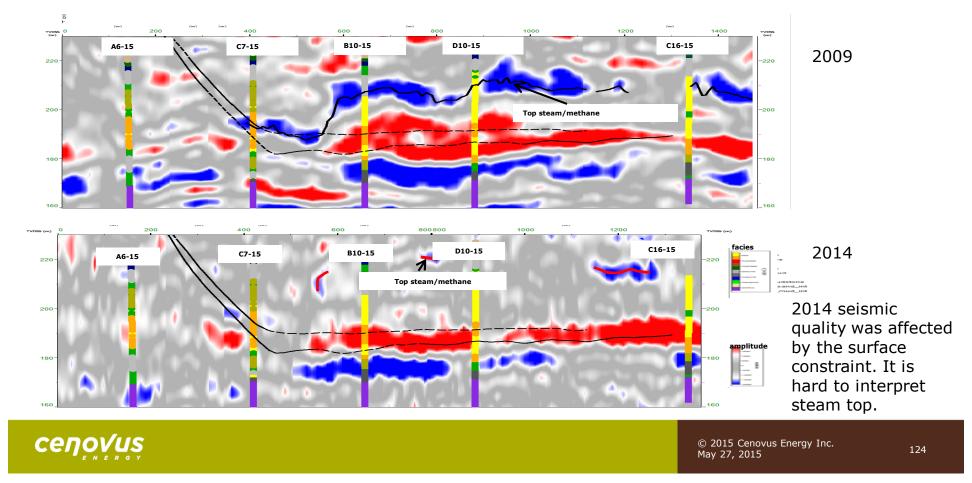

Poor quality seismic data, acquisition related, existing steam chamber still present

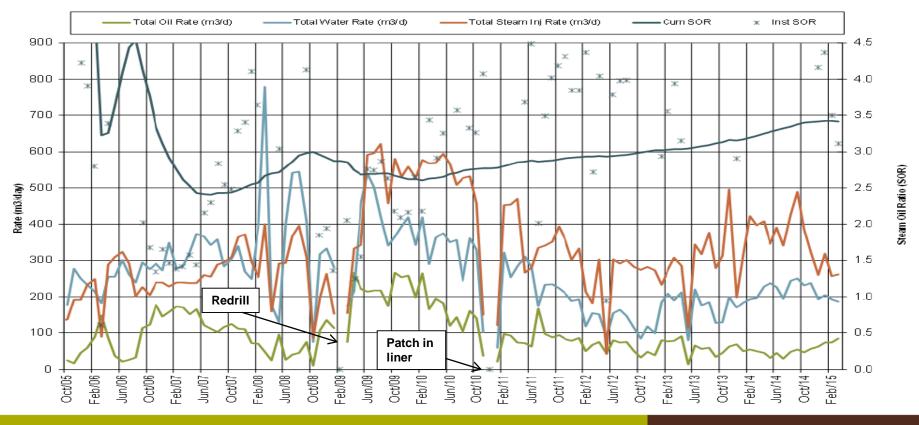
G pad performance


FOSTER CREEK G PAD & G Wedge Wells™ Performance

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015


G-01 Geological Profile


© 2015 Cenovus Energy Inc. May 27, 2015

Time-lapse seismic: G-01 (2009 VS 2014)

G-01 well pair performance

G-01 Well Pair Performance

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015

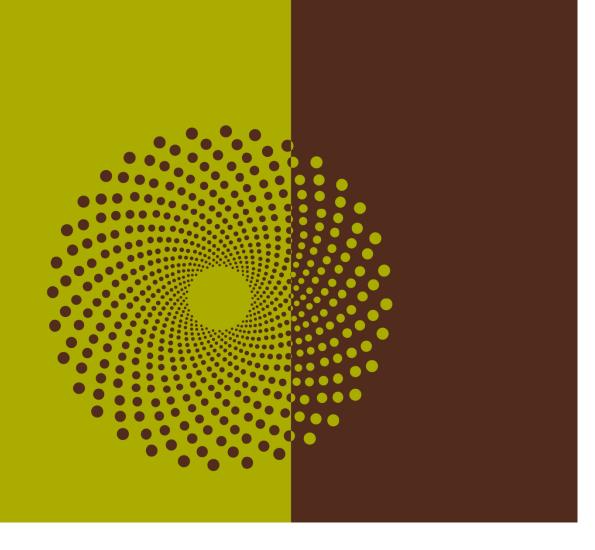
G pad conclusions

• Higher than anticipated recovery a result of:

- wells drilled utilizing our patented Wedge Well[™] technology have been successful
- lower than anticipated residual oil saturations (15% vs. less than 10%)
- G pad expansion, drilled new wells in 2014 at 80 m spacing to the west of G pad

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iii) May 27, 2015

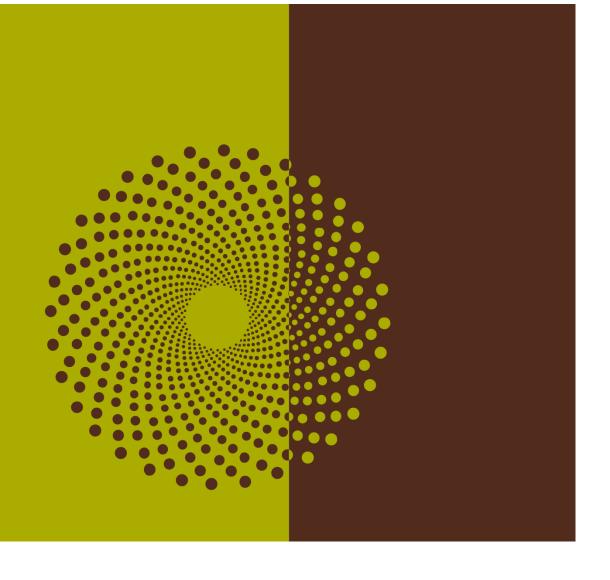
Pad abandonments Subsection 3.1.1 – 7c, iv)


Pad abandonments

No pad abandonments are currently planned at Foster Creek in the next 5 years

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7c, iv) May 27, 2015

Subsection 3.1.1 - 7d)


Steam quality

- Steam quality will be impacted by pipeline size and distance
- Currently at Foster Creek the steam qualities under normal operation conditions are as follows:
 - central ~ 95%
 - east ~ 94%
 - west Designed to be ~ 95% as development continues
- Steam is delivered to pads at approximately 7000 9000 kPa
- Steam quality is not expected to impact well performance at this time

© 2015 Cenovus Energy Inc. Subsection 3.1.1 - 7d) May 27, 2015

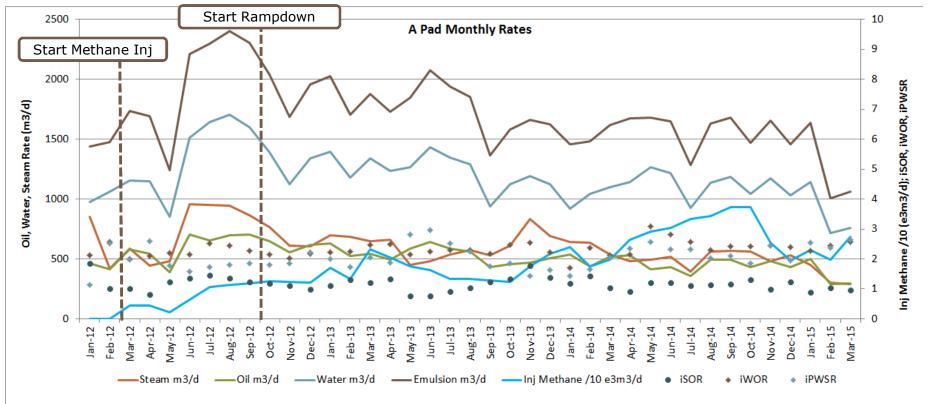
Injected fluids Subsection 3.1.1 – 7e)

Injected fluids

Non-condensable gas

- methane injection started for A Pad in Q1 2012, C Pad in Q4 2011, D Pad in Q3 2010, F Pad in Q2 2014, and G Pad in Q2 2014
 Acid treatments
- wells occasionally treated with HCl to minimize skin Solvent
- have used solvent in start-up work-overs and have approval to use this as a potential start-up process
 CO₂
- injected in E03I05 and E03I06
- pilot concluded in Q4 2013

селоуиз

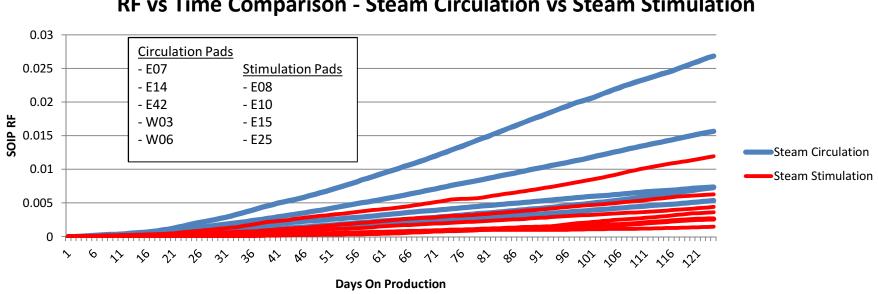

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7e) May 27, 2015

2014 key learnings Subsection 3.1.1 – 7f)

A pad blowdown

селоуиз

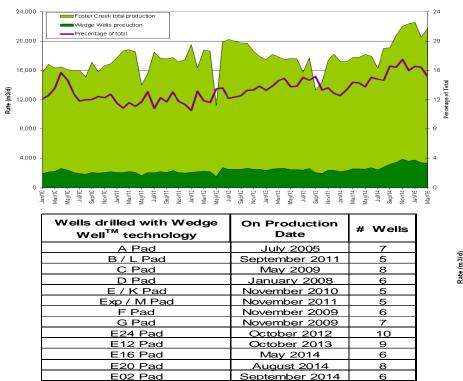
© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7f) May 27, 2015


A Pad blowdown

- Methane injection started in Mar 2012
- Rampdown of steam started Sep 2012
- Currently in last phase of rampdown
- Full blowdown expected Q2 2015
- Continue to balance pressure with methane injection
- Production declines have been better than initially forecast during rampdown

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7f) May 27, 2015

Circulation Startup

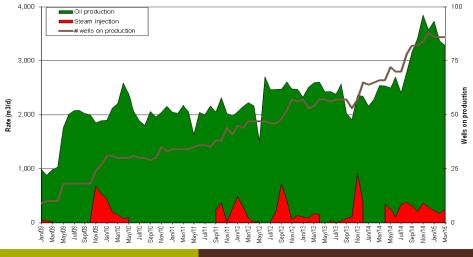


RF vs Time Comparison - Steam Circulation vs Steam Stimulation

Circulation is go forward startup strategy due to improved conformance and production rampup as compared to a bullhead start

Wedge Well[™] technology update Foster Creek Wedge Well™ technology Production

September 2014


September 2014

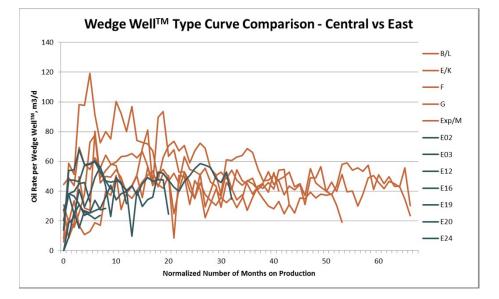
December 2014

5

6

Foster Creek Wedge Well™ technology Production

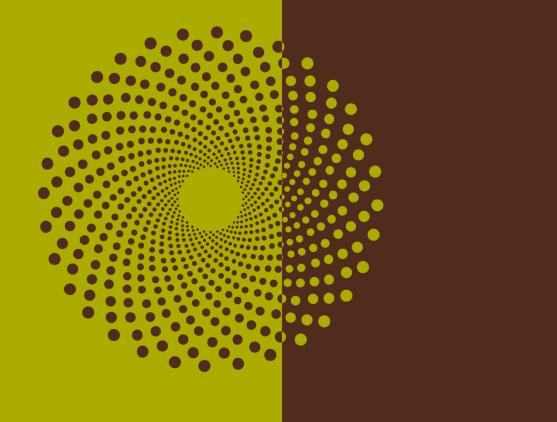
село/из


E03 Pad

E19 Pad

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7f) May 27, 2015

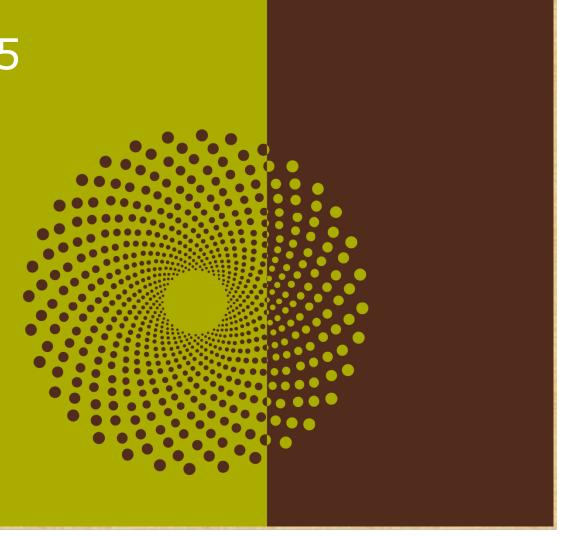
East vs Central Wedge Well[™] performance


- Majority of East Wedge Well[™] pads came online in 2014
- Type curves fall within the range of the 5 most of the recent Central pads

May 27, 2015

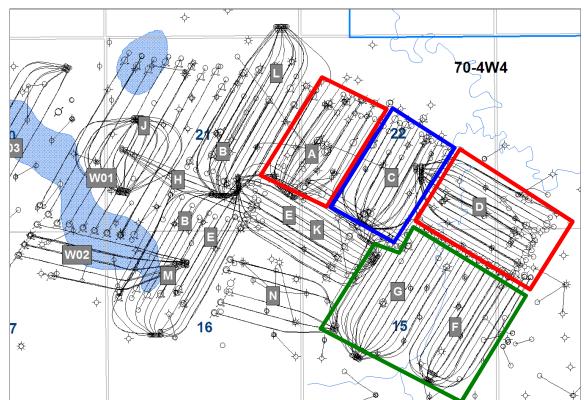
Pad performance plots Subsection 3.1.1 – 7h)

Subsection 3.1.1 – 7 h) – pad performance plots


Requirements under Subsection 3.1.1 7 h) are located in the Appendix

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 7h) May 27, 2015

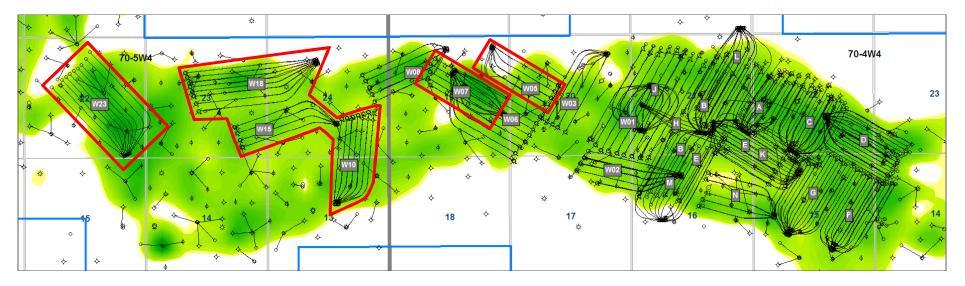
Future plans 2015 initiatives Subsection 3.1.1 - 8


Steam Rampdown

C Pad on blowdown Q1, 2013

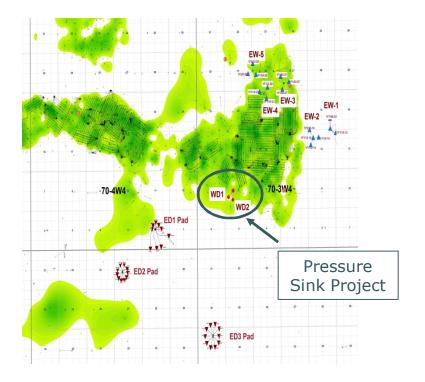
D pad on blowdown Feb, 2015

A pad on last phase of rampdown


F & G pads started coinjection May 2014

© 2015 Cenovus Energy Inc. May 27, 2015

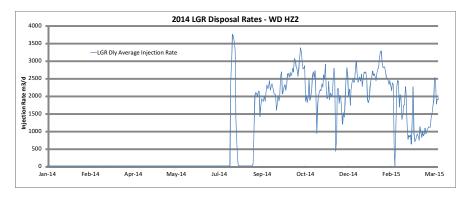
Steam Circulation

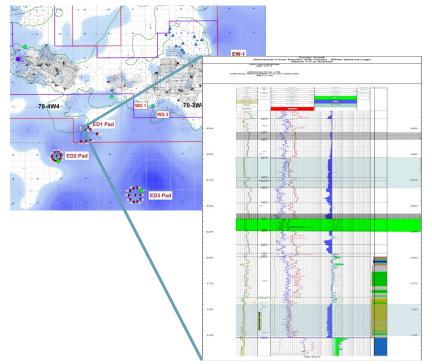

Plan to start up all new well pairs with steam circulation as geology permits. The upcoming pads are in the West development area and include W05, W07, W10, W15, W18 and W23.

© 2015 Cenovus Energy Inc. May 27, 2015

Pressure Sink Project Update

- Producer & injector wells drilled & completed in 2014
- Received D51 approval on March 4, 2015
- Engineering completed Q1 2015
- Anticipated construction from Q2 – Q3
- Scheduled to commission by end of Q4





Lower Grand Rapids Disposal

LGR disposal at ED1

- Received AER approval to recomplete an existing McM disposal well into a LGR disposal well
- Reconfigured WDHZ2 for LGR disposal
- Brought online on August 2, 2014

© 2015 Cenovus Energy Inc. May 27, 2015

145

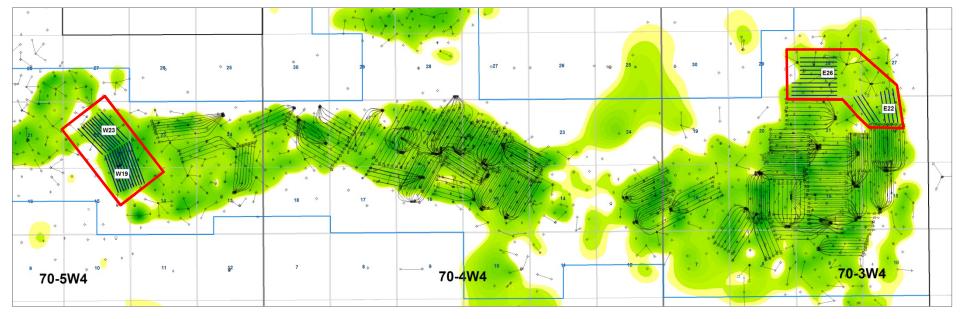
2015 initiatives

- Alternate liner trials continue on various pads
- Liner and tubing deployed FCDs
- Lower Grand Rapids disposal evaluation
- Co-injection
 - surfactant
 - solvent
- Insulated tubing
 - Evaluating vendors and technology

© 2015 Cenovus Energy Inc. Subsection 3.1.1 – 8a) May 27, 2015

Flow Control Devices

• Currently testing 8 flow control devices


- 4 liner deployed ICDs
- 3 tubing deployed ICDs
- 1 liner deployed OCDs
- Improvements in temperature conformance have been observed at most installations to date
- Evaluation still ongoing

Well Name	Well Type	Date Run	Deployment
W05P05	Producer	11/29/2013	Liner Deployed
W08P01	Producer	12/5/2013	Liner Deployed
GP5-1	Producer	1/14/2014	Liner Deployed
E15P11-1	Producer	7/22/2014	Liner Deployed
E16P06	Producer	11/29/2014	Tubing Deployed
FP2-1	Producer	3/19/2015	Tubing Deployed
DF1 Fisher	Producer	1/9/2014	Tubing Deployed
E15I10	Injector	5/1/2014	Liner Deployed

селоуиз

May 27, 2015

2015-2016 Drilling Plans

East Pads:	2015-2016 Drilling
 E22, E26 West Pads: 	
• W19, W23	

© 2015 Cenovus Energy Inc. May 27, 2015

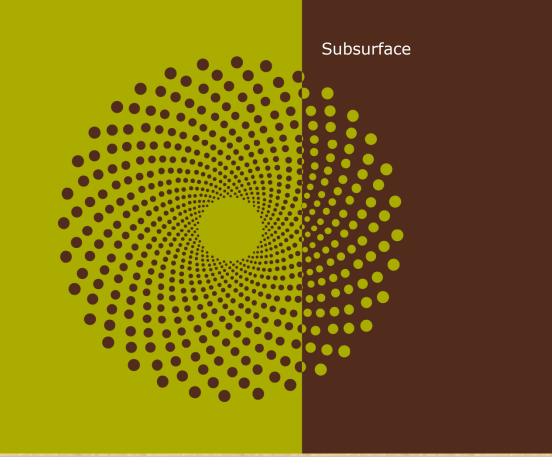
2015 steam strategy plans

- Cenovus allocates steam to maintain targeted steam chamber operating pressures from pad to pad
- As steam rampdown progresses, steam demand for the project will be reduced, allowing the startup of new pads
- In 2014 Cenovus increased steam generating capacity through the addition of Phase F
- Some steam from the existing A-E facility was used to initiate steam simulation immediately prior to receiving incremental steam from Phase F. A-E pads have been maintained at longer term pressure targets
- New steam has been allocated to Phase F pads and existing well pads

© 2015 Cenovus Energy Inc. Subsection 3.1.1 - 8c) 149 May 27, 2015

Future projects

Current capacity is 150,000 bbls/d (23,836 m3/d)

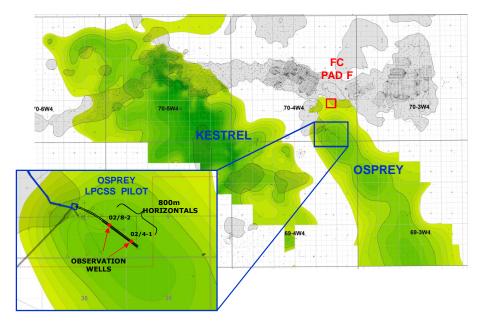

Future phase update

- Cenovus plans to continue advancing phase G in 2015 and targets first oil in the first half of 2016
- Due to significant decrease in crude oil prices, construction work on phases H and J have been deferred

© 2015 Cenovus Energy Inc. Subsection 3.1.1 - 8a) May 27, 2015

Osprey Pilot

Osprey Pilot (Clearwater Formation)


Facilities:

- 2 horizontal wells
- Rod pumps
- 2 BFW tanks & 2 boiler blowdown tanks
- 1 OTSG & steam separator
- Commissioned December 2013
- First steam injection April 30th, 2014
- 4 km south of FC F pad

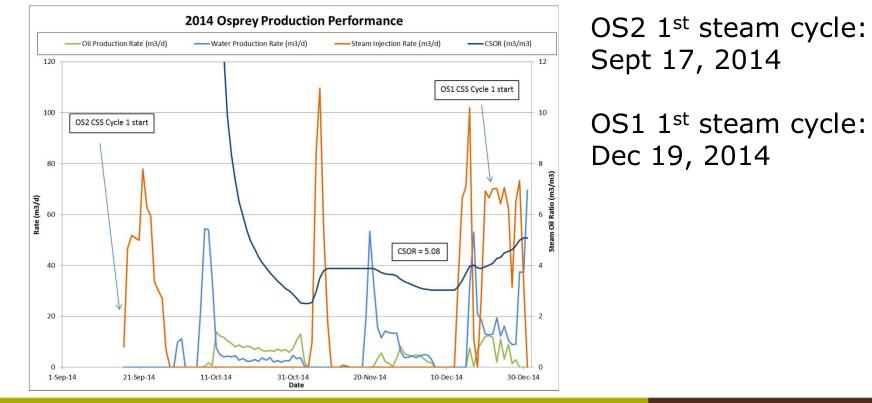
Operations:

- Low pressure CSS pilot
- Emulsion ties into F Pad
- Fuel gas from F Pad
- Water source for steam from blowdown disposal line
- Osprey disposal ties into the Foster Creek disposal line

Location: 11-02-70-4W4M

© 2015 Cenovus Energy Inc.

Overview (As of Dec 31, 2014)


0S1

- Circulation from August 21 November 9
- Completed 1 cycle
- Cum Injection: 535 m³ Cum Produced Bitumen: 621 m³
 OS2
- Circulation from April 30 July 8
- Completed 4 cycles
- Cum Injection: 1165 m³ Cum Produced Bitumen: 1166 m³

селоуиз

© 2015 Cenovus Energy Inc.

Osprey 2014 Performance Summary

селоуиз

May 27, 2015

154

Learnings

Produced bitumen quality is better than the core analysis: Less viscous: 40,000 cP vs 20,000 cP Lighter: 10.9 API vs 10.2 API

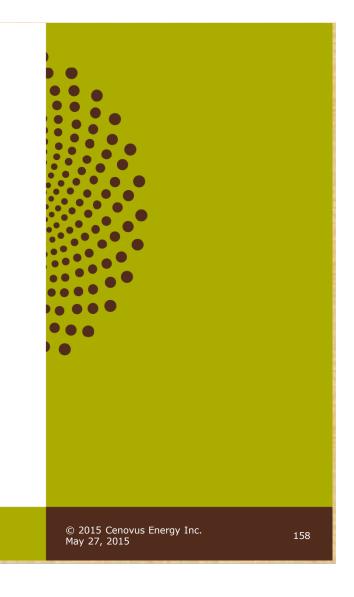
Post circulation production results were better than expected

 \odot 2015 Cenovus Energy Inc.

Summary of Reservoir Properties

Depth	450 m
Thickness	10-12 m
Average Porosity	~33%
Average Gas Saturation	~10%
Average Water Saturation	~30%
Average Bitumen Saturation	~60%

селоуия	© 2015 Cenovus Energy Inc. 156
---------	--------------------------------


Future Plans

- Currently evaluating Osprey learnings to guide future plans
- No finalized plans at this time

© 2015 Cenovus Energy Inc.

Thank you

Cenovus Foster Creek in-situ oil sands scheme (8623) update for 2014

Surface Calgary | June 24, 2015

Advisory

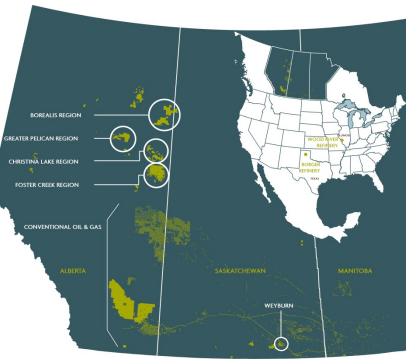
This presentation contains information in compliance with:

AER Directive 054 - Performance Presentations, Auditing, and Surveillance of In Situ Oil Sands Schemes

Section 3.1.2 Surface Operations, Compliance, and Issues Not Related to Resource Evaluation and Recovery

This document contains forward-looking information prepared and submitted pursuant to Alberta regulatory requirements and is not intended to be relied upon for the purpose of making investment decisions, including without limitation, to purchase, hold or sell any securities of Cenovus Energy Inc. The resources estimates contained herein are not reported in accordance with National Instrument 51-101 and are provided solely for the purpose of complying with Alberta regulatory requirements.

Additional information regarding Cenovus Energy Inc. is available at cenovus.com.



© 2015 Cenovus Energy Inc. June 24, 2015

Strong integrated portfolio

TSX, NYSE | CVE

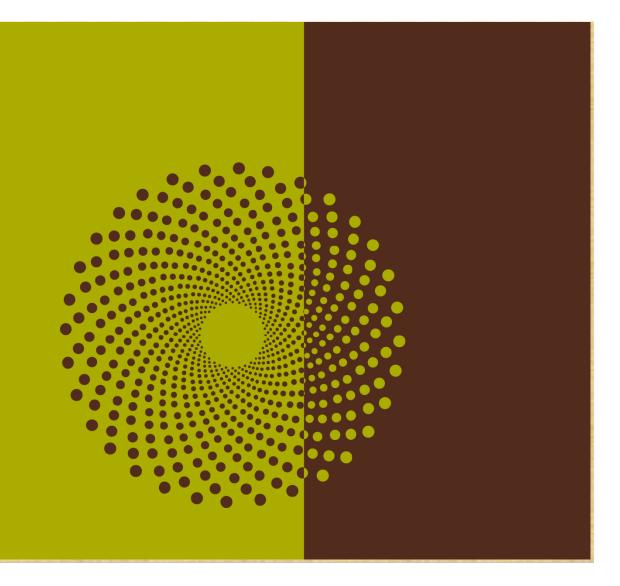
Enterprise value	C\$25 billion
Shares outstanding	829 MM
2015F production	
Oil & NGLs	204 Mbbls/d
Natural gas	438 MMcf/d
2014 proved & probable reserves	3.9 BBOE
Bitumen	
Economic contingent resources*	9.3 Bbbls
Discovered bitumen initially in place*	93 Bbbls
Lease rights**	1.5 MM net acres
P&NG rights	5.6 MM net acres
Refining capacity	230 Mbbls/d net

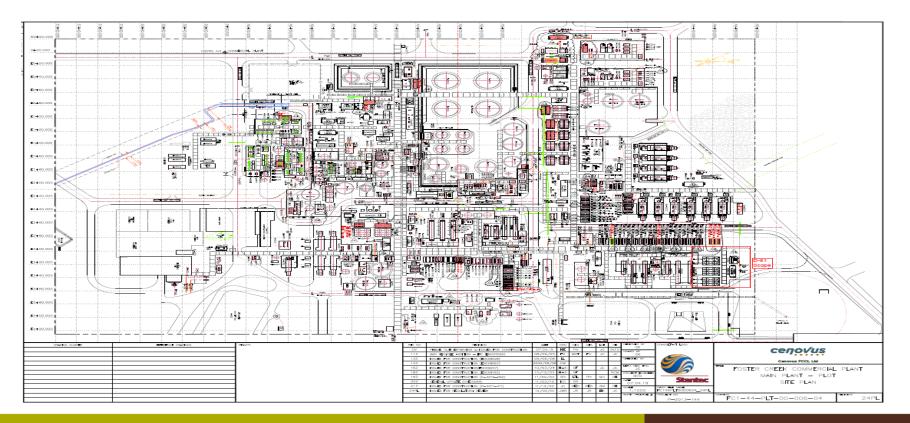
Values are approximate. Forecast production based on midpoints of January 28, 2015 guidance. Cenovus land at December 31, 2014. *See advisory. **Includes an additional 0.5 million net acres of exclusive lease rights to lease on our behalf and our assignee's behalf.

Current project status

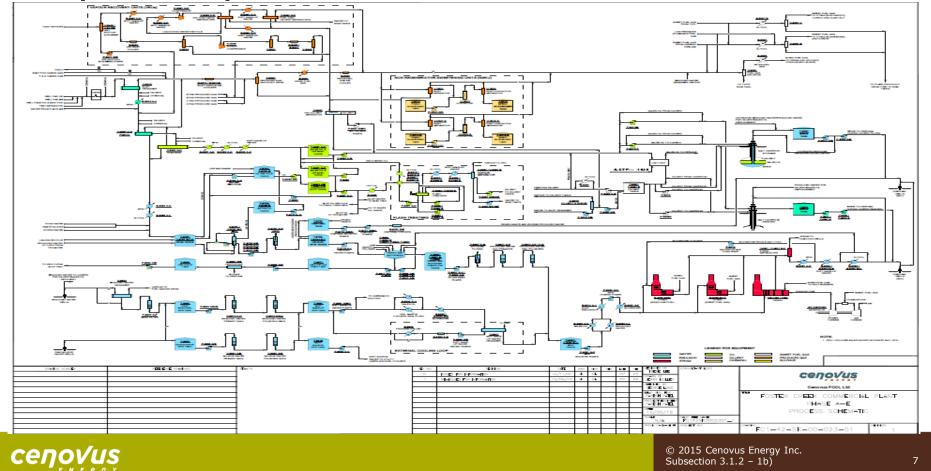
Aerial shot of Foster Creek facility, and steam and emulsion lines

- Phase A 20k bbls/d on October 2001 $(3,180 \text{ m}^3/\text{d})$
- 80 MW Cogen on Q1 2003
- Phase B $30k \text{ bbls/d} (4,770 \text{ m}^3/\text{d})$
- Phase C 60k bbls/d complete 2006 (9,534 m³/d)
- Phases D & E 120k bbls/d complete 2009 (19,078 m³/d)
- Water treating debottleneck and cooling loop complete 2010
- Q1 2014 oil production 109,412 bbls/d (17,395 m³/d)
- Record oil production day 130,580 bbl (20,761 m³)
- Approved for Phases A H, potential capacity 240k bbls/d (38,271 m³/d)

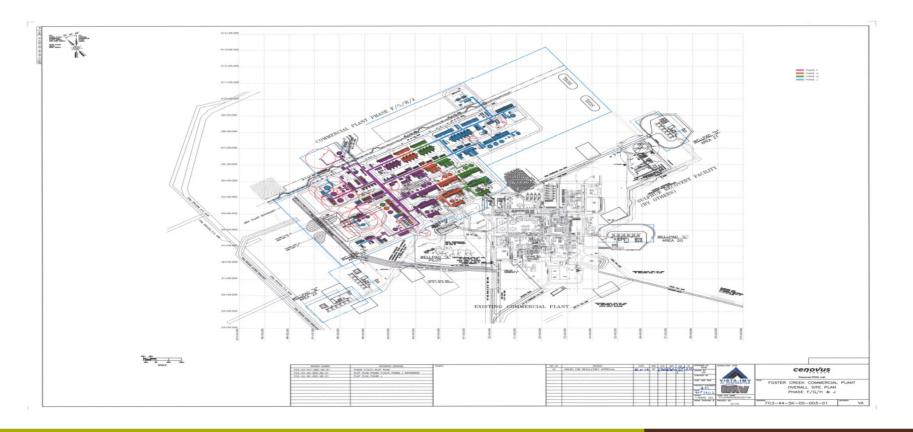

Note that production volumes refer to total cumulative production capacity


© 2015 Cenovus Energy Inc.

Facilities



Foster Creek A/E plot plan

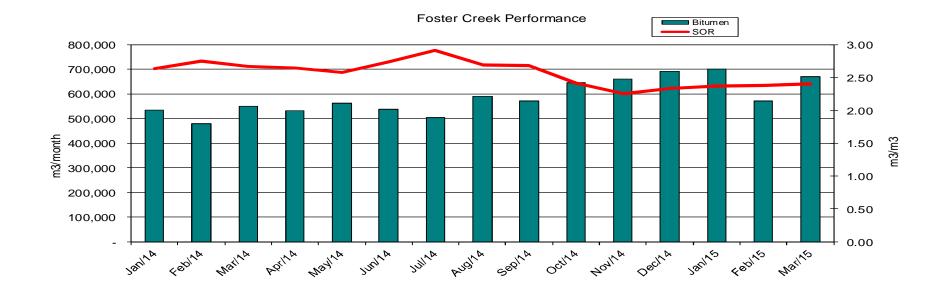


Simplified process schematic for A/E

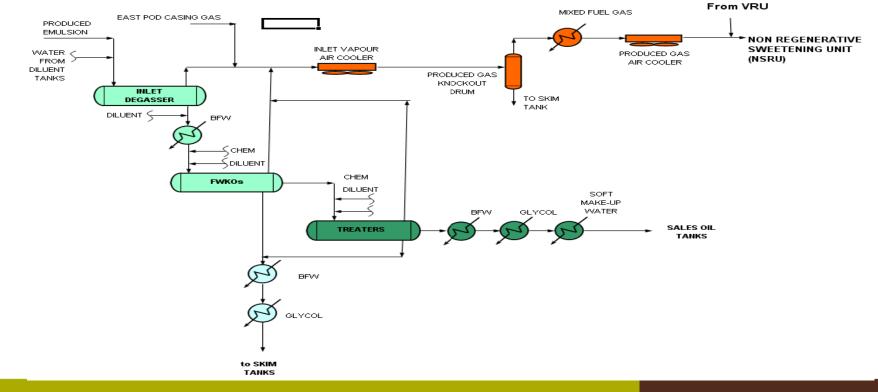
Foster Creek FGH plot plan

Phases F, G & H

- Engineering & Procurement completed
 - Phase F&G 99%, Phase H 95%
- Construction
 - Phase F 98% complete
 - Area 8 completion May 22/15
 - Insulation & Tracing completion Aug 2015
 - Construction complete Aug 2015
 - Phase G 49% complete
 - Major equipment 100%
 - Field piping @ 49%,
 - Field E&I @0.6%
 - Phase H 16% complete (Construction presently on hold)
 - Piling @100%, cutting and capping @ 87%, concrete @ 61%

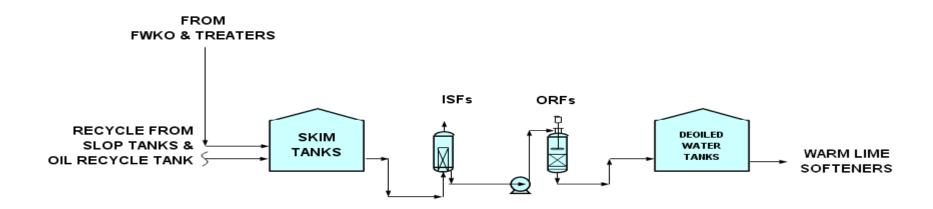

Phase F commissioning

- Complete:
 - Area 02 (Steam generation)
 - Area 03 (Oil treating), with the exception of the Flash Treater
 - Area 04 (Tankage & Vapor Recovery)
 - Area 05 (utilities)
 - Area 07 (De-oiling)
- Remaining:
 - Area 08 (Water Treatment) WLS, LSF's, ion exchange, and auxiliaries
 - Area 03 Flash Treater Package



Plant performance

Area 03: Emulsion treatment


- Two inlet degassers (A/E & FGH)
- Five process trains (A/F), one FWKO + two Treaters per train
- Three Sulphur Removal Units (A/E & FGH) for sweetening produced and recovered gas

Area 03: Emulsion treatment

- Very stable operation
- Installing Nuclear Density profilers in the All the Phase-A-E Treaters for better monitoring and controls of the treating vessels.
- Phase-F Treaters to be done in future
- Project in progress to automate the emulsion line gas slug mitigation logic in Phase-A-E and Phase-FGH.

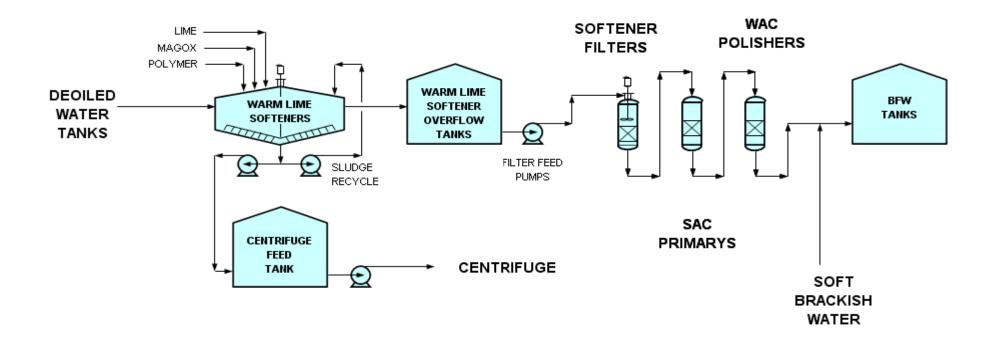
- Five de-oiling trains (A/F)
- First train
 - one skim tank, one ISF and three ORFs
 - ISF capacity (375 m³/hr)
 - Re-configured this train to series operation Skim Tank > Pump > ISF > ORF. Achieved ~500 m3/hr flow when inlet qualities are good
- Second train
 - one skim tank, one smaller ISF and three ORFs
 - ISF capacity is 250 m³/hr. Some flow bypasses ISF.
- Third fifth trains
 - one skim tank, two ISFs and four ORFs
 - ISF capacity (375 m3/hr per unit)

Skim tanks

- Designed for < 4 hours retention time based on nominal capacity Actual retention time is much lower
- Improper oil skimming (XV valve & gravity flow out of tank)
- There is no solid removal mechanism. Only few nozzles around the perimeter of the tank.
- No Chemical is added to skim tanks

ISFs

- Vertical units with about 5-6 minutes of retention time
- Flocculent injected at inlet
- Two units are modified with micro-bubbler pumps instead of eductors


- Oil removal filters (ORF) walnut shell media
- De-oiled produced water oil treatment performance (January 2014 to March 2015)
 - Skim tanks inlet average avg. ~128 ppm
 - ISFs inlet average avg. ~115 ppm
 OBFs inlet average avg. ~115 ppm
 - ORFs inlet average avg. ~21 ppm
 - ORFs outlet average avg. ~9 ppm

- AE plant capacity increased from 2090 to 2353 sm³/hr by continuous optimization of the system
- Can operate at maximum capacity only when O&G from Area-3 is in normal range < 200 ppm
- Total De-oiling system capacity = 2353 + 617 = 2970 m3/hr

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2b)

21

Area 08: Produced water treatment

- Two Eimco units tested to 1200 m³/hr
- One Densadeg designed for 500 m³/hr
- Lime softener filters (LSF) walnut shell media
- SAC followed by WAC ion exchange units
- 2014 Average BFW quality
 - silica <30 ppm</p>
 - TDS <3000 ppm
 - hardness < 0.05 ppm</p>
 - iron <0.30 ppm
- Phase F water plant will be commissioned in Q3-2015

Селоуиз

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2b)

Area 08: Brackish water

- Continued brackish water piping replacement with duplex SS
- Directive 081 project will take over a portion of this piping to convert it to glycol service
- Continue with corrosion monitoring

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2b)

Directive 081 update

- Project engineering completed; major equipment ordered
- Adding new glycol capacity to remove cooling load off brackish
- Removal of dependency on brackish water for cooling
- Increased produced water treating capacity by adding one LSF and one SAC to maximize produced water use
- AER variance issued (May 2015) for modified Dir 081 limits at FC. The variance expires Dec.31, 2017

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2b)

Area 2/12: Steam Generation

- Two cogen units (40 MW each)
- Five 180 MM Btu/hr OTSGs
 - Re-rated in 2014 to increase BFW rate from 83.3 to 95 m3/hr
 - Will operate at high BFW rate only during one OTSG outage
- Ten 275 MM Btu/hr OTSGs
 - Continuous Emission Monitoring Systems (CEMS) on B-0206, B-0210 and FC3-B-0201
 - Operated B-0206 & B-0208 at 87% Steam quality (April Dec 2014)
- Four 250 MM Btu/hr Second Stage OTSGs

Area 02: Second stage OTSG – FC3

Phase-F 2nd Stage OTSGs (6 pass, 250 MMBTU/H, TIWW)

- Four OTSGs, FC3-B-0201/02/03/04 were commissioned in May-2014
- Operated at 70% steam quality
- BFW+BBD blend to maximize steam production
- 1.9 million Sm3 BBD used to produce steam (May 2014 to end of March2015)
- Failures:
 - Tube failures were observed in all four boilers in Q4-2014 or Q1-2015.
 - Failures were found in the economizer shock tube or low fin tubes where heat flux is highest
 - All the failures have been repaired and boilers put back to operation.

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2c)

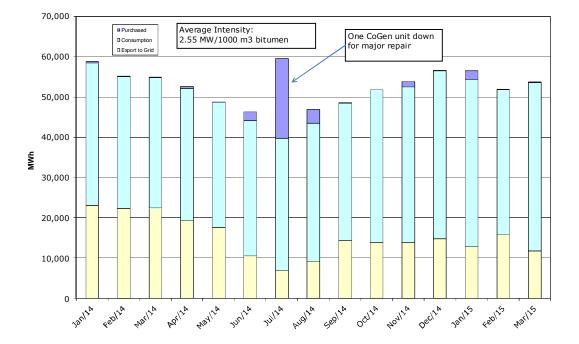
Area 02: Second stage OTSG

Failure Mechanism:

- The failures caused by overheating due to internal scale deposition
- Currently studying the scaling mechanism. Possible contributors
 - Scaling was accelerated due to presence of the corrosion particles in the commissioning water
 - Multiple trips of the BFW pumps during commissioning and start up
 - Mixing of BFW and BBD could lead to precipitation of the solids
 - Too long of operation without cleaning

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2c)

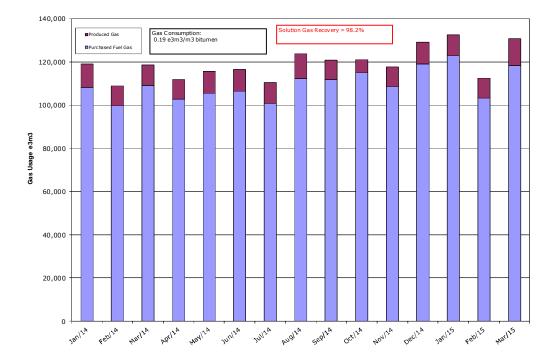
Area 02: Second stage OTSG


Corrective Actions:

- Reduced the firing rate to 90%
- Utilizing BBD water only (No mixing)
- Pigging frequency was set to three months
- Reduce boiler trips
- A multi-discipline taskforce was formed to improve
 - Boiler operation reliability
 - Understand the scaling mechanism
 - Review and optimize the boiler chemical program
 - Install additional instrumentation to monitor the dP and tube wall temperature of the economizers
 - OTSGs have been operating with BBD only since early March
 - OTSGs will be pigged after ~ 90 days of operation

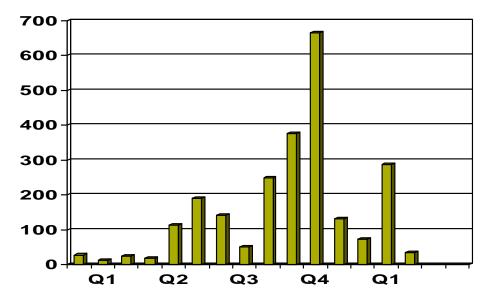
селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2c)


Power generation

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2d)

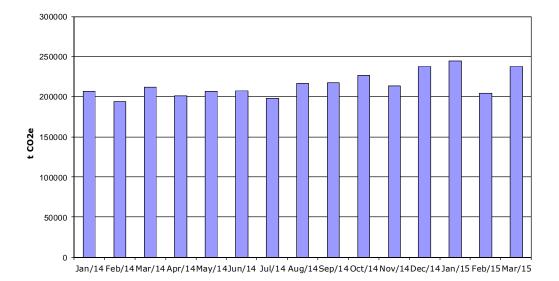
Gas usage



© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2e)

Flared gas volume (e³m³/month)

2014 total flared gas 2002.9 e³m³, (2 e³m³/d), 0.29 m³/m³ oil, compared to 716.1 e³m³ in 2013


- 2014 Q3-Q4 high flaring due to various activities and issues related to new Phase-F start up
 - Phase-F NRSU outage
 - Phase-F PG cooler leakage
 - Phase-F Boiler trips
 - Pad-C shutdown outage

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2e)

Greenhouse gas emissions

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2f)

Emissions

- 2014 GHG emissions including CoGen 2.537 MM tonnes CO₂e (2.193 MM tonnes in 2013)
 - total annual emissions (tonnes CO₂e) less Deemed GHG Emissions from Electricity Generation 2.287 MM tonnes or reported emissions intensity 0.3330 tonnes CO₂e/m³ bitumen
- Fugitive emissions 197.1 tonnes (291.7 t in 2013)
 - fugitive emissions include unintentional equipment leaks such as loose flanges, PSVs not sealing properly, equipment wear, etc.
 Does not include equipment vents that are intentionally designed to vent.
 - using Target Emissions Services to monitor FEMs with LDAR camera to detect leaks which are then repaired

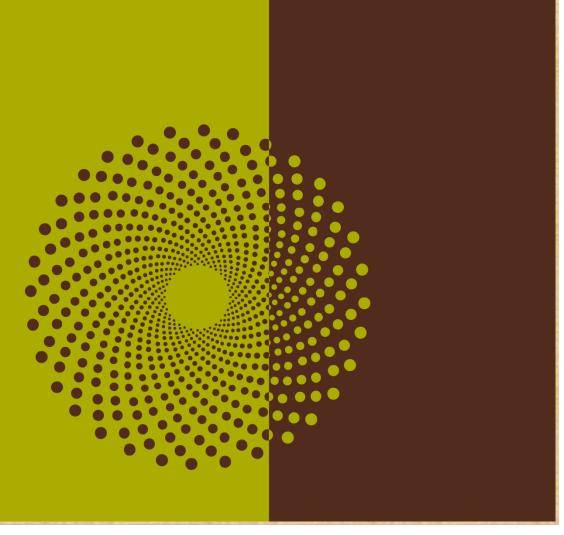
© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2f)

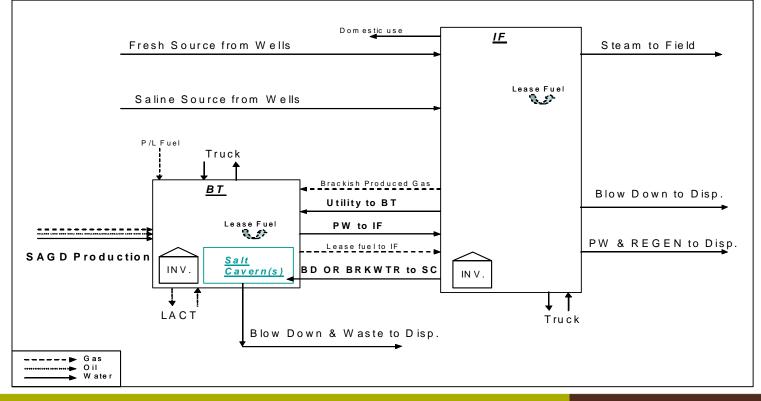
Area 04: Vapor Recovery Unit (VRU)

- One screw compressor + eight liquid ring compressors
- Construction in progress for
 - Addition of a new screw compressor K-0422
 - VRU header twinning to resolve hydraulics limitations
 - Expected to be commissioned in Q2/Q3-2015

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2e)

Area 04: Slop handling


- Eight slop tanks each about 870 m³
- Tricanter to treat slop fluid and reduce waste
 - Processing 200 to 350 m3/d of slop fluid
 - Water and oil on spec and returned to facility
 - Investigating what other fluids could be treated with this system
- AE plant Flash Treaters not being used
- Phase-F one Flash Treater to be commissioned


© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 2a)

Measurement and reporting

Simplified MARP schematic

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 3)

MARP approvals

- FGH MARP was approved in April 2011
- A-H update submitted March 2015
- Salt caverns are separated from the rest of the plant for production reporting

 $\ensuremath{\textcircled{C}}$ 2015 Cenovus Energy Inc. Subsection 3.1.2 – 3)

Methods for estimating injection and production volumes

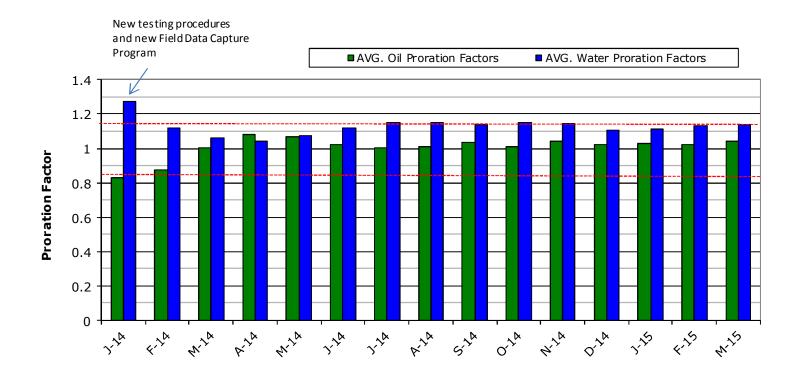
- Production well metering/estimates:
- Wellhead meters are quadrant edge orifice plate meters for the first 34 pads, manual BS&W samples
- W08 first new well pad with test separator design, all new pads will incorporate test separators
- W08 uses Phase Dynamics for water cut, still working with vendor to calibrate (using manual BS&W samples in the interim)
- Other initiatives
 - Two MPFMs being piloted in the east (AGARs not very consistently reliable)
 - Plan to test NMR (nuclear magnetic resonance) technology for BS&W and a new proportional sampler (bench test)
 - AGAR MPFM installed on W06 pad well pairs WP7 and WP8 which may come on this fall

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 3a)

Methods for estimating injection and production volumes

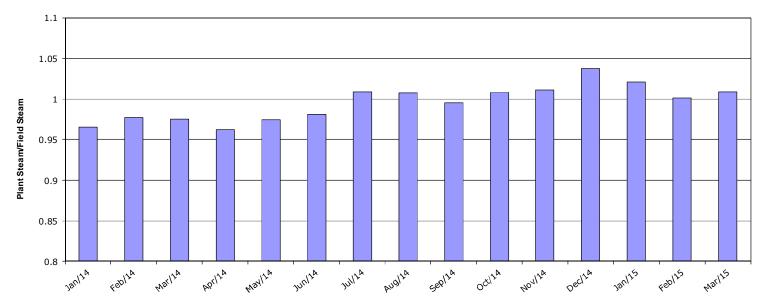
- Production is prorated to plant volumes:
 - Oil: sales diluent +/- inventories + blending shrinkage
 - Water: water entering battery and transferred to the IF (sum of the ORFS +/- inventories + transfers)
- Steam injection meters:
 - Injection well head meters are nozzle-style and V-cone
 - Steam is measured at each injector
 - Steam leaving the plant is calculated using the sum of the boiler feedwater meters minus the blowdown water meters. The plant steam is then prorated to each well.

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 3a)


Proration factors

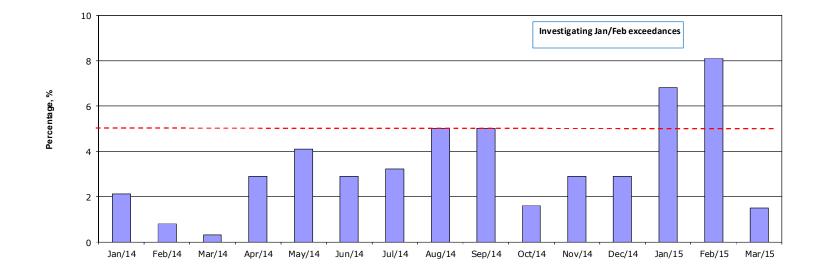
- Oil and water estimates are obtained from the wellhead meters and manual samples
- Oil and water production is calculated from meters at the plant
- Proration factors are found by dividing the actual production by the estimated
- Gas allocated to each well is determined by GOR for the battery

 \bigcirc 2015 Cenovus Energy Inc. Subsection 3.1.2 – 3b)


Oil and water proration factors

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 3b)


Steam proration factors

2015 steam proration

Injection facility water imbalance

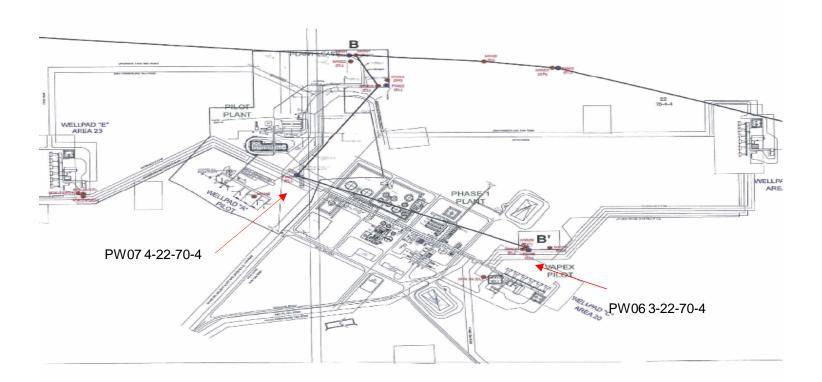
© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 3b)

Optimization of test durations

- Wellhead flow meters are used to measure the flow rate of existing wells at Foster Creek
- This variance from standard testing duration was granted by exemption letter because the wells all have individual flow meters so flow is continuously measured
- Quadrant edge orifice meters have been proven to compare well to coriolis meters
- New test separators have coriolis meters and watercut analyzer on liquid leg (first units are Phase Dynamics – currently working with vendor on calibrations)

 $\ensuremath{\textcircled{C}}$ 2015 Cenovus Energy Inc. Subsection 3.1.2 – 3c)

Description of water production, injection and uses

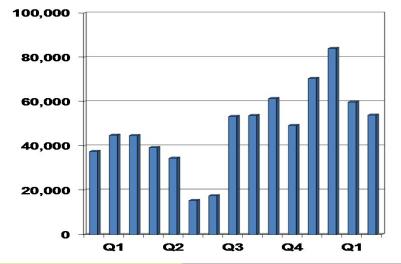


Селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4a)

Fresh source wells

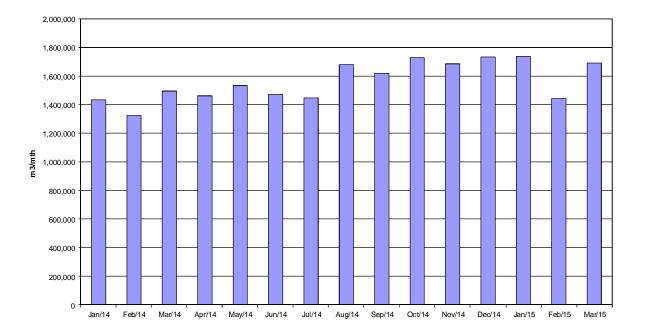
2014 monthly saline water use (m³)


- Saline water use during 2014 was 3,716,543.8 m³ (0.54 m³/m³ oil)
- Saline water use during Q1 2015 was 966,085.2 m³ (0.50 m³/m³ oil)
- 2014 Saline Source/Use:
- 75% Grand Rapids (SAGD)
- 25% McMurray (SAGD)
- Saline water used for cooling and makeup

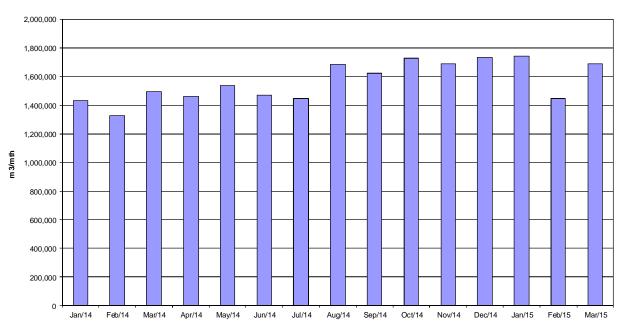
селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4b)

2014 monthly fresh water use (m³)

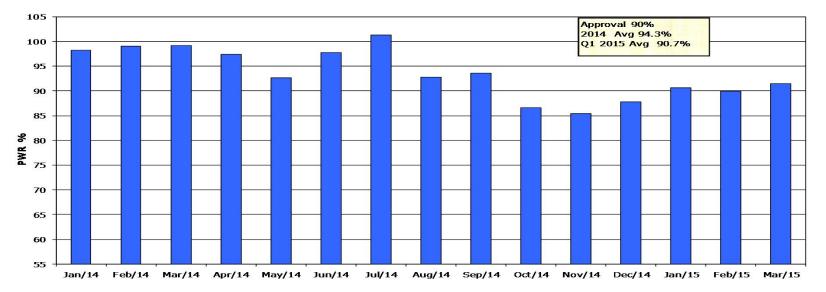

- Fresh water used during 2014 was 522,391.9 m³ (.076 m³/m³ bitumen)
- Fresh water used during Q1 2015 was 197,949.1 m³ (0.102 m3/m3 oil)
- Phase F start up increased fresh water use for BFW make up purposes.
- Fresh Water use is expected to drop significantly after the commissioning Phase F water treatment plant, currently scheduled for July 2015.

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4b)


Produced water

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4d)

Steam generation



Produced Water

© 2015 Cenovus Energy Inc. Subsection 3.1.2 - 4d)

Water recycle

Water Recycle Ratio

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4e)

Water quality parameters

Mg/L	McMurray	Grand Rapids	Produced	Boiler feed water	Boiler blowdown
TDS	9400	5800	2000	3200	19000
SiO2	8.6	8.5	124	15.4	70
Cl	5200	3600	861	1330	4500
Na	3500	2100	700	1010	4800
К	12	7.6	21	18	365
Са	35	20	13	<1	1
Alkalinity (as CaC03)	1200	300	355	350	1800
рН	8.15	8.25	7.58	9.43	11.95
Fe	2.6	0.6	0.5	<0.02	3

селоуиз	© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4)	54
---------	---	----

Foster Creek McMurray water disposal

- Class 1B (28 wells) approval 11351F, Class II (1 well) Approval 11059C
- Ten new wells on ED3 pad started disposal operations in July 2014
- Water disposal includes water from operations (produced, regens, blowdown) and brines from cavern washing and displacements
- Regens are performed using softened water (brackish + produced, no fresh water) and combined with produced water for disposal
- Well workovers include coil cleanouts and acid stimulations
- Volumes are measured on each individual well by turbine or magnetic meters and pressure is measured at common headers located at the disposal pads

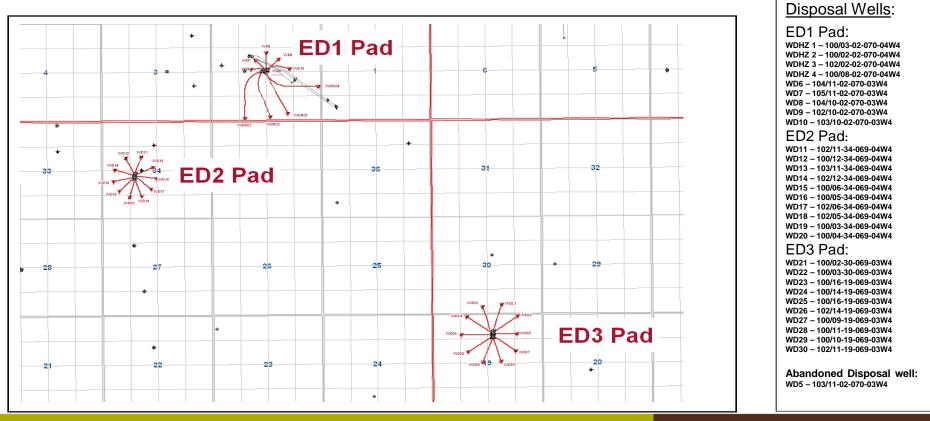
© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4g)

Foster Creek McMurray water disposal wells

UWI	Approval No.	Classification
102/02-02-070-04W4	11351F	Class IB
100/03-02-070-04W4	11351F	Class IB
100/08-02-070-04W4	11351F	Class IB
103/10-02-070-04W4	11351F	Class IB
104/11-02-070-04W4	11351F	Class IB
105/11-02-070-04W4	11351F	Class IB
104/10-02-070-04W4	11351F	Class IB
100/02-02-070-04W4 (LGR)	11351F	Class IB
102/10-02-070-04W4	11059C	Class II
102/11-34-069-04W4	11351F	Class IB
100/12-34-069-04W4	11351F	Class IB
102/12-34-069-04W4	11351F	Class1B
103/11-34-069-04W4	11351F	Class IB
100/06-34-069-04W4	11315F	Class 1B

селоуиз

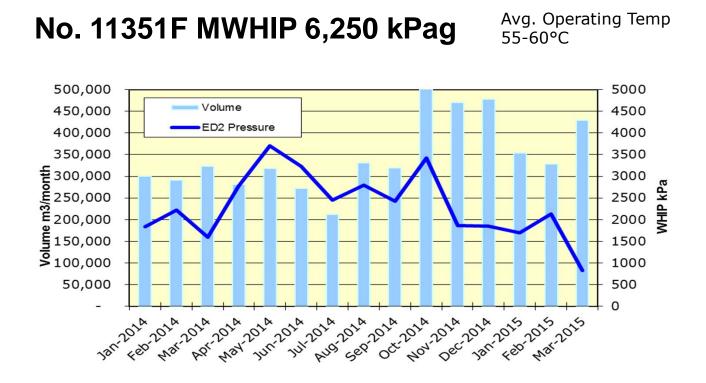
© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4g)


Foster Creek McMurray water disposal wells

UWI	Approval No.	Classification
100/05-34-069-04W4	11351F	Class IB
102/06-34-069-04W4	11351F	Class IB
102/05-34-069-04W4	11351F	Class IB
100/03-34-069-04W4	11351F	Class IB
100/04-34-069-04W4	11351F	Class IB
100/02-30-069-03W4	11351F	Class IB
100/03-30-069-03W4	11351F	Class IB
102/16-19-069-03W4	11351F	Class IB
100/14-19-069-03W4	11351F	Class IB
100/16-19-069-03W4	11351F	Class IB
102/14-19-069-03W4	11351F	Class IB
100/09-19-069-03W4	11351F	Class1B
100/11-19-069-03W4	11351F	Class IB
100/10-19-069-03W4	11315F	Class 1B
102/11-19-069-03W4	11315F	Class 1B

сел	ovus	

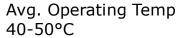
© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4g)

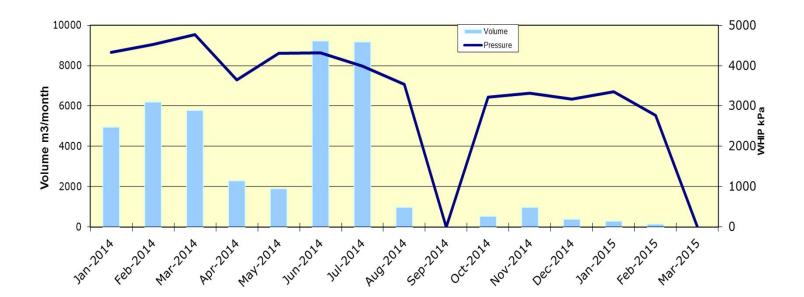

Current disposal well locations

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 4g) Legend

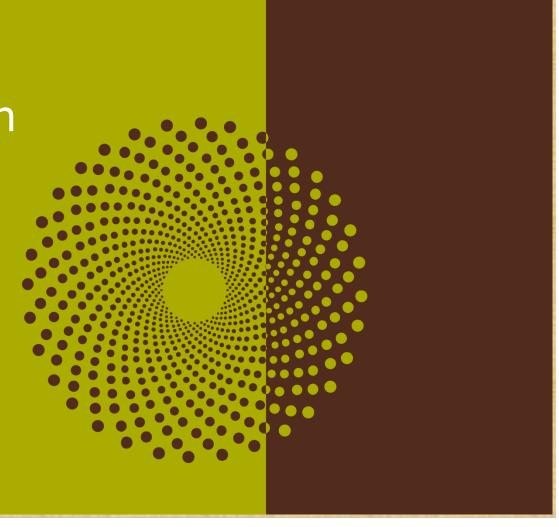
McMurray class 1B approval


Foster Creek McMurray water disposal comments


- Disposal rates jumped in October 2014 due to the Phase F (FC3) emulsion processing area commissioning. Produced water (PW) from the processing was sent to disposal since water treatment system had not been commissioned. This increased disposal rates, despite a reduction in BD disposal from running the second stage OTSGs (SSOTSGs). In November 2014, one boiler failed in FC3 while other boilers were undergoing planned maintenance. As a result, only 1-2 SSOTGs were running for the months of November/December. This also resulted in increased BD disposal.
- Disposal rates increased in March 2015 as a result of increased produced water disposal from FC3 commissioning. This was attributed to increasing the inlet emulsion rates to achieve plant design rates for commissioning

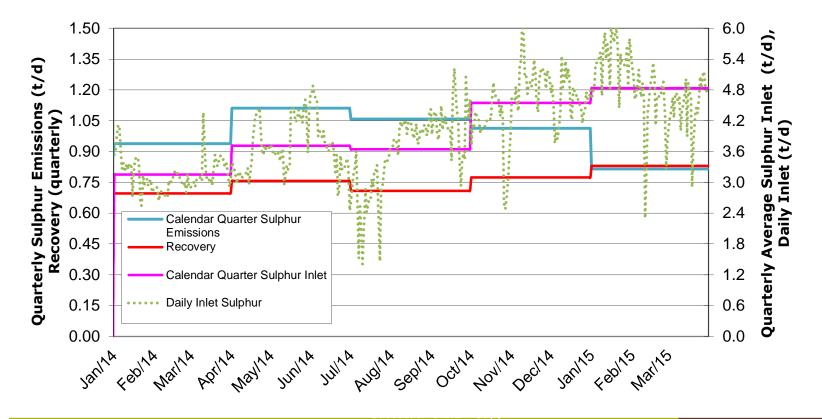
McMurray class II approval

No. 11059C MWHIP 6,255 kPa


Waste disposal

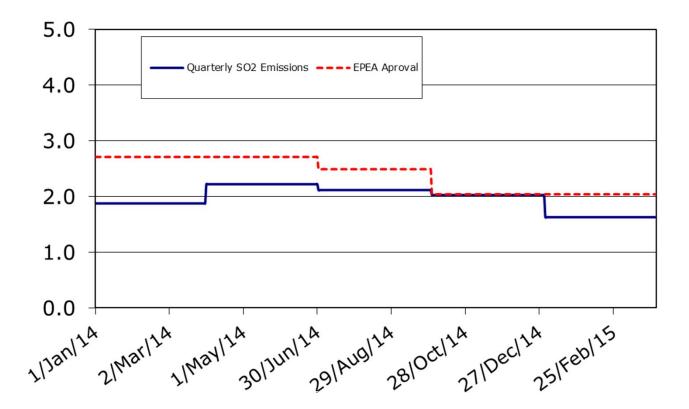
Foster Creek Waste Streams	2014 Volume (m3)	Location
Slop oil/Desand Fluid	26,683	NewAlta Elk Point/Tervita Coronation/ Tervita Lindbergh Cavern
Drilling waste	53,797	Newalta Elk Point/Tervita Lindbergh Cavern/Tervita Bonnyville Landfill
Lime sludge	17,316	Newalta Elk Point/Tervita Lindbergh Cavern/Tervita Bonnyville Landfill
Contaminated soils	1,408	Newalta Elk Point/Tervita Lindbergh Cavern/Tervita Bonnyville Landfill/RBW Edmonton
Sweetening liquids/sludge	9,340	Absolute Environmental Class Ia Disposal Well/ Cancen New Sarepta/Tervita Unity Cavern
Acid Workover Program	434	Tervita Lindbergh Cavern

Sulphur production



Sulphur recovery overview

- Central facility non-regenerative sweetening unit (NRSU) has been used since April 2007 to meet sulphur recovery requirements
- Second unit added in 2010 at Phase A-E can be used in parallel or for backup
- Additional unit at Phase F
- High operating costs for chemical and disposal
- Balance recoveries on a daily/monthly basis
- Sulphur recovery Q1 2014: 69.7%, Q2 2014: 75.8%, Q3 2014: 71.0%, Q4 2014: 77.4%, Q1 2015 83.0%


селоуиз	© 2015 Cenovus Energy Inc. Subsection 3.1.2 – 5a)i) 64
---------	---

Sulphur recovery

SO₂ emissions (tonnes per day)

 CENOVUS
 © 2015 Cenovus Energy Inc.

 Subsection 5.1.2 - 6c)
 66

Sulphur recovery comments

- Sulphur recovery system being reviewed to ensure it has sufficient capacity
- Re-designed and installed new inlet gas sparger (distributor) in all three NRSUs to improve flow rate and reliability. This new sparger significantly reduces fouling and plugging.
- Planning to perform capacity test with the new sparger in Q3 2015
- Reviewing pressure drop profile in the system. Initiated project to change inlet valve in NRSU 2 to reduce pressure drop.
- C Pad compressor reliability has been improved to handle casing gas flows.
- Continued use of non-regenerative sweetening unit (NRSU) technology
- Developing casing gas gathering pipeline model to ensure appropriate capacity at lower pressure drop.

Environmental issues summary

Environmental non-compliance 2014

• AER Events:

- Two NOx exceedances
- Four CEMS availability contraventions
- Twenty-one environmental spills were reported and remedial action taken
- Four 7-day letters submitted
 - D55 secondary containment failure; Pipeline overpressure; Waste delivered to wrong facility; Bottom hole over-pressure

• AESRD Events:

- Four 7-day letters submitted
 - Non-Compliance to License approval conditions

Federal Events:

No non-compliance events

Application	Filing Date	Approval
W07 and 10 Pads Alternate Spacing	January 21, 2014	February 10, 2014
W18 Reconfiguration	February 20, 2014	March 27, 2014
MOP Increase	February 28, 2014	May 29, 2014
Microbial Enhanced Start- up	March 10, 2014	August 19, 2014

Application	Filing Date	Approval
Dual lateral production well J Pad	March 14, 2014	August 19, 2014
E22, W19, W20 &W23 Reconfiguration	April 7, 2014	July 7, 2014
Temporary MOP Increase	April 22, 2014	April 30, 2014
Change of metering equipment W06/E21	May 30, 2014	August 1, 2014
Pressure sink well application	May 30, 2014	October 3, 2014
Surfactant Steam Process Project	May 30, 2014	January 14, 2015

Cenovus Energy Inc. Subsection 3.1.2 - 6B)

Application	Filing Date	Approval
D081 Heat Integration Project	July 14, 2014	October 3, 2014
Steam Dilation	July 30, 2014	October 14, 2014
E26 and W10, W16 and W21 Reconfiguration	August 7, 2014	December 10, 2014
Propane Solvent Aided Process (SAP) Test	August 18, 2014	January 26, 2015

Application	Filing Date	Approval
Air Injection Pilot Rampdown, Blowdown FI1 & FI2	September 4, 2014	October 3, 2014
Coinjection of NCG (Methane) Central and East Pod	October 7, 2014	March 26, 2015
Methane Removal Well	October 8, 2014	February 5, 2015
Increase CH4 inj. Rate at Pads A, C & D	October 14, 2014	February 5, 2015

селоуиз

Application	Filing Date	Approval
Hot Spot Surfactant Trial (E24P02)	October 24, 2014	March 18, 2015
Downhole Heater Enhanced start- up	December 17, 2014	February 11, 2015

Subsection 3.1.2 – 6b)

Approval amendments – AESRD EPEA

Phase J EPEA Approval

• Approved December 17, 2014 (68492-01-03)

Annual reporting - 2014

The following reports were submitted March 2014 as per EPEA Approval 00068492-01-03:

- Annual Groundwater Reports
- Annual C&R Plan
- Annual Air Monitoring Report
- Annual Industrial Runoff Report

Monitoring programs

Cenovus is required to implement the following monitoring programs as part of EPEA Approval 00068492-01-03:

EPEA Requirement	Report Name	Due Date	Status
Schedule VIII, Condition 4	Wildlife Mitigation Program	October 31, 2012	Implemented
Schedule VIII, Condition 19	Updated Wildlife Mitigation Program	June 30, 2015	Not due yet
Schedule VIII, Condition 13	Wildlife Monitoring Program	October 31, 2012	Implemented
Schedule VIII, Condition 21	Updated Wildlife Monitoring Program	June 30, 2015	Not due yet
Schedule VIII, Condition 9	Woodland Caribou Mitigation and Monitoring Plan	January 31, 2013	Implemented
Schedule VIII, Condition 20	Updated Woodland Caribou Mitigation and Monitoring Plan	May 15, 2015	Submitted
Schedule IX, Condition 41	Updated Wetland Reclamation Trial Program	June 30, 2015	Not due yet
Schedule IX, Condition 47	Reclamation Monitoring Program	July 31, 2013	Implemented
Schedule XI, Condition 2	Updated Wetland Monitoring Program	June 30, 2015	Not due yet
Schedule VII, Condition 1	Soil Monitoring and Management Program Proposal	February 1, 2014	Submitted / Approved
		February 1, 2019	Not due yet
Schedule IX, Condition 28	Project-Level Conservation, Reclamation and Closure Plan	June 30, 2016 (industry-wide extension granted)	Not due yet
Schedule IX, Condition 17	Decommissioning Plan and Land Reclamation Plan	Within six months of the plant ceasing operation	Not due yet

Goals of monitoring programs

Wildlife and Caribou Mitigation and Monitoring:

- The monitoring programs propose mitigation measures, metrics, targets, and monitoring objectives
- Monitoring and mitigation is based on an outcomes based approach to facilitate continuous improvement
- First Comprehensive Wildlife Report was submitted May 15th, 2015

Mitigation measures are designed in relation to project-related issues that have the potential to affect:

- Wildlife habitat availability and use, including noise and other sensory disturbance
- Wildlife mortality
- Obstruction of movement

Goals of monitoring continued

Wetland monitoring:

- Objective is to assess and quantify potential impacts of project infrastructure on surrounding wetlands using selected metrics and targets
- Effects of roads, well pads, borrow pits and CPFs will be monitored throughout the life of the project by assessing key parameters including water quality, water levels, vegetation species composition, cover and vigour

Co-operative initiatives

Cenovus participates in various co-operative efforts to address industry issues:

- Regional environmental monitoring
- Environmental research
- Stakeholder consultation
- Innovation and continuous improvement

Cooperative initiatives - Examples

- Canada's Oil Sands Innovation Alliance (COSIA)
- Contributed to over thirty projects including: Wildwatch, LiDEA, Fladry, Geodesign, Functional Quality Land Metric, etc.
- Support for three chairs at the University of Alberta
- Contributor to the Joint Canada-Alberta Oil Sands Monitoring (JOSM)
- Lakeland Industry and Community Association (LICA)
 - Airshed Monitoring
 - Beaver River Watershed Alliance

 $\ensuremath{\textcircled{C}}$ 2015 Cenovus Energy Inc. Subsection 3.1.2 – 6d)

Cooperative initiatives continued

- Regional Industry Caribou Collaboration project
- Alberta Chamber of Resources (ARC)
- Chair of the Caribou Committee
- Ecological Monitoring Committee for the Lower Athabasca (EMCLA)
- CAPP Environment Committee

Reclamation

- The Reclamation Monitoring Program was approved in August of 2014
- Final reclamation activities have been initiated and/or completed on small portions of the commercial footprint (remote from the CPF) that are no longer required
- Interim reclamation is present on approximately 25% of the commercial footprint not currently being used in construction or operations
- There is currently no facility abandonment scheduled, consequently no well pad reclamation has commenced

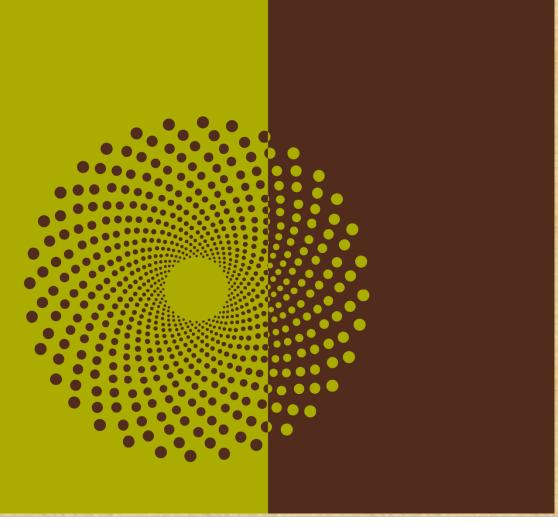
Cenovus Energy Inc. Subsection 3.1.2 - 6e)

Reclamation continued

Restoration of legacy 2D seismic footprints was initiated in 2012 and continued through 2013 to 2014:

- TWP 72 & 73, RGE 1 & 2, W4M
- Objective is successional advancement, increasing the growth and abundance of conifers and course wood on linear features, reducing trafficability
- Treatments employed on linear features include mounding, stand modification and tree planting
- Treatment progress to-date has covered 237 km

Compliance statement


Cenovus maintains and tracks compliance through the CenTrac conditions/commitment database, Incident Management System (IMS), routine inspections, and dedicated regulatory and environmental staff.

Cenovus believes its operations are in compliance with AER approvals and regulatory requirements.

Non-compliance

Non-compliance events

AER non-compliant events:

• July 22, 2014

Notice of Noncompliance – Outstanding Serious SCVF/GM @100/03-22-070-04W04 <u>Corrective action</u> – AER extension granted till July 31, 2015 to repair

• October 20, 2014

Notice of Low Risk Noncompliance with Directive 050 Oilfield Drilling Waste @ 120/03-17-070-03W4/00 & 102/03-17-070-03W4/02 License #: 0445344 <u>Corrective action</u>-Cenovus submitted DDS Drilling Waste Management Disposal Form.

Compliance was achieved October 22, 2014

Self-Disclosures

Cenovus Voluntary Self-Disclosures:

• June 12, 2014

Non-Compliant with Directive 050 Post Disposal Notification Requirements. Post disposal notification for the 104/04-01-070-04W4/00 well not completed within the 24 months of rig release (rig release June 7, 2012).

Corrective action

Cenovus submitted DDS Drilling Waste Management Disposal Form. Compliance was achieved June 18, 2014

June 18, 2014

Secondary Containment System Non-Compliant With Directive 55 (T-305 desand tank and T-301B pop tank containment, some holes identified in the liner).

Corrective action

Cenovus repaired the containment. Compliance was achieved July 30, 2014

Self-Disclosures

• October 29, 2014

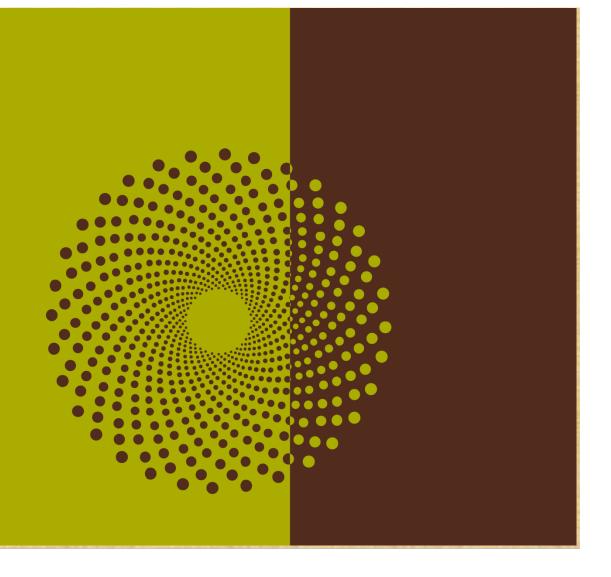
Maximum bottom hole injection pressure exceedance @ 103/4-1-70-4W4 Approval No. 8623

Corrective action

Operator was reminded of the importance to fully understand and follow Cenovus's procedures.

• December 3, 2014

Pad C Methane over injection rate Scheme Approval 8623WW


Corrective action

Cenovus changed the orifice plate size and control module was updated.

Future plans

Future projects

Current capacity is 150,000 bbls/d, target for Phases F,G & H to peak at 210,000 bbls/d. Evaluating opportunities to increase capacity. Currently scoping plant optimization opportunities for Phases A-E Phases F,G & H update

- New steam generation and production treating facilities being constructed next to the existing plant
- Phase F: 30,000 bbls/d, Phase G: 30,000 bbls/d, Phase H: 30,000 bbls/d, for total new capacity of 90,000 bbls/d (4,770 m3/d + 4,770 m3/d + 4,770 m3/d = 14,310 m3/d)
- Potential for another 35,000 bbls/d of optimization work
- The majority of new expansion is planned to be drilled west of the plant

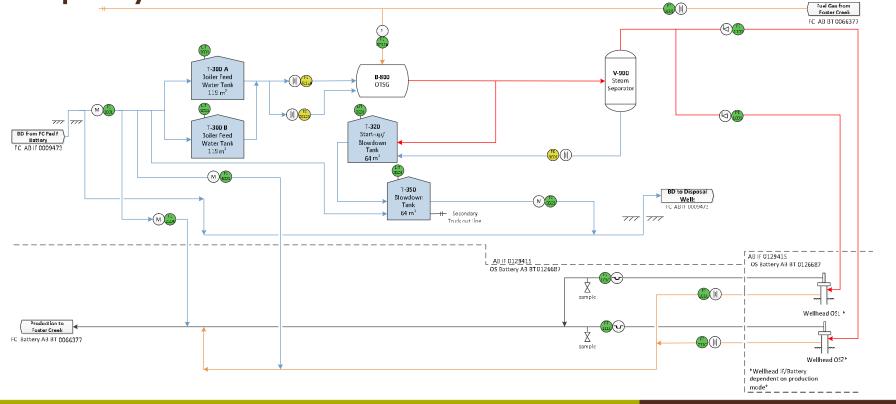
Note that production volumes refer to production capacity on an incremental basis

Future projects continued

Current success in SOR & WOR, and increased efficiencies in plant operations at Foster Creek indicates that Phases A – H may be capable of production greater than 240,000 bbls/d

Upcoming regulatory applications

- Currently evaluating opportunities to increase project capacity to 310,000 bbl/d (49,286 m3/d)
- Additional wells to recover un-swept reserves including injector-producer well pairs and single well producers
- Continued exit strategies for mature pads
- Future phase & sustaining development well pads


Currently drilling, completing and performing facilities work for sustaining and Phase F and G wells in 2014 through 2015

Note that production volumes refer to production capacity on an incremental basis

Osprey Pilot Surface Calgary | June 24, 2015 селоуиз

Osprey Process Schematic

© 2015 Cenovus Energy Inc.

Self-disclosure

October 29, 2014

Over pressure (5700 kPa) on maximum bottom hole pressure (5500 kPa) on OS1 (103/04-01-070-04W4M).

Corrective Action

Operator error was the root cause of this incident. Operators will be reminded of the importance to fully understand and follow procedures during all tasks.

© 2015 Cenovus Energy Inc.

End

© 2015 Cenovus Energy Inc.

97

Self-disclosure

October 29, 2014

Over pressure (5700 kPa) on maximum bottom hole pressure (5500 kPa) on OS1 (103/04-01-070-04W4M).

Corrective Action

Operator error was the root cause of this incident. Operators will be reminded of the importance to fully understand and follow procedures during all tasks.

© 2015 Cenovus Energy Inc.

End

© 2015 Cenovus Energy Inc.

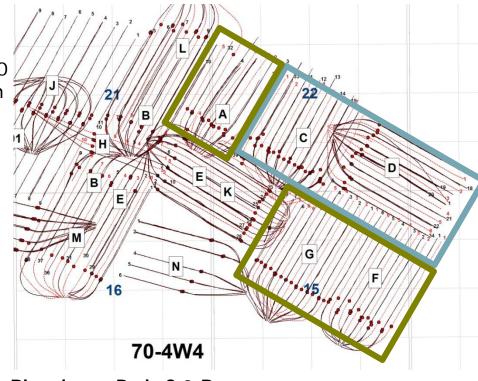
97

Steam rampdown/blowdown update #8

Foster Creek Reservoir Engineering & Geology AER Office | Calgary, AB | May 8, 2015

Advisory

This document contains forward-looking information prepared and submitted pursuant to Alberta regulatory requirements and is not intended to be relied upon for the purpose of making investment decisions, including without limitation, to purchase, hold or sell any securities of Cenovus Energy Inc. Additional information regarding Cenovus Energy Inc. is available at <u>cenovus.com</u>.

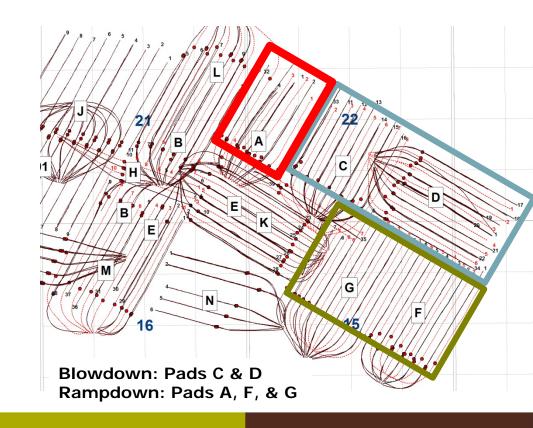


Agenda

- Foster Creek Thermal Project is our 50/50 joint venture with ConocoPhillips in which Cenovus FCCL Ltd. is the operator
- Pad Updates (A, C, D, F & G)
 - Operational review
 - Temperature monitoring
 - Fluid saturation updates
 - Compositional analysis
- Next steps

ce

• Pads A, C, D, F & G



Blowdown: Pads C & D Rampdown: Pads A, F, & G

Pad A – update

- Operational review
- Temperature monitoring
- Fluid Saturation updates
- Compositional analysis

Methane injection

Clause (23) Sub Clause (1) of Scheme Approval 8623

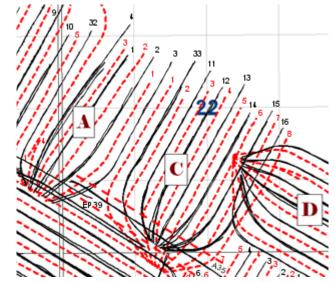
The operator shall conduct the ramping down and ceasing of steam injection, and injecting of non-condensable gas, at Well Pads A, C, D subject to the following conditions:

(1) The non-condensable gas injected will only be methane (fuel gas)

Pad A – operational overview

Injectors:

- AI1, AI4 and AI32 equipped and operational for methane injection
- Al2 and Al3 abandoned
- Methane injection started in March 2012
- Pad cum injection of 20,210 Se³m³ of methane to Feb 28, 2015


Producers:

- AP1, AP2, AP3, and AP32 are operational
- AP4 (offline)
- All five wells utilizing Wedge Well[™] technology are in operation
 - Currently injecting steam in A-inf1

Pad A- injection summary

Injector	Methane Injection Start Date	Cum gas injected to Feb 28, 2015 (Se3m3)
AI1	Mar 2012	7,535
AI4	Apr 2012	5,944
AI32	Mar 2012	6,731
Total		20,210

Cum gas since March 2012.

Well pairs

Wells utilizing Wedge Well™ technology

Pad A – production & injection

селоуиз

© 2015 Cenovus Energy Inc. May 8, 2015

Pad A – oil voidage

Percentage Gas injected volume per oil produced

Gas - Chamber Conditions

20,210 Se3m3, Methane Injected (Std Conditions)

11,596 Se3m3, Methane Produced, excluding solution gas (Std Conditions)

8,614 Se3m3, Net Methane Injected (Std Conditions)

8.648 kg/m3, Density of Methane in Chamber

657,394 m3, Net Methane Injected at Reservoir Conditions

% Gas Volume Injected vs Oil Voidage

Since Start of A Pad Production, 1997

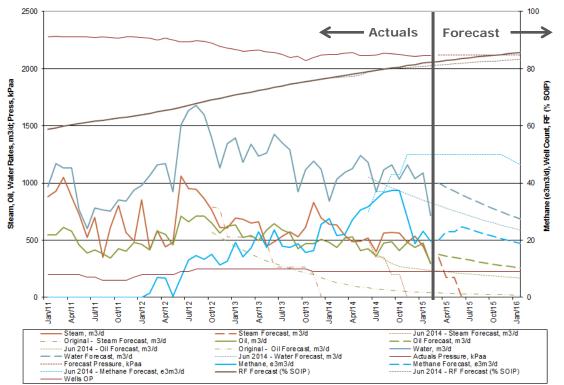
657,394 m3 of net methane injected (reservoir conditions)

2,652,981 m3 of oil produced (as of Feb 28, 2015)

24.78% oil voidage displaced by injected methane

Pad A – injection strategy

May 2015 to June 2015


- Operating in last steam cut phase
- Methane gas volumes adjusted to maintain reservoir pressure / balance with offset pads

June 2015 onwards

- Steam injection stopped, blowdown
- Methane gas volumes adjusted to maintain reservoir pressure / balance with offset pads

Pad A – predictive forecast

© 2015 Cenovus Energy Inc. May 8, 2015

Temperature logs & fluid saturation

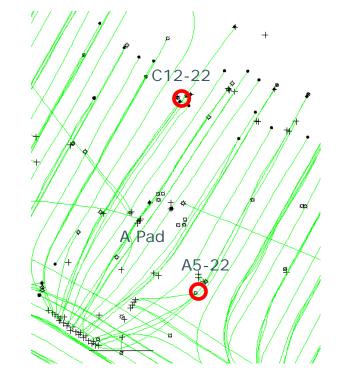
Clause (23) sub clause (2) of scheme approval 8623

Temperature measurement must be conducted a minimum of twice each calendar year at the designated observation wells listed below. A suitable baseline temperature measurement must be available or obtained at each designated observation well listed below prior to commencement of steam ramp down at each pad.

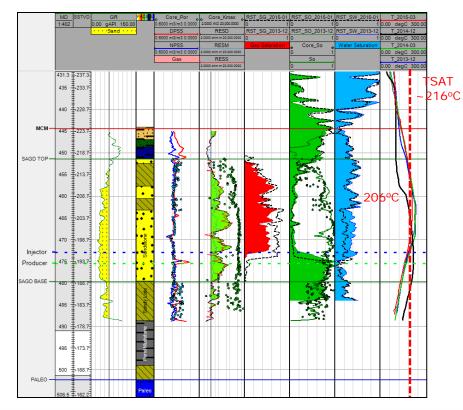
03/12-22-070-04W4/0 (C12-22)

11/05-22-070-04W4/0 (A5-22)

Clause (23) sub clause (3) of scheme approval 8623

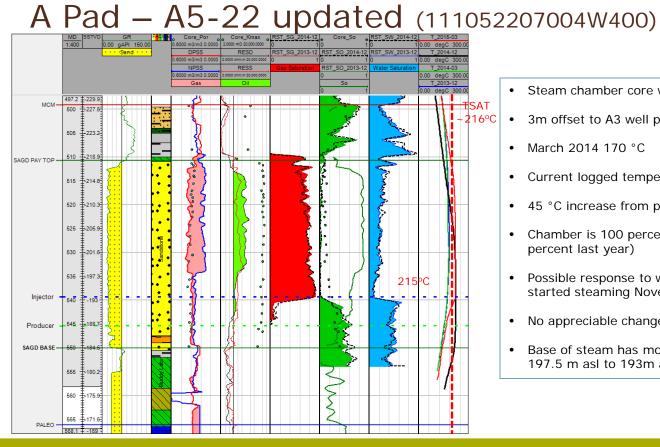

Fluid saturation measurements must be conducted a minimum of once every calendar year using well logging at a minimum of one observation well at each well pad. A suitable baseline fluid saturation measurement must be available or obtained at a minimum of one observation well at each well pad prior to the commencement of steam ramp down at each well pad.

Pad A: Temperature & Fluid Monitoring

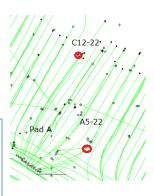

Pad A logging history

Target steam (percent)	Temperature log	RST log
100	January 2012	February 2012
70	December 2012	
70	March 2013	March 2013
60	December 2013	December 2013
45	March 2014	
45	December 2014	December 2014
30	March 2015	

Pad A- C12-22 updated (103122207004W400)



- 16m offset to A4 well pair
- March 2014 224 °C
- Current logged temperature 206 °C
- Chamber is 80 percent steam (100 percent last year)
- December 2014 temperature curve is suspect
- March 2014 to March 2015; 18 °C decrease, temperature curves are comparable
- Temperature curves remain consistent while ramping steam down to 15 percent.
- Noted increase in gas saturation, build in chamber
- Slight decrease in oil saturation

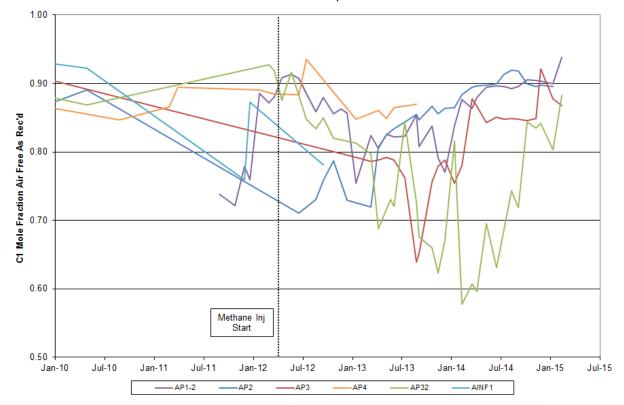

A5-22

Pad

- Steam chamber core well
- 3m offset to A3 well pair ٠
- March 2014 170 °C ٠
- Current logged temperature 215 °C •
- 45 °C increase from previous year ٠
- Chamber is 100 percent steam (35 ٠ percent last year)
- Possible response to wedge well-1, which ٠ started steaming November 2014
- No appreciable change in oil saturations ٠
- Base of steam has moved down from ٠ 197.5 m asl to 193m asl

May 8, 2015

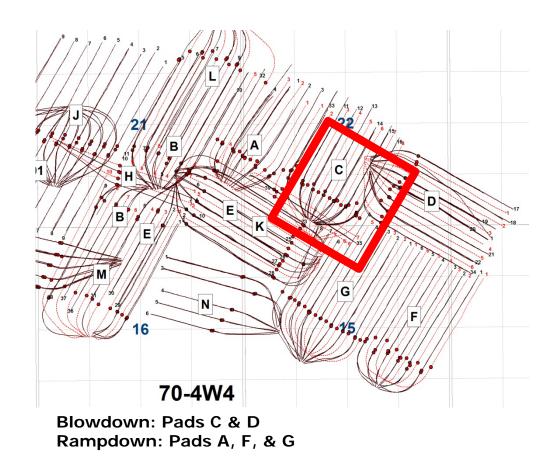
Compositional analysis


Clause (23) sub clause (4) of scheme approval No. 8623

Compositional analyses of the casing gas at the 08/12-22-070-04W4/2 (AP4), 11/07-22-070-04W4/0 (CP16), and 24/13-14-070-04W4/2 (DP20) wells and compositional analyses of the produced gas on a group basis for each well pad must be obtained monthly, commencing prior to the start of steam ramp down at each well pad.

Pad A – methane C1 mole composition

A Pad - Gas Composition



© 2015 Cenovus Energy Inc. May 8, 2015

Pad C- update

- Operational review
- Temperature monitoring
- Fluid Saturation updates
- Compositional analysis

Methane injection

Clause (23) sub clause (1) of scheme approval 8623

The operator shall conduct the ramping down and ceasing of steam injection, and injecting of non-condensable gas, at Well Pads A, C, D subject to the following conditions:

(1) The non-condensable gas injected will only be methane (fuel gas)

Pad C- operational overview

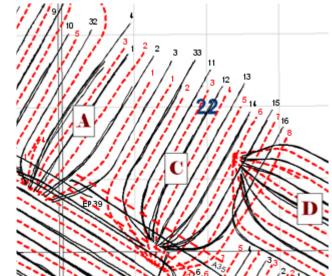
Injectors:

- CI11, CI12, CI13, CI14, CI15, and CI16 equipped and operational for methane injection
 - Injecting methane in CI11 and CI12
- Methane injection started in November 2011
 - Full blowdown March 4, 2013
- Pad cum injection of 80,252 Se³m³ of methane to February 28, 2015

Producers:

- CP11, CP13, CP14, and CP15 are operational
- CP12 (Abandoned)
- CP16 (Offline)
- CP33-1 (Abandoned)

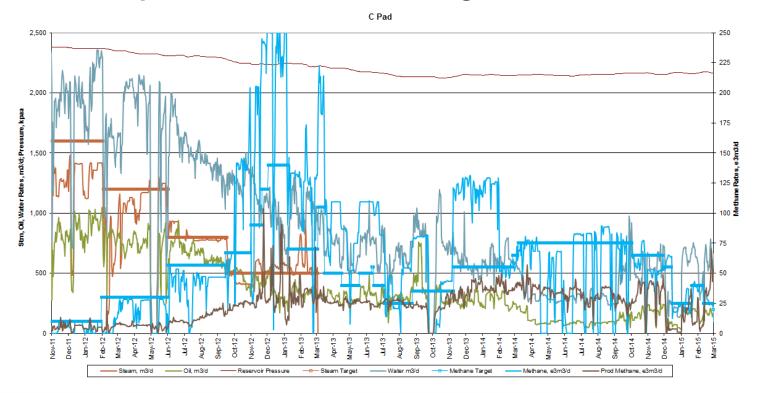
Six wells utilizing Wedge Well™ technology are in operation


- CW07 (Offline)
- CW08 (Offline)

Pad C – injection summary

Injector	Methane injection start date	Cum gas injected to February 28, 2015 (Se ³ m ³)
CI11	November 2011	12,858
CI12	February 2012	15,859
CI13	February 2012	13,642
CI14	November 2011	10,117
CI15	March 2012	15,091
CI16	February 2012	12,662
CI33	November 2012	2
Total		80,252

Cum gas since November 2011.



Well pairs

Wells utilizing Wedge Well™ technology

Pad C – production & injection

© 2015 Cenovus Energy Inc. May 8, 2015

Pad C – oil voidage

• Percentage gas injected volume per oil produced

Gas - Chamber Conditions

- 79,295 Se3m3, Methane Injected (Std Conditions)
- 21,754 Se3m3, Methane Produced, excluding solution gas (Std Conditions)
- 57,541 Se3m3, Net Methane Injected (Std Conditions)
 - 8.648 kg/m3, Density of Methane in Chamber
- 4,391,532 m3, Net Methane Injected at Reservoir Conditions

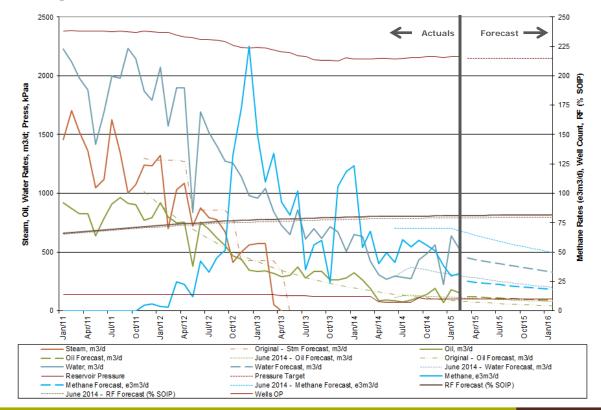
% Gas Volume Injected vs Oil Voidage

Since Start of C Pad Production, 2001

4,391,532 m3 of net methane injected (reservoir conditions)

3,718,575 m3 of oil produced (as of Feb 28, 2015)

118.1% oil voidage displaced by injected methane


Pad C – injection strategy

March 2013 onwards

- Pad steam injection shut-in, full pad blowdown
- Methane gas volumes adjusted to maintain reservoir pressure / balance with offset pads
- Currently injecting methane in C11 & C12

Pad C – predictive forecast

Temperature logs & fluid saturation

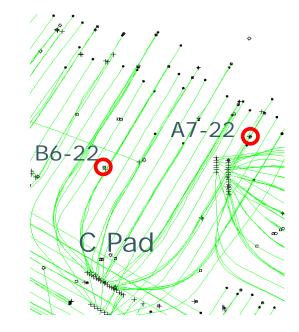
Clause (23) sub clause (2) of scheme approval 8623

Temperature measurement must be conducted a minimum of twice each calendar year at the designated observation wells listed below. A suitable baseline temperature measurement must be available or obtained at each designated observation well listed below prior to commencement of steam ramp down at each pad.

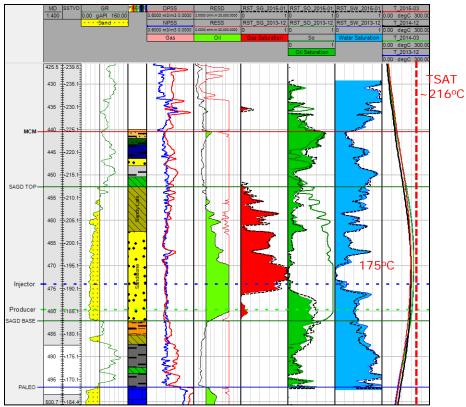
02/06-22-070-04W4/0 (B6-22)

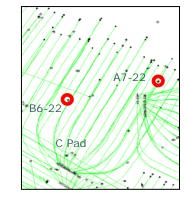
00/07-22-070-04W4/0 (A7-22)

Clause (23) sub clause (3) of scheme approval 8623

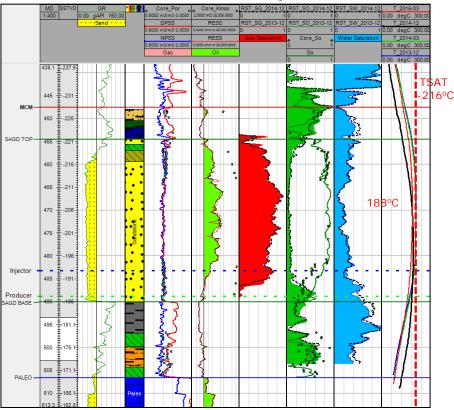

Fluid saturation measurements must be conducted a minimum of once every calendar year using well logging at a minimum of one observation well at each well pad. A suitable baseline fluid saturation measurement must be available or obtained at a minimum of one observation well at each well pad prior to the commencement of steam ramp down at each well pad.

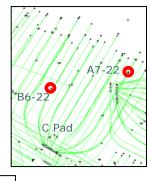
Pad C: temperature & fluid monitoring


Pad C logging history


Target Steam (Percent)	Temperature Log	RST Log
100	January 2012	December 2011
50	August 2012	August 2012
30	December 2012	
0	March 2013	March 2013
0	December 2013	December 2013
0	March 2014	
0	December 2014	December 2014
0	March 2015	

Pad C – A7-22 updated (100072207004W400)



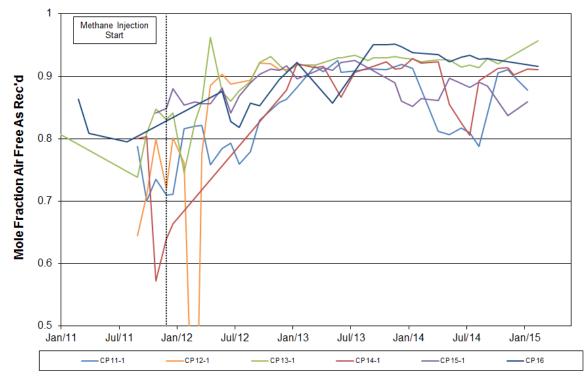


- 3m offset C15 well pair
- March 2014 192 °C
- Current logged temperature is 175 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 40 percent steam (60 percent last year)
- Temperatures before steam ramp down were 210 °C (below calculated saturation temperature (TSAT)).
- No appreciable changes in saturations
- RST log shows slight increase in gas saturation near injector well
- RST log shows slight increase in oil sat at the producer well, possibly mobile bitumen

селоуиз

Pad C- B6-22 updated (102062207004W400)

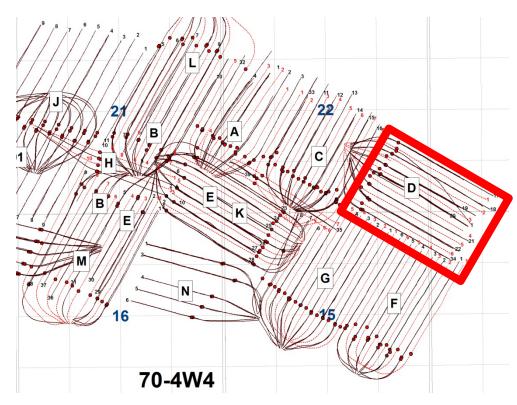
- 10m offset C11 well pair
- March 2014 205 °C
- Current logged temperature is 188 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 55 percent steam (80 percent last year)
- No appreciable changes in saturations
- Slight increase in oil saturation above producer (possibly mobile bitumen)


Compositional analysis

Clause (23) sub clause (4) of scheme approval No. 8623

Compositional analyses of the casing gas at the 08/12-22-070-04W4/2 (AP4), 11/07-22-070-04W4/0 (CP16), and 24/13-14-070-04W4/2 (DP20) wells and compositional analyses of the produced gas on a group basis for each well pad must be obtained monthly, commencing prior to the start of steam ramp down at each well pad.

Pad C – methane C1 mole composition



© 2015 Cenovus Energy Inc. May 8, 2015

Pad D – update

- Operation review
- Temperature monitoring
- Fluid saturation updates
- Compositional analysis

Blowdown: Pads C & D Rampdown: Pads A, F, & G

Methane injection

Clause (23) sub clause (1) of scheme approval 8623

The operator shall conduct the ramping down and ceasing of steam injection, and injecting of non-condensable gas, at Well Pads A, C, D subject to the following conditions:

(1) The non-condensable gas injected will only be methane (fuel gas)

Pad D – operational overview

Injectors:

- DI17, DI19, DI20, DI22 and DI34 equipped and operational for methane injection
 - Full blowdown (excluding D17) as of March 19, 2015
 - DI19 and DI34 currently injecting methane
 - DI17 currently injecting steam (application to proceed to blowdown submitted)
 - DI18 and DI21 Abandoned well
 - DI34 steam shut-in as of December 10, 2012
 - Methane injection initially started in August 2010 at low rates
 - Pad cumulative injection of 23,485 Se³m³ of methane to February 28, 2015

Producers:

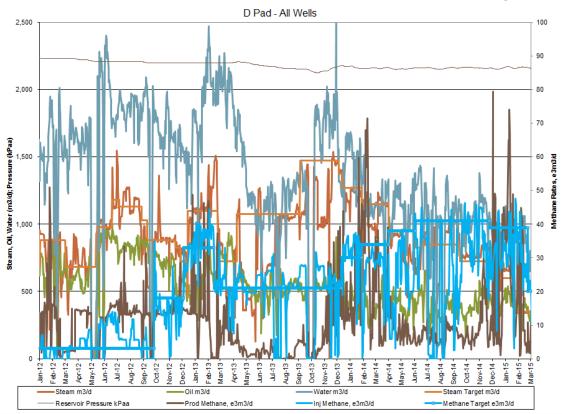
- DP17, DP20, DP21, DP22, DF-1, & DP34 operational
 - DP18 Abandoned well
 - DP19 Production issues, well not producing

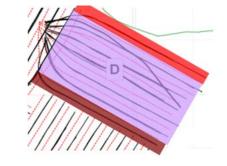
Four wells drilled using our Wedge Well[™] technology operational

- DW01 (offline)
- DW06 (offline)

Pad D- injection summary

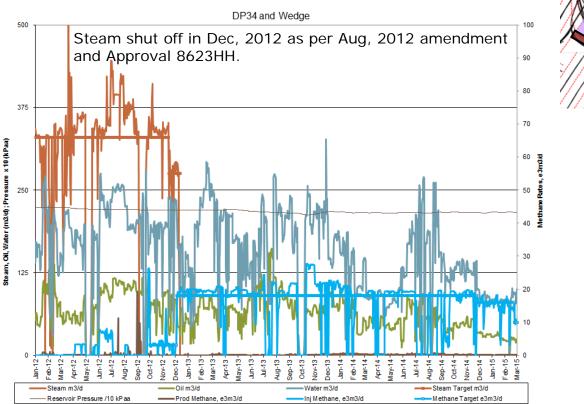
Injector	Methane injection start date	Cum gas injected to February 28, 2015 (Se ³ m ³)
DI17	May 2012	268
DI19	August 2010	3,482
DI20	August 2010	3,491
DI21	August 2010	267
DI22	August 2010	2,551
DI34	April 2012	13,425
Total		23,485

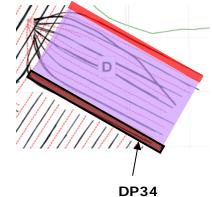

 Well pairs


Cum gas since Aug 2010.

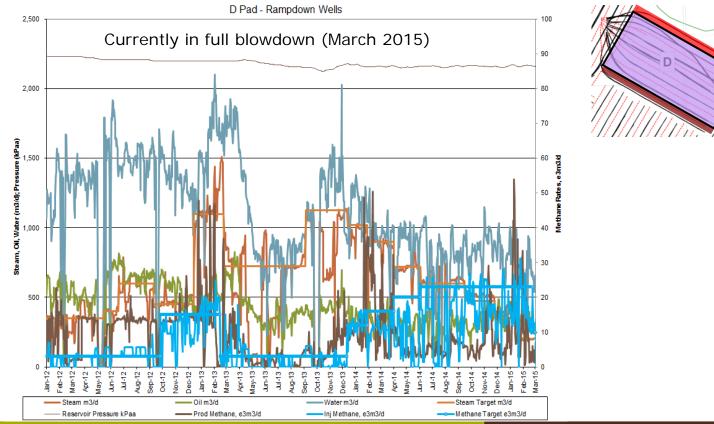
Wells utilizing Wedge Well[™] technology

Pad D- all wells production and injection




селоуиз

DP17 – production and injection DP17 DP17 and Wedge 100 500 Application no. 1825625 to proceed with blowdown submitted. 90 80 375 70 Steam, Oil, Water (m3/d); Pressure x 10 (kPaa) 60 3m3/d 250 50 ŝ 40 30 125 20 0 Apr-13 May-13 Jun-13 Jul-13 Feb-12-Mar-12 Apr-12 Feb-13-Mar-13-Jan-12 ay-12-un-12ap-12. ov-12 -0-12 an-13an-14 eb-14 Mar-14 May-14 Feb-15 **ul-12** ug-12 -13 13 ę ct-13 ov-13 613 Apr-14 LIN-14 Jul-14 ug-14 Sep-14 Oct-14 ov-14 7 Steam m3/d Oil m3/d Water m3/d Steam Target m3/d -Reservoir Pressure /10 kP aa -Prod Methane, e3m3/d Inj Methane, e3m3/d Methane Target e3m3/d


DP34 – production and injection

Pad D rampdown wells – production and injection

селоуиз

Ramp

down wells

Pad D – oil voidage

• Percentage gas injected volume per oil produced

Gas - Chamber Conditions

23,494 Se3m3, Methane Injected (Std Conditions)

6,583 Se3m3, Methane Produced, excluding solution gas (Std Conditions)

16,911 Se3m3, Net Methane Injected (Std Conditions)

8.648 kg/m3, Density of Methane in Chamber

1,290,653 m3, Net Methane Injected at Reservoir Conditions

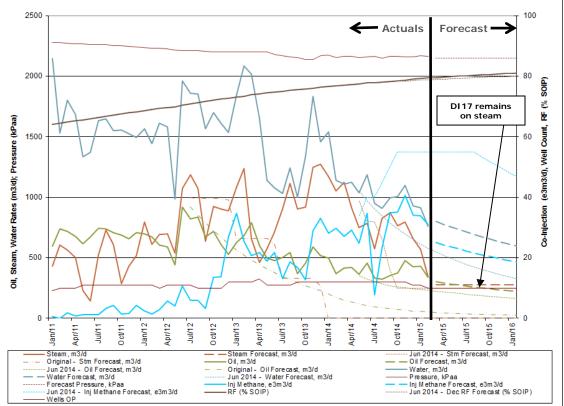
% Gas Volume Injected vs Oil Voidage

Since Start of D Pad Production, 2001

1,290,653 m3 of net methane injected (reservoir conditions)

4,406,706 m3 of oil produced (as of Feb 28, 2015)

29.3% oil voidage displaced by injected methane


Pad D – current injection strategy

Phase 5: March 2015 onwards

- Full blowdown on pad (excluding D17)
- Application to proceed to blowdown on D17
- Methane gas volumes adjusted to maintain reservoir pressure / balance with offset pads
- Currently injecting methane on DI19 and DI34

Pad D – predictive forecast

© 2015 Cenovus Energy Inc. May 8, 2015

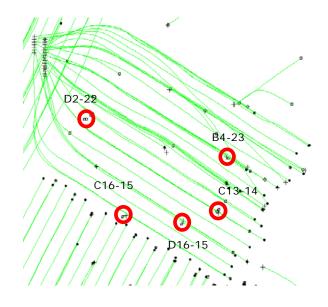
Temperature logs & fluid saturation

Clause (23) sub clause (2) of scheme approval 8623

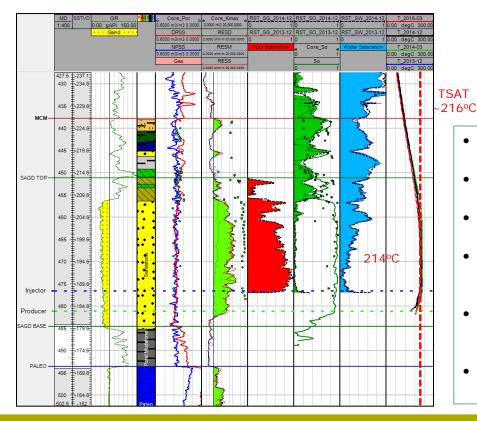
Temperature measurement must be conducted a minimum of twice each calendar year at the designated observation wells listed below. A suitable baseline temperature measurement must be available or obtained at each designated observation well listed below prior to commencement of steam ramp down at each pad.

00/13-14-070-04W4/0 (C13-14) 02/16-15-070-04W4/0 (D16-15) 03/16-15-070-04W4/0 (C16-15) 00/02-22-070-04W4/0 (D2-22) 02/04-23-070-04W4/0 (B4-23)

Clause (23) sub clause (3) of scheme approval 8623

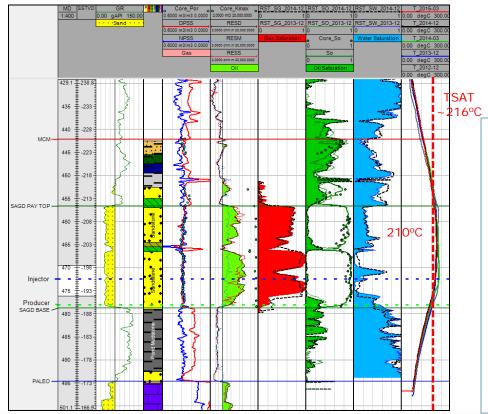

Fluid saturation measurements must be conducted a minimum of once every calendar year using well logging at a minimum of one observation well at each well pad. A suitable baseline fluid saturation measurement must be available or obtained at a minimum of one observation well at each well pad prior to the commencement of steam ramp down at each well pad.

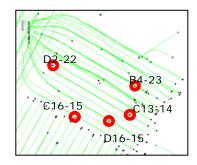
Pad D: temperature & fluid monitoring


Pad D logging history

Target Steam (Percent)	Temperature Log	RST Log
100	December 2011	December 2011
100	March 2012	
100	December 2012	December 2012
100	March 2013	
90	December 2013	December 2013
80	March 2014	March 2014
30	December 2014	December 2014
0	March 2015	

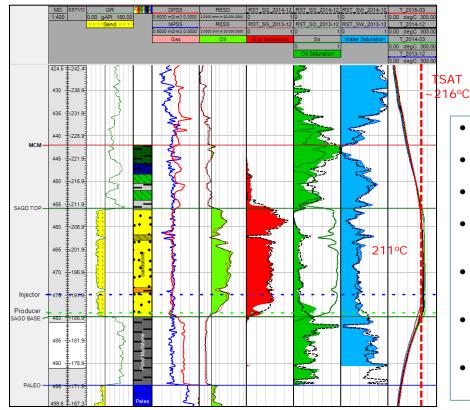
D Pad – D2-22 updated (100022207004W400)

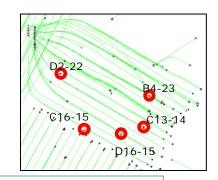



D2=22 B4-23 C16-15 D16-15

- 20m offset D21 well pair
- March 2014 225 °C
- Current logged temperature 214 ° C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 95 percent steam (100 percent last year)
- No appreciable changes in saturations

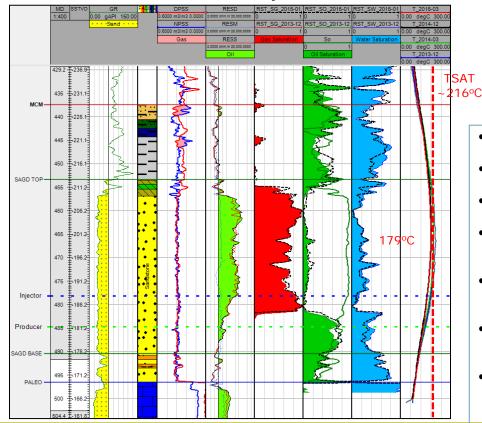
Pad D - D16-15 updated 102161507004W400

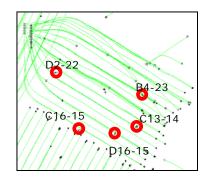




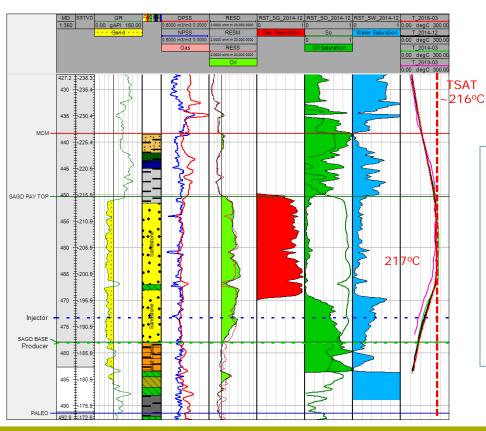
- 10m offset D22 well pair
- March 2014 220 °C
- Current logged temperature 210 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 90 percent steam (100 percent last year)
- No appreciable change in oil saturation in main chamber
- Slight decrease in gas saturation

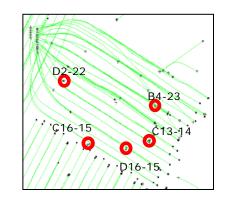
Pad D- C13-14 updated (100131407004W400)





- 9m offset D21 well pair
- March 2014 223 °C
- Current logged temperature 211 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 90 percent steam (100 percent last year)
- No appreciable change in oil saturation in main chamber
- Slight increase in gas saturation; decrease in oil saturation above producer

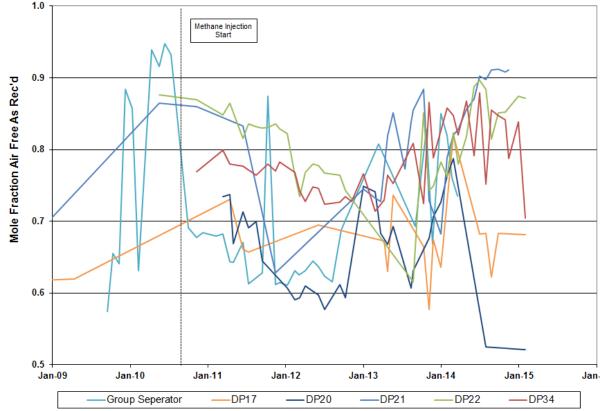

Pad D – B4-23 updated (102042307004W400)



- 4m offset D19 well pair
- March 2014 193 °C
- Current logged temperature 179 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 45 percent steam (60 percent last year)
- No appreciable change in oil saturation in main chamber
- Slight increase in oil saturation at producer

Pad D – C16-15 updated (103161507004W400)

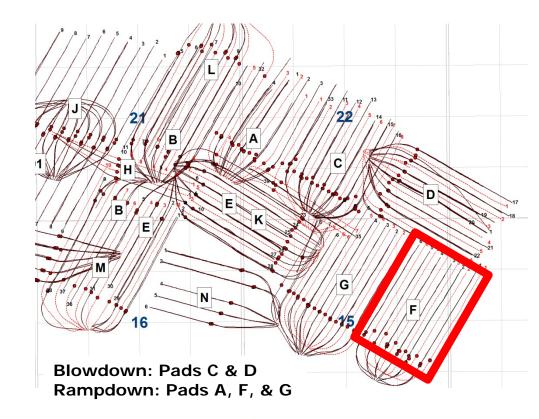
- Baseline
- 19m offset D34 well pair
- March 2014 227 °C
- Current logged temperature 217 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 100 percent steam (100 percent last year)


Compositional analysis

Clause (23) sub clause (4) of scheme approval No. 8623

Compositional analyses of the casing gas at the 08/12-22-070-04W4/2 (AP4), 11/07-22-070-04W4/0 (CP16), and 24/13-14-070-04W4/2 (DP20) wells and compositional analyses of the produced gas on a group basis for each well pad must be obtained monthly, commencing prior to the start of steam ramp down at each well pad.

Pad D – methane C1 mole composition



© 2015 Cenovus Energy Inc. May 8, 2015

Pad F – update

- Operation review
- Temperature monitoring
- Fluid saturation updates
- Compositional analysis

Methane injection

Clause (24) sub clause (1) of scheme approval 8623

The operator shall conduct the ramping down and ceasing of steam injection, and injecting of non-condensable gas, at Well Pads F and G, subject to the following conditions:

(1) The non-condensable gas injected will only be methane (fuel gas)

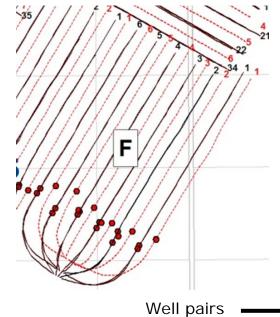
Pad F – operational overview

Injectors:

- FI01, FI02, FI03, FI04, FI05, and FI06 equipped for methane injection
 - Injecting methane in FI03, FI04, and FI06
 - Steaming FI01-FI06
- Methane injection started in May 2014
 - Pad cum injection of 3,554 Se³m³ of methane to Feb 28, 2015

Producers:

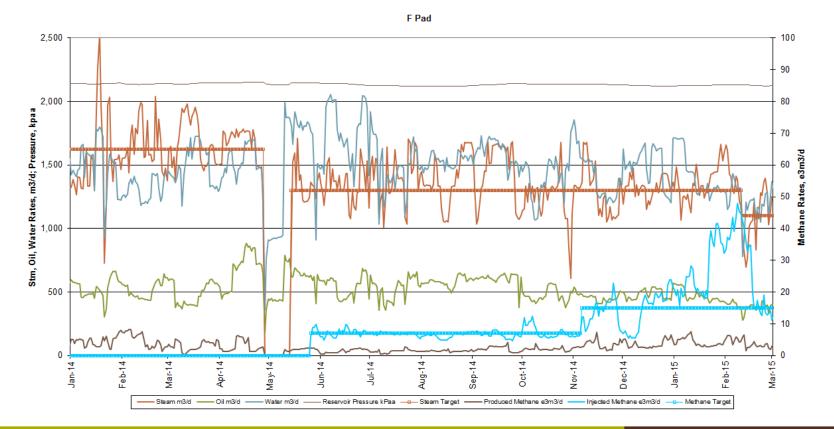
- FP01, FP02, FP03, FP04, and FP06 are operational
 - FP05 (offline)


Five wells utilizing Wedge Well[™] technology are in operation

• FW06 (offline)

Pad F – injection summary

Injector	Methane injection start date	Cum gas injected to February 28, 2015 (Se ³ m ³)
FI01	November 2014	435
F102	November 2014	190
F103	May 2014	754
FIO4	May 2014	859
F105	May 2014	664
F106	May 2014	652
Total		3,554



Cum gas since May 2014.

Wells utilizing Wedge Well[™] technology ········

Pad F – production & injection

Pad F– Oil Voidage

Percentage gas injected volume per oil produced

Gas - Chamber Conditions

3,554 Se3m3, Methane Injected (Std Conditions)

0 Se3m3, Methane Produced, excluding solution gas (Std Conditions)

3,554 Se3m3, Net Methane Injected (Std Conditions)

8.648 kg/m3, Density of Methane in Chamber

271,237 m3, Net Methane Injected at Reservoir Conditions

% Gas Volume Injected vs Oil Voidage

Since Start of F Pad Production, 2005

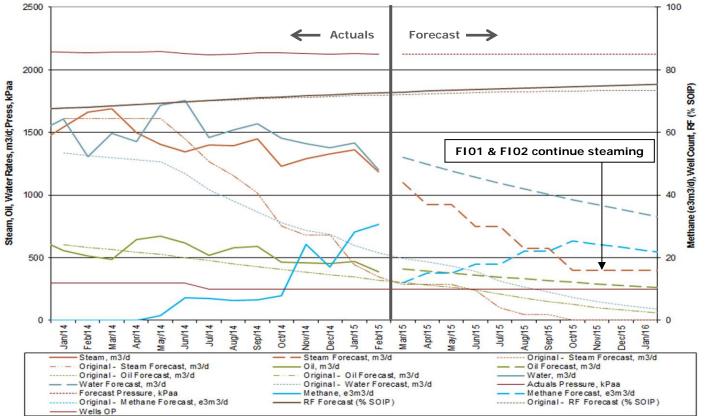
271,237 m3 of net methane injected (reservoir conditions)

3,091,348 m3 of oil produced (as of Feb 28, 2015)

8.77% oil voidage displaced by injected methane

Pad F – injection strategy

May 2015 to October 2015


- Rampdown wells F3-F6 with 10 to 15 percent steam cuts
- Continue steaming F1-F2
- Methane gas volumes adjusted to maintain reservoir pressure / balance with offset pads

October 2015 onwards

- Steam injection stopped on F3-F6, blowdown
- Continue steaming F1-F2
- Methane gas volumes adjusted to maintain reservoir pressure / balance with offset pads

Pad F – predictive forecast

Temperature logs & fluid saturation

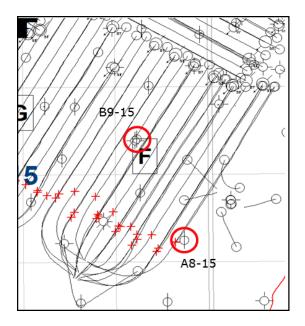
Clause (24) sub clause (2) of scheme approval 8623

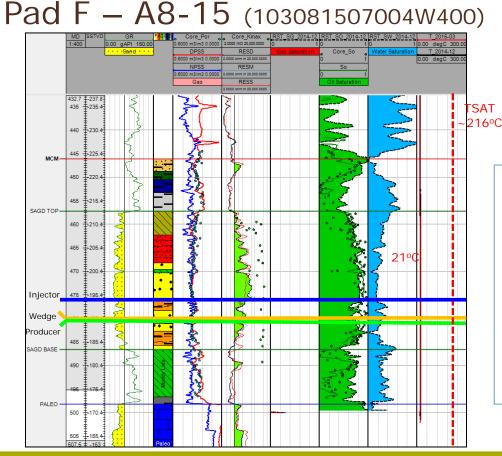
Temperature measurement must be conducted a minimum of twice each calendar year at the designated observation wells listed below. A suitable baseline temperature measurement must be available or obtained at each designated observation well listed below prior to commencement of steam ramp down at each well pad.

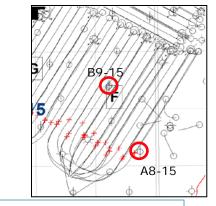
02/09-15-070-04W4/0 (B9-15)

03/08-15-070-04W4/0 (A8-15)

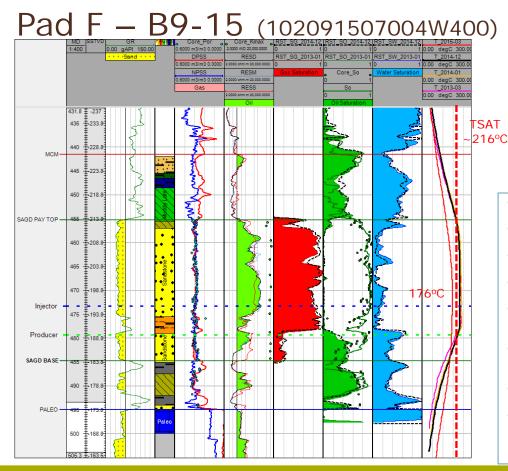
Clause (24) sub clause (3) of scheme approval 8623

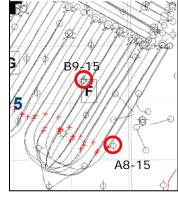

Fluid saturation measurement must be conducted a minimum of once every calendar year using well logging at a minimum of one observation well at each well pad. A suitable baseline fluid saturation measurement must be available or obtained at a minimum of one observation well at each well pad prior to the commencement of steam ramp down at each well pad.


Pad F: temperature & fluid monitoring


Pad F logging history

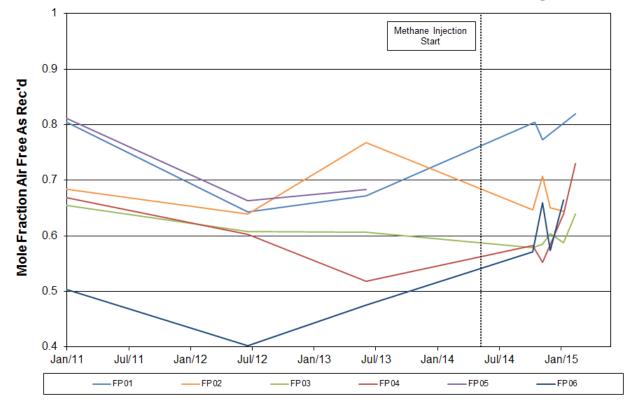
Target Steam (Percent)	Temperature Log	RST Log
85	December 2014	December 2014
70	March 2015	





- Baseline
- 70m offset to F1 Well Pair
- 27m offset to F W1 well, with ~110 °C at heel
- Observation well behavior not representative of Pad F
 - Current logged temperature 21 °C
 - Slight decrease in oil saturation

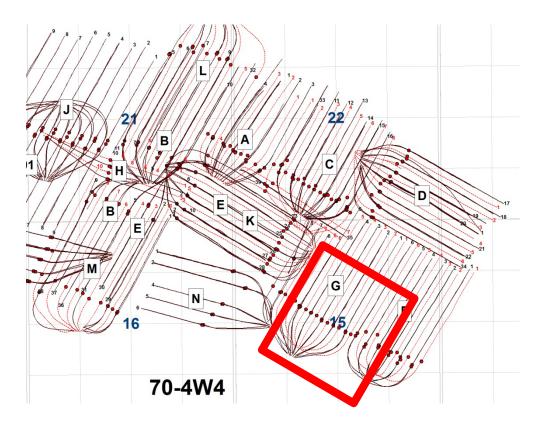
- 30m offset to F4 Well Pair
- Jan 2014 232 °C
- Current logged temperature 176 °C
- March 2015 temperature decrease
- December 2014 temperature curve comparable to previous runs
- Chamber is 40 percent steam (100 percent last year)
- No appreciable change to oil saturations
- Slight increase to gas saturation


Compositional analysis

Clause (24) sub clause (4) of scheme approval 8623

Compositional analyses of casing gas and compositional analyses of the produced gas on a group basis for each well pad must be obtained monthly, commencing prior to the start of steam ramp down at each well pad.

Pad F – methane C1 mole composition



© 2015 Cenovus Energy Inc. May 8, 2015

Pad G– Update

- Operation review
- Temperature monitoring
- Fluid saturation updates
- Compositional analysis

Blowdown: Pads C & D Rampdown: Pads A, F, & G

Methane injection

Clause (24) sub clause (1) of scheme approval 8623

The operator shall conduct the ramping down and ceasing of steam injection, and injecting of non-condensable gas, at Well Pads F and G, subject to the following conditions:

(1) The non-condensable gas injected will only be methane (fuel gas)

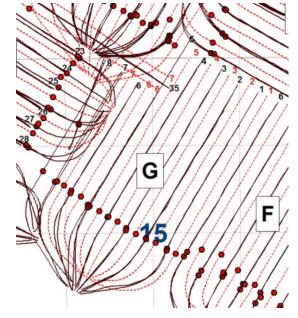
Pad G – operational overview

Injectors:

- GI01, GI02, GI03, GI04, GI05, and GI06 equipped for methane injection
 - Injecting methane in GI01-GI06
 - Steaming GI01-GI07
- Methane injection started in May 2014
 - Pad cum injection of 2,306 Se³m³ of methane to February 28, 2015

Producers:

- GP01, GP03, GP05, GP06 and GP07 are operational
 - GP02 (offline)
 - GP04 (offline)
 - GP08 (offline)


Seven wells utilizing Wedge Well[™] technology are in operation

Pad G – injection summary

Injector	Methane injection start date	Cum gas injected to February 28, 2015 (Se ³ m ³)
GI01	May 2014	303
G102	May 2014	361
G103	May 2014	395
G104	July 2014	355
G105	May 2014	438
G106	May 2014	454
Total		2,306

Cum gas since May 2014.

Well pairs Wells utilizing Wedge Well[™]

Pad G – production & injection

3,000 100 90 2,500 80 Stm, Oil, Water Rates, m3/d; Pressure, kpaa 70 2,000 e3m3/d 60 Methane Rates, 1,500 50 000 30 20 500 10000 10 0 Jan-14 ŵ 4 4 Jul-14 4 4 4 -4 4 <u>م</u> Feb-1 Mar-1 Sep-1 Mar-1 Apr-1 Aug-1 Oct-1 è 4 Š Ā œ õ Steam m3/d - Oil m3/d -Water m3/d Reservoir Pressure k Paa ----- Steam Target ------ Produced Methane e3m3/d Injected Methane e3m3/d Methane Target

G Pad

Pad G – oil voidage

Percentage gas injected volume per oil produced

Gas - Chamber Conditions

- 2,306 Se3m3, Methane Injected (Std Conditions)
 - 0 Se3m3, Methane Produced, excluding solution gas (Std Conditions)
- 2,306 Se3m3, Net Methane Injected (Std Conditions)
- 8.648 kg/m3, Density of Methane in Chamber
- 175,965 m3, Net Methane Injected at Reservoir Conditions

% Gas Volume Injected vs Oil Voidage

Since Start of G Pad Production, 2005

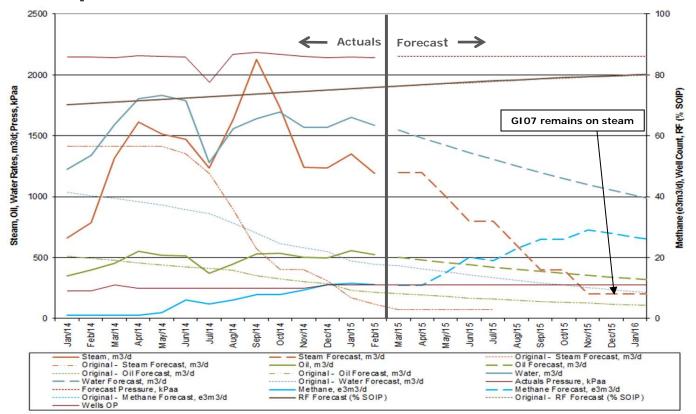
175,965 m3 of net methane injected (reservoir conditions)

2,592,627 m3 of oil produced (as of Feb 28, 2015)

6.79% oil voidage displaced by injected methane

Pad G – injection strategy

May 2015 to November 2015


- Rampdown wells G1-G6 with 10 to 15 percent steam cuts
- Continue steaming G7
- Methane gas volumes adjusted to maintain reservoir pressure / balance with offset pads

November 2015 onwards

- Steam injection stopped on G1-G6, blowdown
- Continue steaming G7
- Methane gas volumes adjusted to maintain reservoir pressure / balance with offset pads

Pad G – predictive forecast

Temperature logs & fluid saturation

Clause (24) sub clause (2) of scheme approval 8623

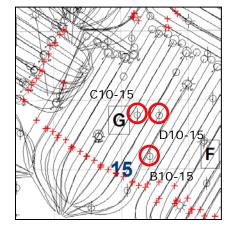
Temperature measurement must be conducted a minimum of twice each calendar year at the designated observation wells listed below. A suitable baseline temperature measurement must be available or obtained at each designated observation well listed below prior to commencement of steam ramp down at each well pad.

00/10-15-070-04W4/0 (C10-15)

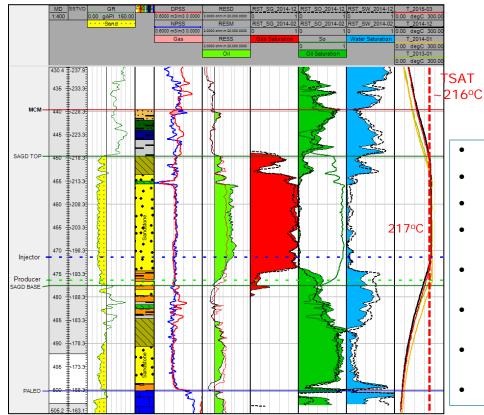
03-10-15-070-04W4/0 (D10-15)

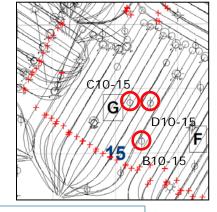
04-10-15-070-04W4/0 (B10-15)

Clause (24) sub clause (3) of scheme approval 8623

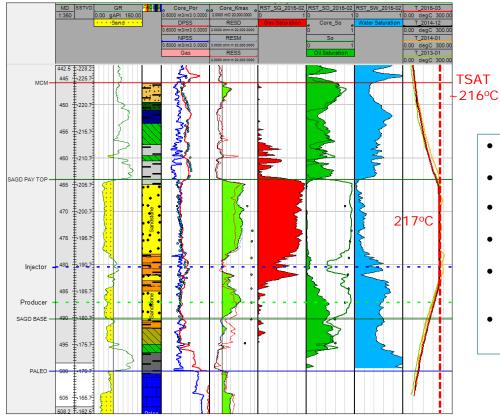

Fluid saturation measurement must be conducted a minimum of once every calendar year using well logging at a minimum of one observation well at each well pad. A suitable baseline fluid saturation measurement must be available or obtained at a minimum of one observation well at each well pad prior to the commencement of steam ramp down at each well pad.

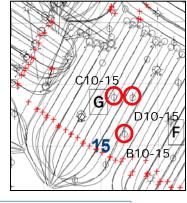
Pad G: Temperature & Fluid Monitoring


Pad G logging history


Target Steam (Percent)	Temperature Log	RST Log
85	Dec 2014	Dec 2014
75	March 2015	

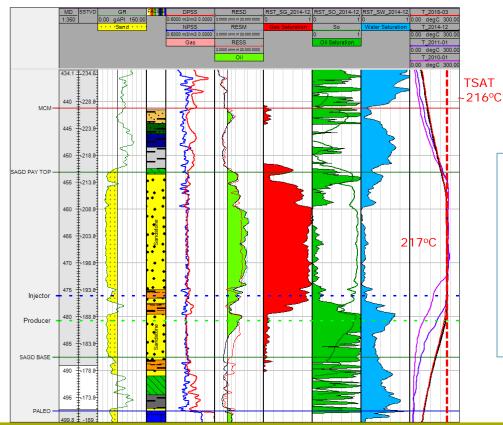
Pad G - C10-15 (100101507004W400)

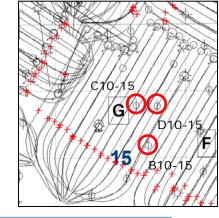




- 31m offset to G3 well pair
- January 2014 228 °C
- Current logged temperature 217 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 100 percent steam (100 percent last year)
- No appreciable change in oil saturation in main chamber
- Slight change in oil saturation in 'IHS' facies and at producer level
- Slight decrease in gas saturation

Pad G - B10-15 (104101507004W400)





- Baseline
- 17m offset to G1 well pair
- January 2014 246 °C
- Current logged temperature 217 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 100 percent steam

селоуиз

Pad G - D10-15 (103101507004W400)

- Baseline
- 46m offset to G1 & G2 well pairs
- January 2011 234 °C
- Current logged temperature 217 °C
- December 2014 and March 2015 temperature curves are comparable
- Chamber is 100 percent steam

Compositional analysis

Clause (24) sub clause (4) of scheme approval 8623

Compositional analyses of casing gas and compositional analyses of the produced gas on a group basis for each well pad must be obtained monthly, commencing prior to the start of steam ramp down at each well pad.

Pad G – methane C1 mole composition

© 2015 Cenovus Energy Inc. May 8, 2015

Next Steps

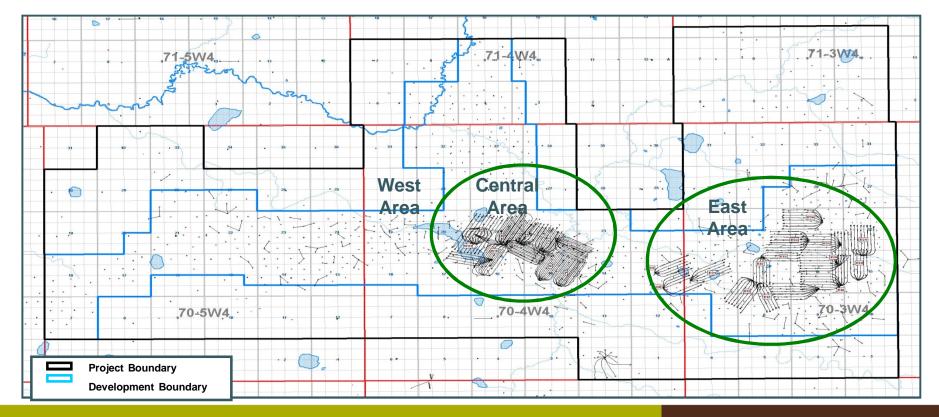
- Pads C & D* in full blowdown
 - *Application no. 1825625 to proceed to full blowdown on D17 submitted
- Pad A working towards full blowdown in June 2015
- Pads F & G currently in rampdown
 - Targeting full blowdown in late 2015
- Continue temperature and fluid saturation measurement testing
 - Evaluating frequency of testing
- Continue gas compositional sampling on all pads
 - Evaluating frequency of testing
- Further evaluation of methane injection effects

Questions?

© 2015 Cenovus Energy Inc. May 8, 2015

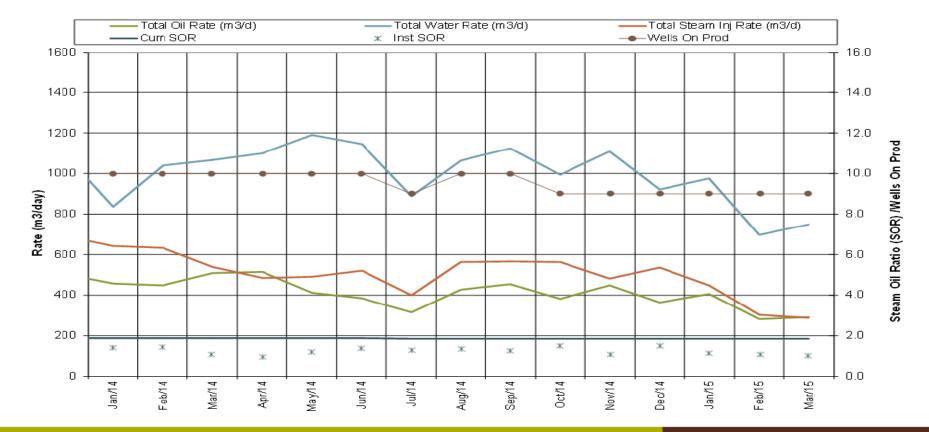
Cenovus Foster Creek in-situ oil sands scheme (8623) update for 2014

Appendices Calgary | May 2015


Table of contents

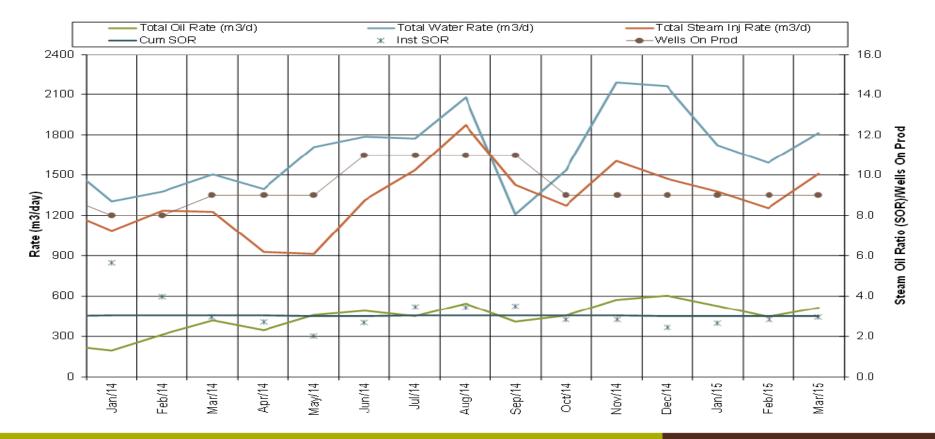
Item	Page(s)
Pad plots	3-35
Pressure data	38-61
Fibre temperature data	63-146

Cenovus - Foster Creek

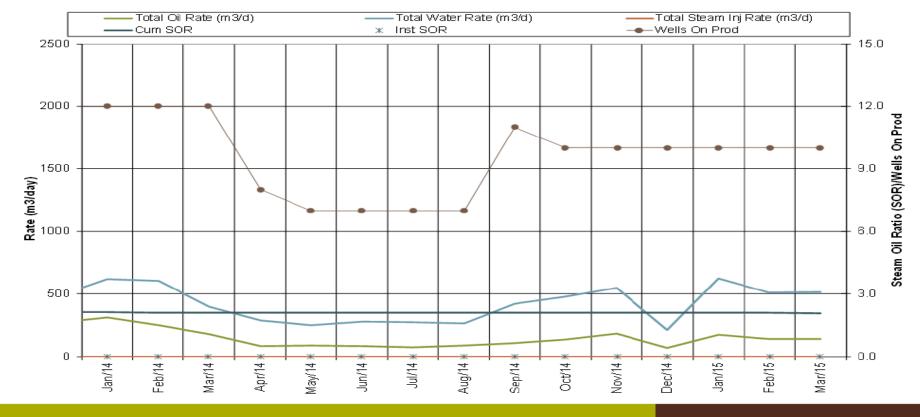


селоуиз

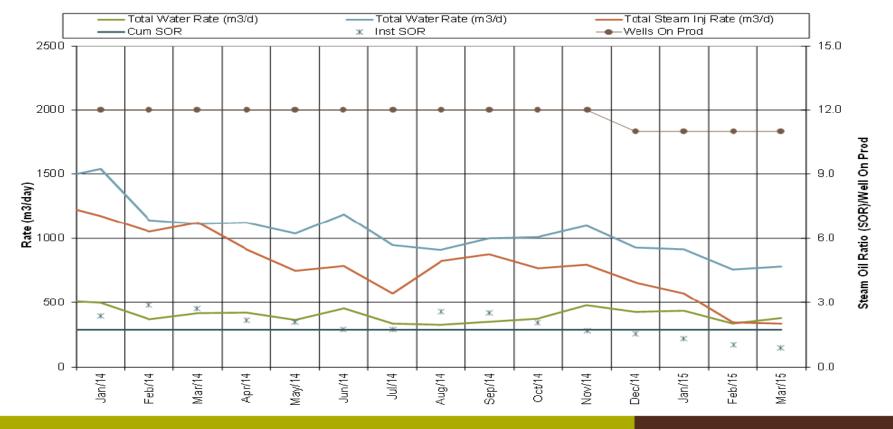
Foster Creek central



5


FOSTER CREEK A PAD & A Wedge Wells[™] Performance

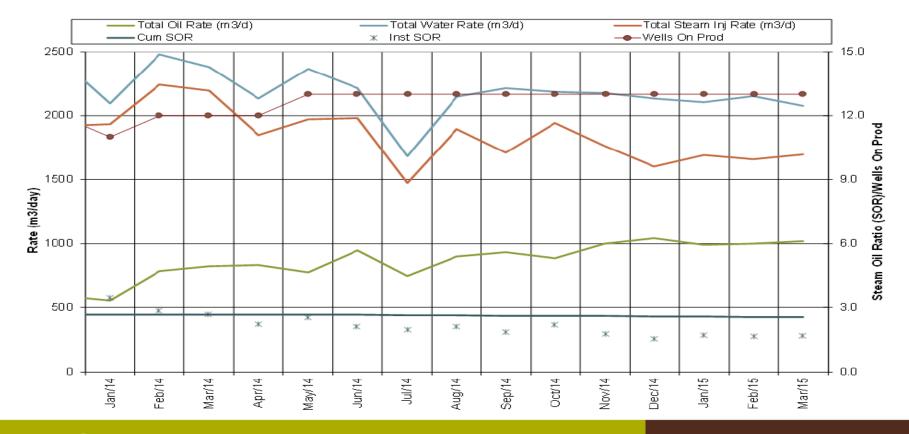
селоуиз


FOSTER CREEK B_L PAD & B_L Wedge Wells[™] Performance

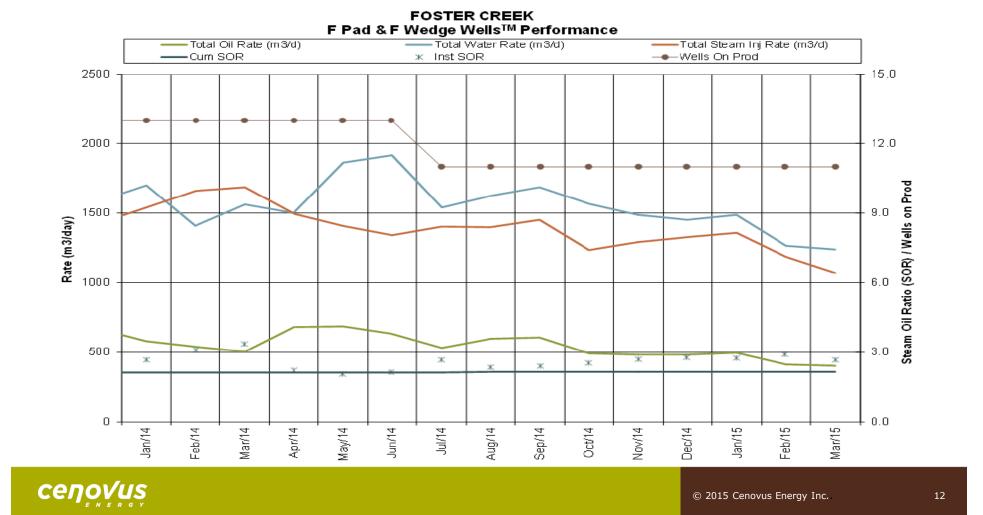
селоуиз

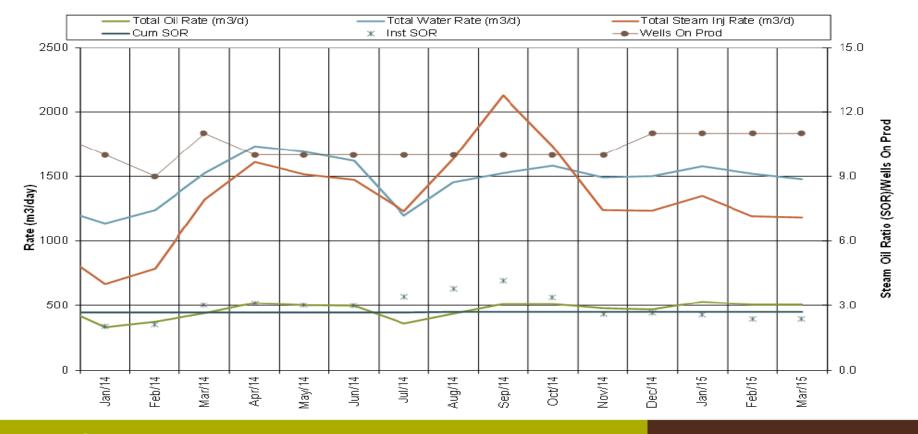
FOSTER CREEK C PAD & C Wedge Wells™ Performance

селоуиз


FOSTER CREEK D PAD & D Wedge Wells[™] Performance

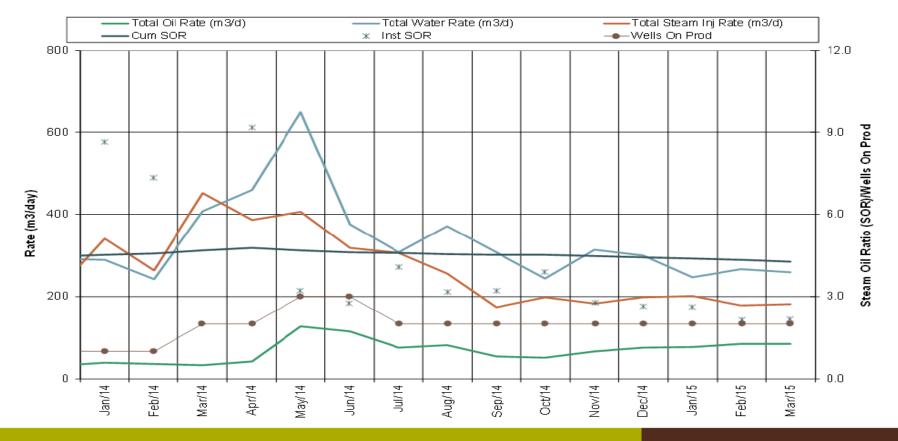
селоуиз


FOSTER CREEK E_K PAD & E_K Wedge Wells[™] Performance

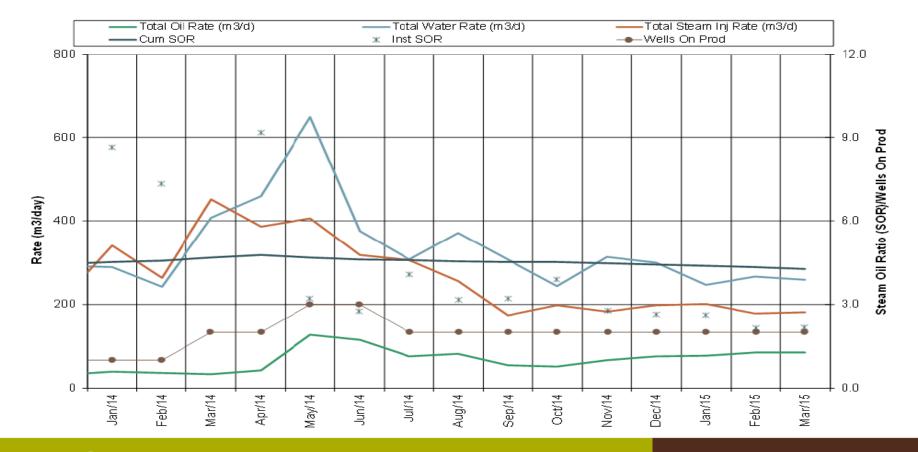

селоуиз

FOSTER CREEK EXP_M PAD & M Wedge Wells™ Performance

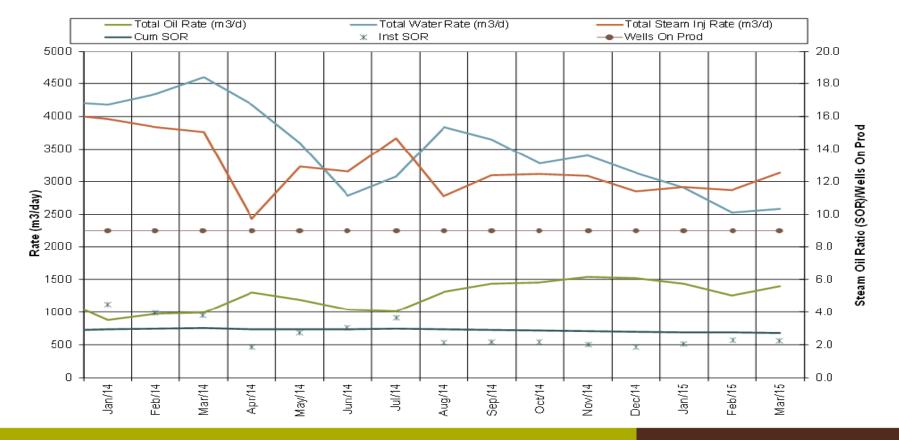
селоуиз



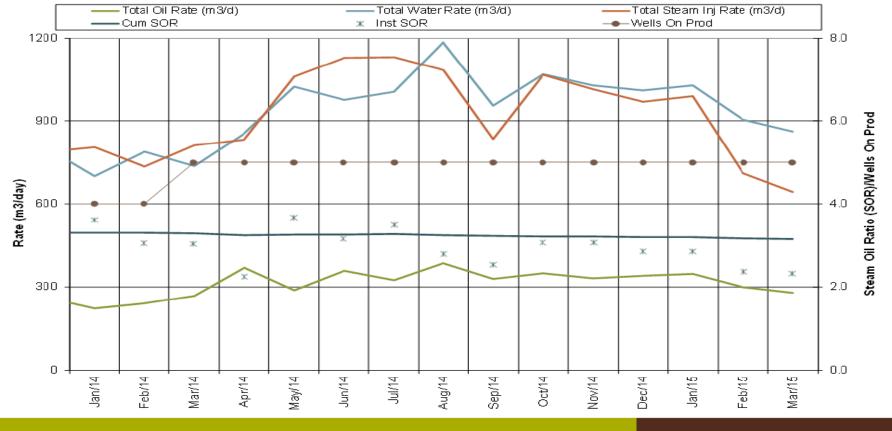
FOSTER CREEK G PAD & G Wedge Wells[™] Performance


селоуиз

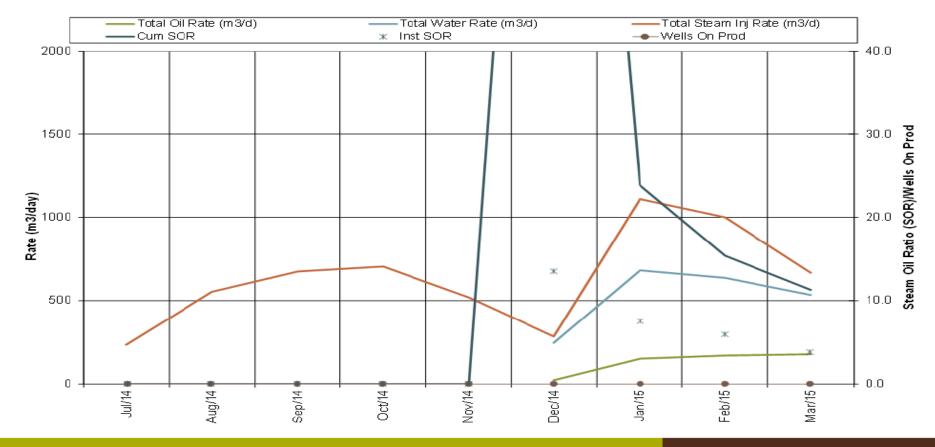
FOSTER CREEK H Pad Performance


селоуиз

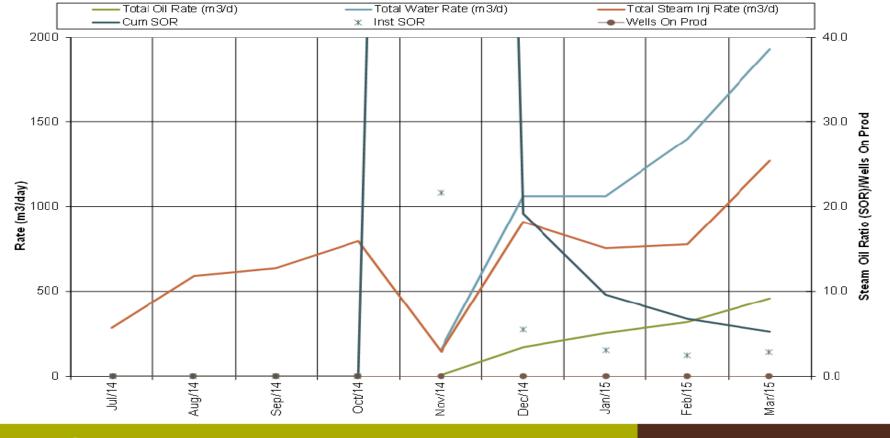
FOSTER CREEK H Pad Performance


селоуиз

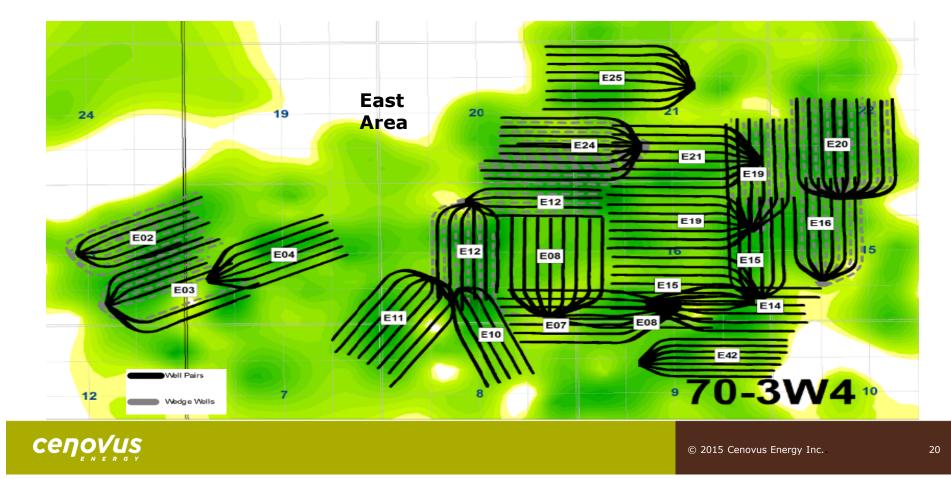
FOSTER CREEK W01 Pad Performance

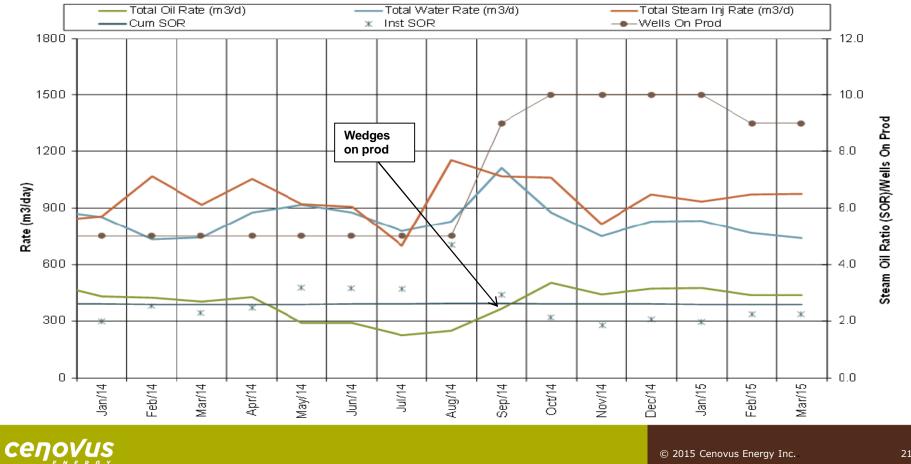

селоуиз

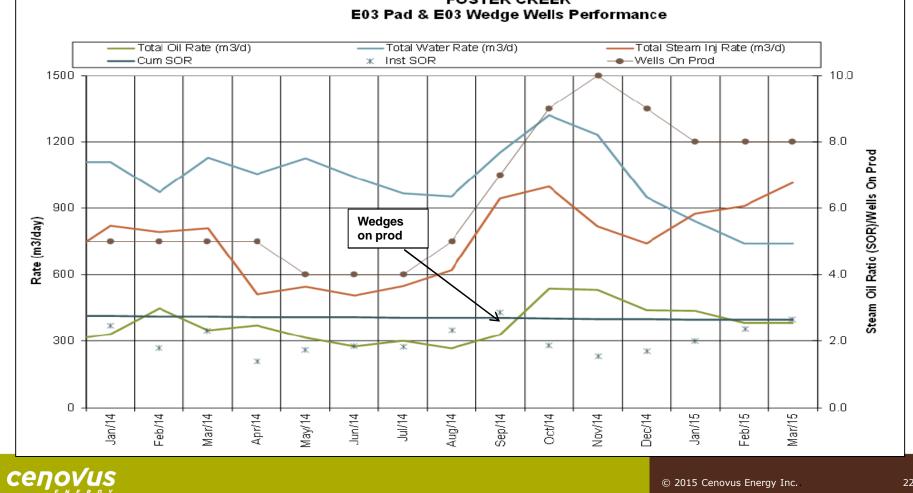
FOSTER CREEK W02 Pad Performance


селоуиз

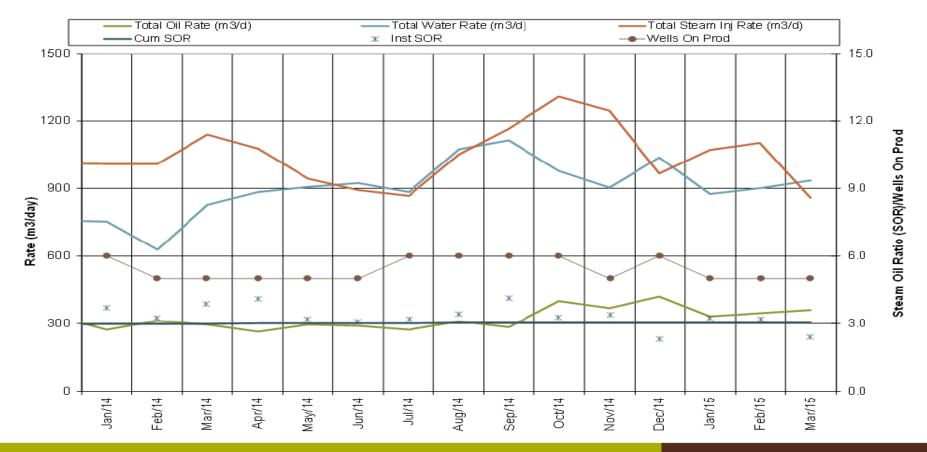
FOSTER CREEK W03 Pad Performance


селоуиз

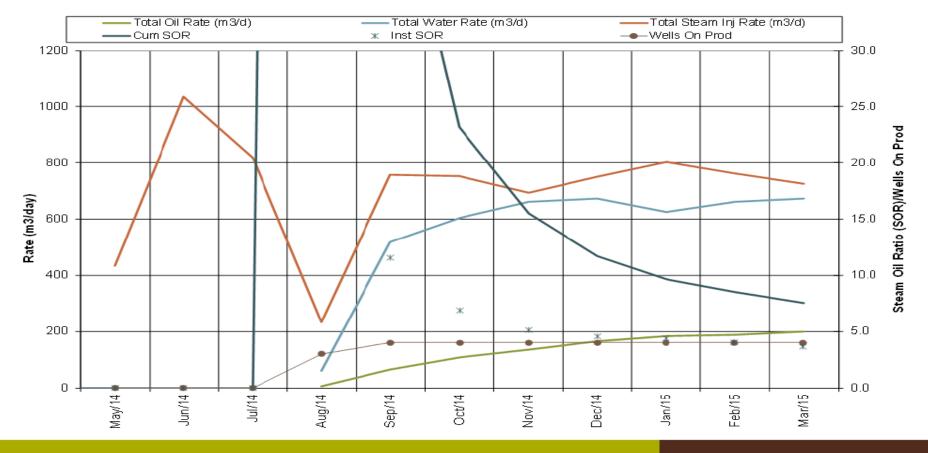

FOSTER CREEK W06 Pad Performance


селоуиз

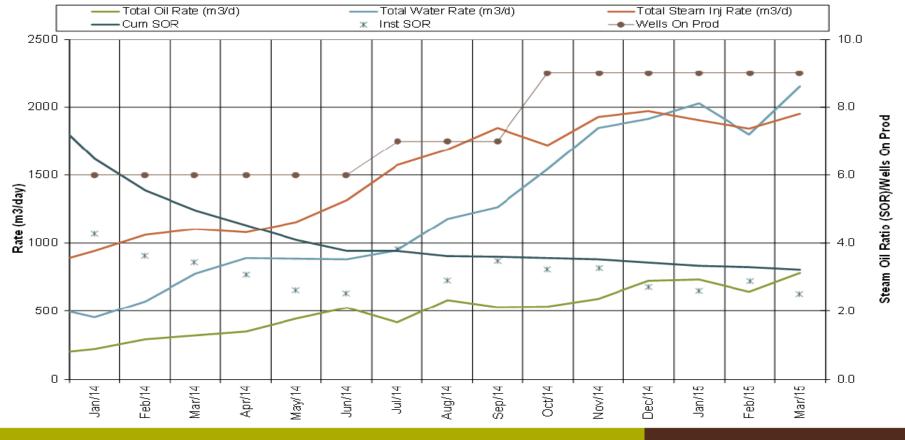
Foster Creek east area



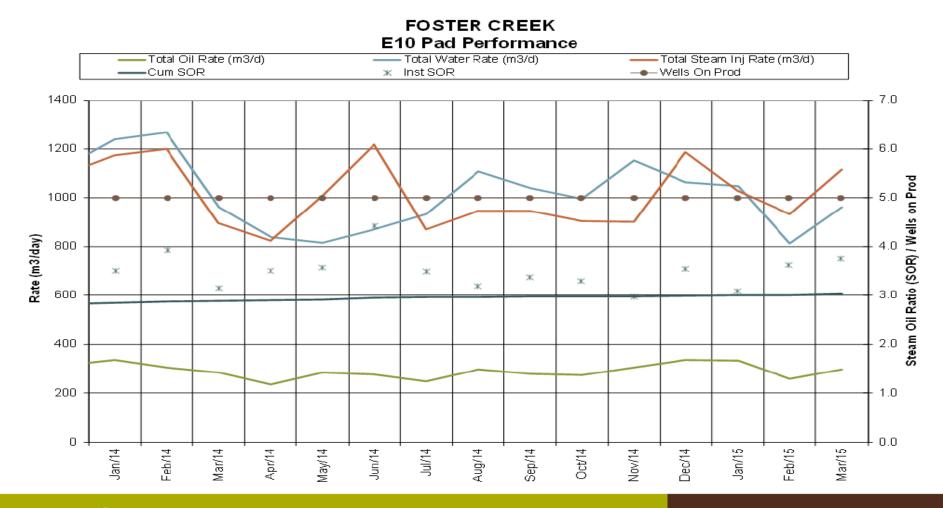
FOSTER CREEK E02 Pad & E02 Wedge Wells Performance


FOSTER CREEK

FOSTER CREEK E04 Pad Performance

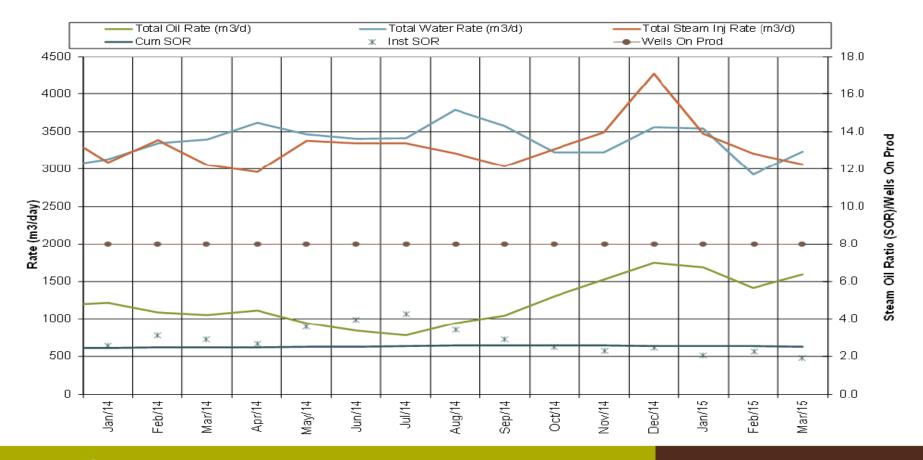

селоуиз

FOSTER CREEK E07 Pad Performance

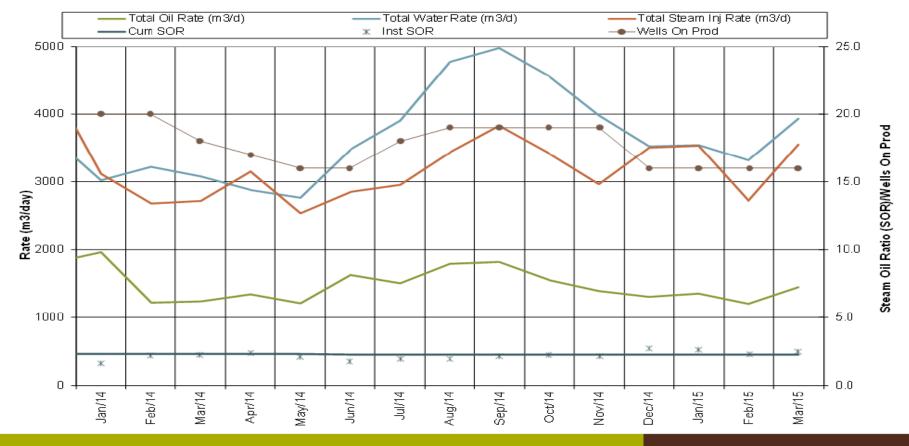


селоуиз

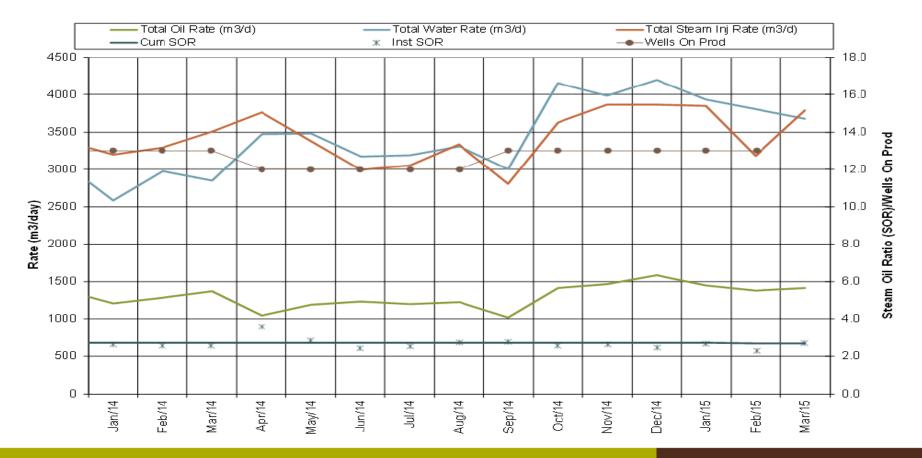
FOSTER CREEK E08 Pad Performance



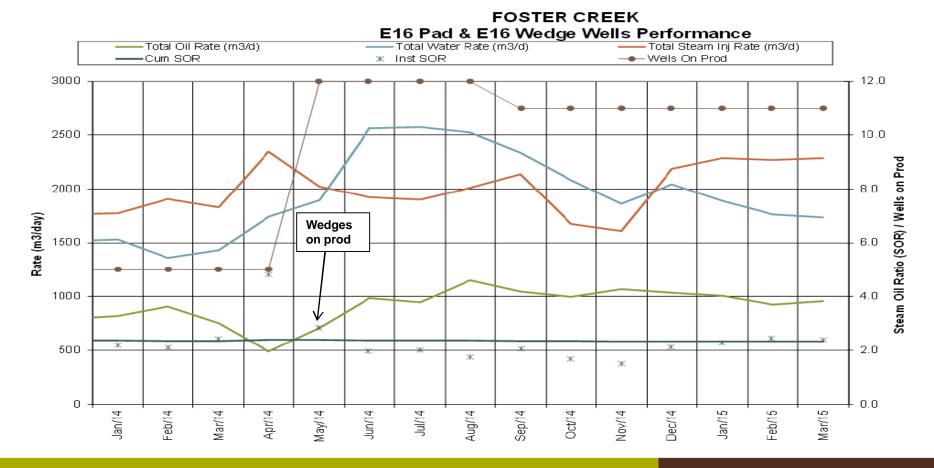
селоуиз


селоуиз

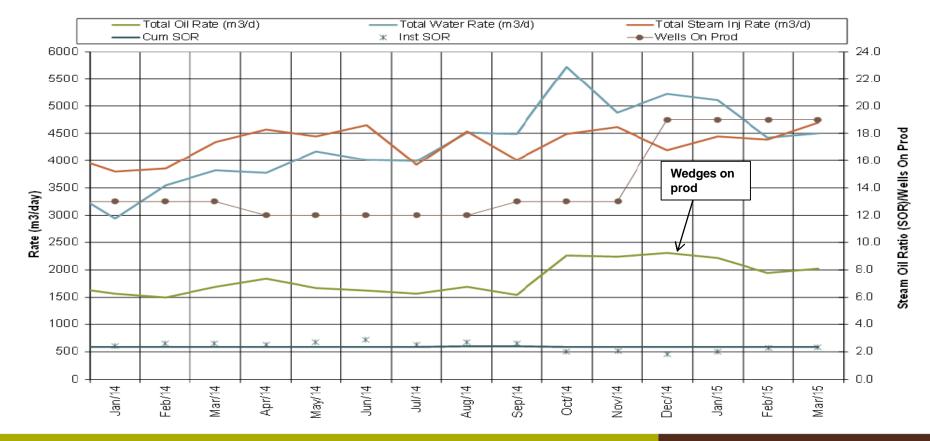
FOSTER CREEK E11 Pad Performance


селоуиз

FOSTER CREEK E12 Pad Performance

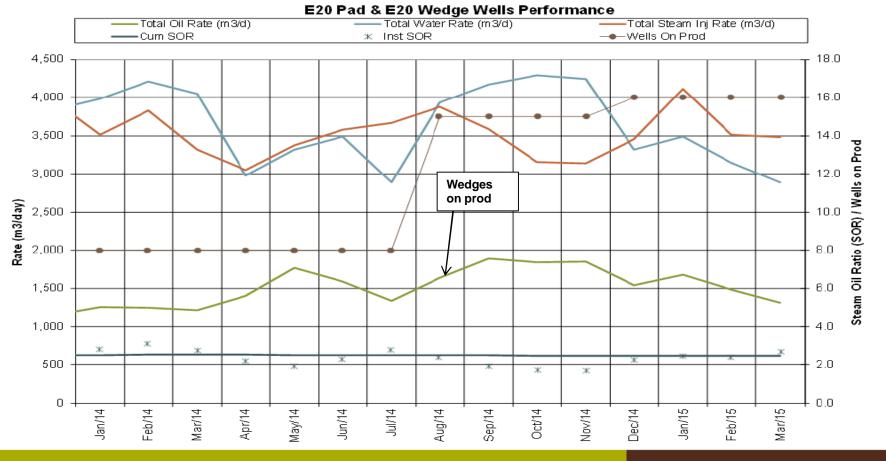


селоуиз


FOSTER CREEK E15 Pad Performance

селоуиз

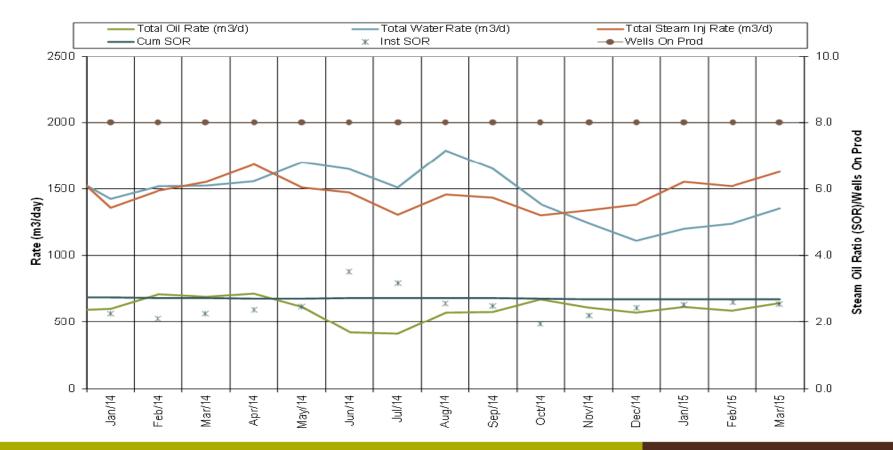
селоуиз

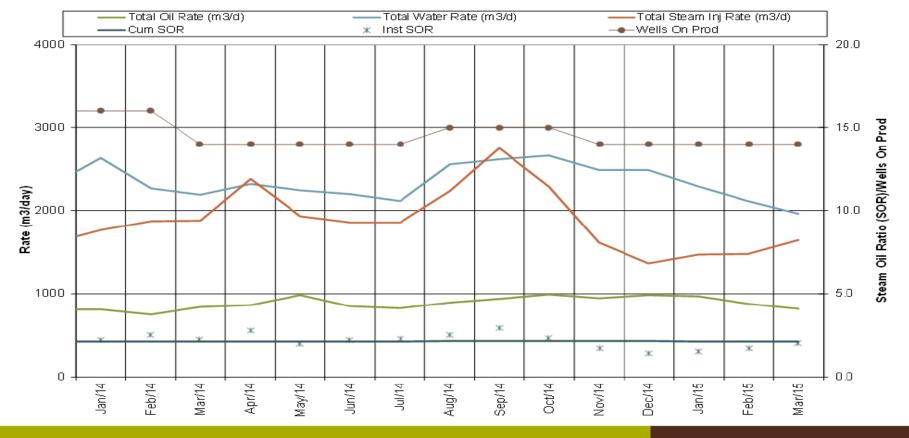


FOSTER CREEK E19 Pad & E19 Wedge Wells Performance

селоуиз

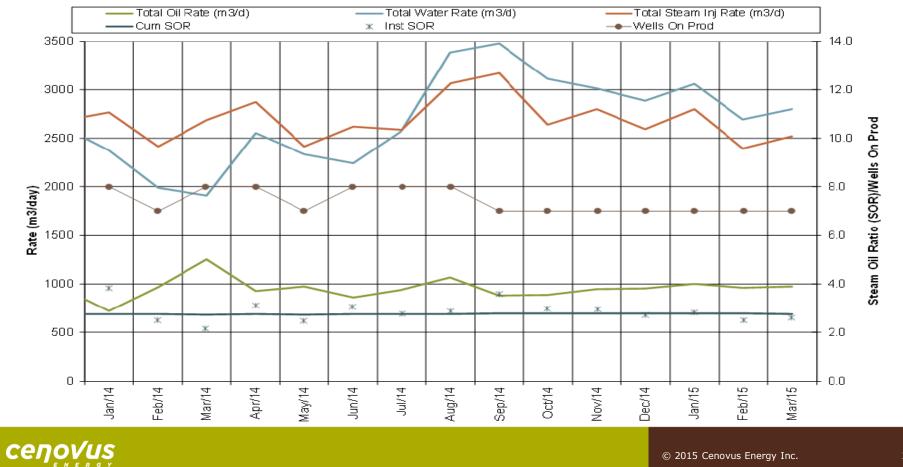
© 2015 Cenovus Energy Inc.


31


FOSTER CREEK

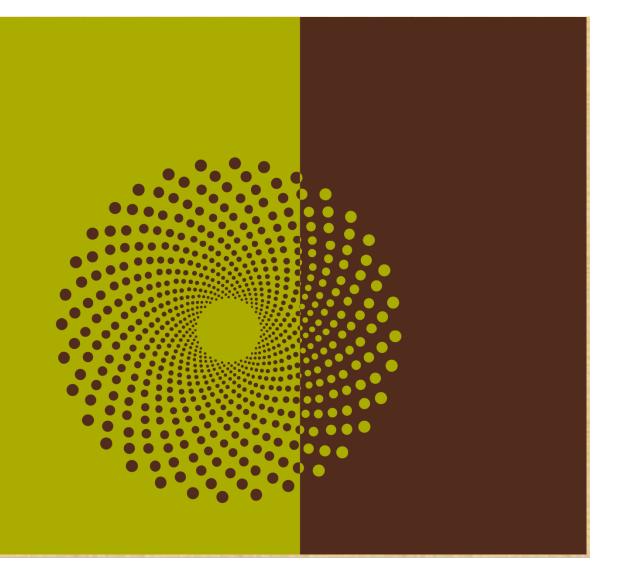
селоуиз

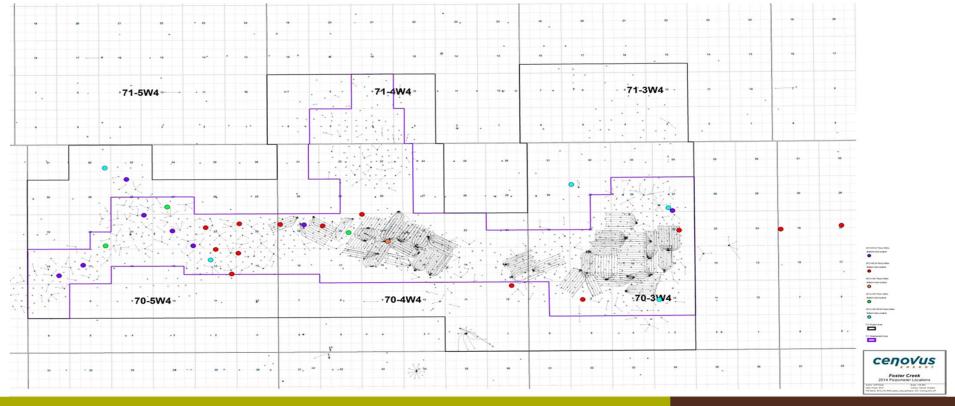
FOSTER CREEK E21 Pad Performance


селоуиз

FOSTER CREEK E24 PAD & E24 Wedge Wells™ Performance

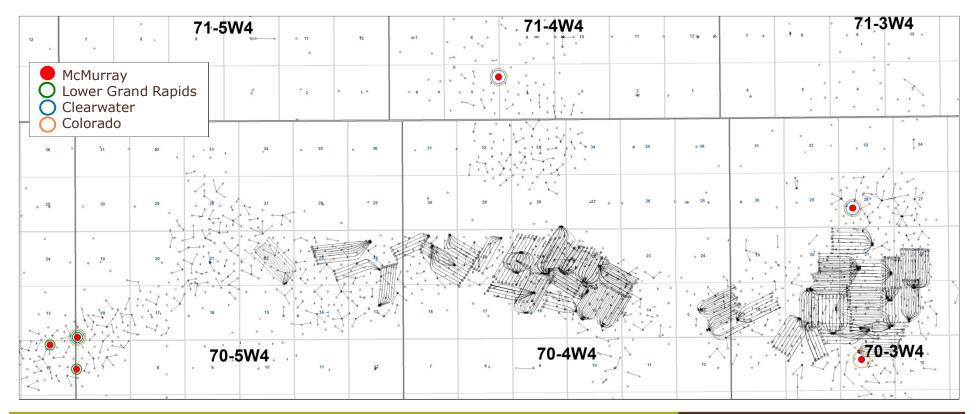
селоуиз


FOSTER CREEK E25 Pad Performance



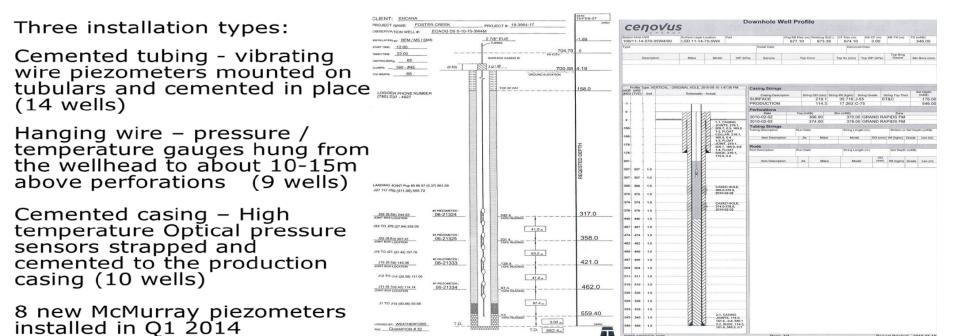
Piezometer data

Foster Creek piezometer locations



селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.1-5b


38

Foster Creek 2015 piezometer locations

Piezometer details

T.D.

NIG: CHAMPION # 32

3.00 m

T.D. 562.4-

545 545 1.0

546- 546 - 1.0

cenovus

Piezometer details

					Reported	
Date	UWI	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30		Basal McMurray	555.0	555.0	2307	kpaa
2014-05-31	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2326	kpaa
2014-06-30	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2339	kpaa
2014-07-31	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2354	kpaa
2014-08-31	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2385	kpaa
2014-09-30	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2345	kpaa
2014-10-31	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2336	kpaa
2014-11-30	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2387	kpaa
2014-12-31	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2342	kpaa
2015-01-31	100/07-22-070-03W4/00	Basal McMurray	555.0	555.0	2376	kpaa
2015-02-28	100/07-22-070-03W4/00	Basal McMurray	555	555.0	2408	kpaa
2015-03-31	100/07-22-070-03W4/00	Basal McMurray	555	555.0	2406	kpaa
2014-04-30	102/13-21-070-04W4/00	Basal McMurray	484.7	484.7	2868	kpaa
2014-05-31	102/13-21-070-04W4/00	Basal McMurray	484.7	484.7	2870	kpaa
2014-11-30	102/13-21-070-04W4/00	Basal McMurray	484.7	484.7	3305	kpaa
2014-12-31	102/13-21-070-04W4/00	Basal McMurray	484.7	484.7	3152	kpaa
2015-01-31	102/13-21-070-04W4/00	Basal McMurray	484.7	484.7	3171	kpaa
2015-02-28	102/13-21-070-04W4/00	Basal McMurray	484.7	484.7	3141	kpaa
2015-03-31	102/13-21-070-04W4/00	Basal McMurray	484.7	484.7	3082	kpaa
2014-04-30	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2121	kpaa
2014-05-31	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2130	kpaa
2014-06-30	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2138	kpaa
2014-07-31	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2148	kpaa
2014-08-31	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2170	kpaa
2014-09-30	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2150	kpaa
2014-10-31	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2139	kpaa
2014-11-30	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2168	kpaa
2014-12-31	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2146	kpaa
2015-01-31	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2158	kpaa
2015-02-28	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2176	kpaa
2015-03-31	1F1/05-19-070-02W4/00	Basal McMurray	544.6	544.6	2179	kpaa
2014-04-30	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2783	kpaa
2014-05-31	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2782	kpaa
2014-06-30	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2779	kpaa
2014-07-31	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2777	kpaa
2014-08-31	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2775	kpaa
2014-09-30	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2774	kpaa
2014-10-31	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2771	kpaa
2014-11-30	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2769	kpaa
2014-12-31	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2768	kpaa
2015-01-31	100/10-20-070-02W4/02	Basal McMurray	592.0	592.0	2767	kpaa

					Reported	
Date	UWI	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3348	kpaa
2014-07-31	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3374	kpaa
2014-08-31	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3330	kpaa
2014-09-30	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3295	kpaa
2014-10-31	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3310	kpaa
2014-11-30	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3353	kpaa
2014-12-31	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	2526	kpaa
2015-01-31	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3320	kpaa
2015-02-28	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3389	kpaa
2015-03-31	100/15-12-070-04W4/00	Basal McMurray	517.9	517.9	3383	kpaa
2014-04-30	100/08-08-070-03W4/00	Basal McMurray	529	529	3357	kpaa
2014-04-30	100/08-32-070-05W4/00	L Grand Rapids	358	358	1783	kpaa
2014-05-31	100/08-32-070-05W4/00	L Grand Rapids	358	358	1782	kpaa
2014-06-30	100/08-32-070-05W4/00	L Grand Rapids	358	358	1780	kpaa
2014-07-31	100/08-32-070-05W4/00	L Grand Rapids	358	358	1778	kpaa
2014-08-31	100/08-32-070-05W4/00	L Grand Rapids	358	358	1777	kpaa
2014-09-30	100/08-32-070-05W4/00	L Grand Rapids	358	358	1775	kpaa
2014-10-31	100/08-32-070-05W4/00	L Grand Rapids	358	358	1773	kpaa
2014-11-30	100/08-32-070-05W4/00	L Grand Rapids	358	358	1771	kpaa
2014-12-31	100/08-32-070-05W4/00	L Grand Rapids	358	358	1770	kpaa
2015-01-31	100/08-32-070-05W4/00	L Grand Rapids	358	358	1769	kpaa
2015-02-28	100/08-32-070-05W4/00	L Grand Rapids	358	358	1767	kpaa
2015-03-31	100/08-32-070-05W4/00	L Grand Rapids	358	358	1766	kpaa
2014-04-30	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1553	kpaa
2014-05-31	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1551	kpaa
2014-06-30	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1549	kpaa
2014-07-31	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1548	kpaa
2014-08-31	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1546	kpaa
2014-09-30	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1544	kpaa
2014-10-31	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1543	kpaa
2014-11-30	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1542	kpaa
2014-12-31	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1541	kpaa
2015-01-31	100/11-14-070-05W4/00	L Grand Rapids	357.2	307.2	1539	kpaa
2015-02-28	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1539	kpaa
2015-03-31	100/11-14-070-05W4/00	L Grand Rapids	357.2	357.2	1537	kpaa
2014-04-30	1F1/03-27-070-03W4/03	Clearwater	462	462	2559	kpaa
2014-05-31	1F1/03-27-070-03W4/03	Clearwater	462	462	2558	kpaa
2014-06-30	1F1/03-27-070-03W4/03	Clearwater	462	462	2557	kpaa
2014-07-31	1F1/03-27-070-03W4/03	Clearwater	462	462	2557	kpaa
2014-08-31	1F1/03-27-070-03W4/03	Clearwater	462	462	2556	kpaa
2014-09-30	1F1/03-27-070-03W4/03	Clearwater	462	462	2556	kpaa
2014-10-31	1F1/03-27-070-03W4/03	Clearwater	462	462	2555	kpaa
2014-11-30	1F1/03-27-070-03W4/03	Cleanwater	462	482	2555	kpaa
2014-12-31	1F1/03-27-070-03W4/03	Clearwater	462	462	2554	kpaa
2015-01-31	1F1/03-27-070-03W4/03	Clearwater	462	462	2553	kpaa
2015-02-28	1F1/03-27-070-03W4/03	Clearwater	462	462	2552	kpaa
2015-03-31	1F1/03-27-070-03W4/03	Clearwater	462	462	2551	kpaa

					Reported	
Date	UWI	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1105	kpaa
2014-05-31	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1158	kpaa
2014-06-30	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1125	kpaa
2014-07-31	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1108	kpaa
2014-08-31	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1091	kpaa
2014-09-30	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1093	kpaa
2014-10-31	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1092	kpaa
2014-11-30	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1111	kpaa
2014-12-31	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1101	kpaa
2015-01-31	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1071	kpaa
2015-02-28	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1035	kpaa
2015-03-31	1F1/03-27-070-03W4/02	L Grand Rapids	421	421	1038	kpaa
2014-04-30	1F1/03-27-070-03W4/01	Colony	358	358	1429	kpaa
2014-05-31	1F1/03-27-070-03W4/01	Colony	358	358	1428	kpaa
2014-06-30	1F1/03-27-070-03W4/01	Colony	358	358	1426	kpaa
2014-07-31	1F1/03-27-070-03W4/01	Colony	358	358	1423	kpaa
2014-08-31	1F1/03-27-070-03W4/01	Colony	358	358	1422	kpaa
2014-09-30	1F1/03-27-070-03W4/01	Colony	358	358	1421	kpaa
2014-10-31	1F1/03-27-070-03W4/01	Colony	358	358	1421	kpaa
2014-11-30	1F1/03-27-070-03W4/01	Colony	358	358	1419	koaa
2014-12-31	1F1/03-27-070-03W4/01	Colony	358	358	1419	kpaa
2015-01-31	1F1/03-27-070-03W4/01	Colony	358	358	1417	kpaa
2015-02-28	1E1/03-27-070-03W4/01	Colony	358	358	1414	kpaa
2015-03-31	1F1/03-27-070-03W4/01	Colony	358	358	1413	kpaa
2014-04-30	1F1/03-27-070-03W4/00	Viking	317	317	2149	kpaa
2014-05-31	1F1/03-27-070-03W4/00	Viking	317	317	2155	kpaa
2014-06-30	1F1/03-27-070-03W4/00	Viking	317	317	2164	koaa
2014-07-31	1F1/03-27-070-03W4/00	Viking	317	317	2176	koaa
2014-08-31	1F1/03-27-070-03W4/00	Viking	317	317	2191	kpaa
2014-09-30	1F1/03-27-070-03W4/00	Viking	317	317	2200	kpaa
2014-10-31	1F1/03-27-070-03W4/00	Viking	317	317	2208	kpaa
2014-11-30	1F1/03-27-070-03W4/00	Viking	317	317	2216	kpaa
2014-12-31	1E1/03-27-070-03W4/00	Viking	317	317	2222	kpaa
2015-01-31	1F1/03-27-070-03W4/00	Viking	317	317	2230	kpaa
2015-02-28	1F1/03-27-070-03W4/00	Viking	317	317	2240	kpaa
2015-03-31	1F1/03-27-070-03W4/00	Viking	317	317	2245	koaa
2014-04-30	1F1/05-10-070-03W4/03	Clearwater	458	458	2349	kpaa
2014-05-31	1F1/05-10-070-03W4/03	Clearwater	458	458	2349	kpaa
2014-06-30	1F1/05-10-070-03W4/03	Clearwater	458	458	2349	kpaa
2014-07-31	1F1/05-10-070-03W4/03	Clearwater	458	458	2348	kpaa
2014-08-31	1F1/05-10-070-03W4/03	Clearwater	458	458	2348	kpaa
2014-09-30	1F1/05-10-070-03W4/03	Clearwater	458	458	2348	kpaa
2014-10-31	1F1/05-10-070-03W4/03	Clearwater	458	458	2347	kpaa
2014-11-30	1F1/05-10-070-03W4/03	Clearwater	458	458	2347	kpaa
2014-12-31	1F1/05-10-070-03W4/03	Clearwater	458	458	2346	kpaa
2015-01-31	1F1/05-10-070-03W4/03	Clearwater	458	458	2346	kpaa
2015-02-28	1F1/05-10-070-03W4/03	Clearwater	458	458	2346	kpaa
2015-03-31	1F1/05-10-070-03W4/03	Clearwater	458	458	2345	kpaa
2010-03-31	1F1/05-10-070-03/V4/03	Grearwater	408	408	2340	краа

					Reported	
Date	uwi	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1514	kpaa
2014-05-31	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1514	kpaa
2014-06-30	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1517	kpaa
2014-07-31	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1513	kpaa
2014-08-31	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1510	kpaa
2014-09-30	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1501	kpaa
2014-10-31	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1499	kpaa
2014-11-30	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1503	kpaa
2014-12-31	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1493	kpaa
2015-01-31	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1489	kpaa
2015-02-28	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1484	kpaa
2015-03-31	1F1/05-10-070-03W4/02	L Grand Rapids	425	425	1481	kpaa
2014-04-30	1F1/05-10-070-03W4/01	Colony	360	360	564	kpaa
2014-05-31	1F1/05-10-070-03W4/01	Colony	360	360	612	kpaa
2014-06-30	1F1/05-10-070-03W4/01	Colony	360	360	298	kpaa
2014-09-30	1F1/05-10-070-03W4/01	Colony	360	360	450	kpaa
2014-10-31	1F1/05-10-070-03W4/01	Colony	360	360	545	kpaa
2014-11-30	1F1/05-10-070-03W4/01	Colony	360	360	952	kpaa
2014-12-31	1F1/05-10-070-03W4/01	Colony	360	360	1055	kpaa
2015-01-31	1F1/05-10-070-03W4/01	Colony	360	360	969	kpaa
2015-02-28	1F1/05-10-070-03W4/01	Colony	360	360	970	kpaa
2015-03-31	1F1/05-10-070-03W4/01	Colony	360	360	235	kpaa
2014-04-30	1F1/05-10-070-03W4/00	Viking	320	320	2144	kpaa
2014-05-31	1F1/05-10-070-03W4/00	Viking	320	320	2149	kpaa
2014-06-30	1F1/05-10-070-03W4/00	Viking	320	320	2153	kpaa
2014-07-31	1F1/05-10-070-03W4/00	Viking	320	320	2158	kpaa
2014-08-31	1F1/05-10-070-03W4/00	Viking	320	320	2161	kpaa
2014-09-30	1F1/05-10-070-03W4/00	Viking	320	320	2163	kpaa
2014-10-31	1F1/05-10-070-03W4/00	Viking	320	320	2168	kpaa
2014-11-30	1F1/05-10-070-03W4/00	Viking	320	320	2172	kpaa
2014-12-31	1F1/05-10-070-03W4/00	Viking	320	320	2176	kpaa
2015-01-31	1F1/05-10-070-03W4/00	Viking	320	320	2180	kpaa
2015-02-28	1F1/05-10-070-03W4/00	Viking	320	320	2183	kpaa
2015-03-31	1F1/05-10-070-03W4/00	Viking	320	320	2186	kpaa
2014-04-30	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1562	kpaa
2014-05-31	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1563	kpaa
2014-06-30	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1562	kpaa
2014-07-31	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1558	kpaa
2014-08-31	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1558	kpaa
2014-09-30	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1558	kpaa
2014-10-31	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1556	kpaa
2014-11-30	1AA or 103 13-29-70-03W5	Clearwater	403.0	403.0	1501	kpaa
2014-12-31	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1559	kpaa
2015-01-31	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1557	kpaa
2015-02-28	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1556	kpaa
2015-03-31	1AA or 103 13-29-70-03W5	Clearwater	403.6	403.6	1547	kpaa

					Reported	
Date	uwi	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30	1AA or 103 13-29-70-03W5	Grand Rapids	365	365	1184	kpaa
2014-05-31	1AA or 103 13-29-70-03W5	Grand Rapids	365	365	1191	kpaa
2014-06-30	1AA or 103 13-29-70-03W5	Grand Rapids	365	365	1194	kpaa
2014-07-31	1AA or 103 13-29-70-03W5	Grand Rapids	365	365	1184	kpaa
2014-08-31	1AA or 103 13-29-70-03W5	Grand Rapids	365	365	1178	kpaa
2014-09-30	1AA or 103 13-29-70-03W5	Grand Rapids	365 365	365	1183	kpaa
2014-10-31	1AA or 103 13-29-70-03W5	Grand Rapids	305	365	1171	kpaa
2014-11-30 2014-12-31	1AA or 103 13-29-70-03W5 1AA or 103 13-29-70-03W5	Grand Rapids Grand Rapids	300	365 365	1177	kpaa
2014-12-31	1AA or 103 13-29-70-03W5	Grand Rapids	300	305	1159	kpaa
2015-02-28	1AA or 103 13-29-70-03W5	Grand Rapids	300	300	1159	kpaa kpaa
2015-02-25	1AA or 103 13-29-70-03W5	Grand Rapids	365	385	1136	kpaa
2014-04-30	1AA/08-11-070-06W4/03	Basal McMurray	568	568	3309	kpaa
2014-05-31	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3310	kpaa
2014-06-30	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3310	koaa
2014-07-31	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3311	kpaa
2014-08-31	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3311	kpaa
2014-09-30	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3311	kpaa
2014-10-31	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3314	kpaa
2014-11-30	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3317	kpaa
2014-12-31	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3321	kpaa
2015-01-31	1AA/00-11-070-00VV4/03	Basal McMurray	508	508	3320	kpaa
2015-02-28	1AA/06-11-070-06W4/03	Basal McMurray	568	568	3330	kpaa
2014-04-30	1AA/06-11-070-06W4/02	Basal McMurray	540	540	2977	kpaa
2014-05-31	1AA/06-11-070-06W4/02	Basal McMurray	540	540	2978	kpaa
2014-06-30	1AA/06-11-070-06W4/02	Basal McMurray	540	540	2979	kpaa
2014-07-31	1AA/06-11-070-06W4/02	Basal McMurray	540	540	2980	kpaa
2014-08-31	1AA/08-11-070-08W4/02	Basal McMurray	540	540	2981	kpaa
2014-09-30	1AA/08-11-070-08W4/02	Basal McMurray	540	540	2981	kpaa
2014-10-31 2014-11-30	1AA/08-11-070-06W4/02 1AA/08-11-070-06W4/02	Basal McMurray	540 540	540 540	2984 2988	kpaa
2014-11-30	1AA/06-11-070-06W4/02 1AA/06-11-070-06W4/02	Basal McMurray Basal McMurray	540	540	2988	kpaa kpaa
2014-12-31	1AA/08-11-070-08/V4/02	Basal McMurray	540	540	2992	kpaa
2015-02-28	1AA/08-11-070-06W4/02	Basal McMurray	540	540	3002	kpaa
2014-04-30	1AA/08-11-070-08W4/01	Basal McMurray	533	533	2951	kpaa
2014-05-31	1AA/08-11-070-06W4/01	Basal McMurray	533	533	2951	koaa
2014-06-30	1AA/06-11-070-06W4/01	Basal McMurray	533	533	2951	koaa
2014-07-31	1AA/06-11-070-06W4/01	Basal McMurray	533	533	2952	kpaa
2014-08-31	1AA/06-11-070-06W4/01	Basal McMurray	533	533	2953	kpaa
2014-09-30	1AA/06-11-070-06W4/01	Basal McMurray	533	533	2953	kpaa
2014-10-31	1AA/08-11-070-06W4/01	Basal McMurray	533	533	2955	kpaa
2014-11-30	1AA/06-11-070-06W4/01	Basal McMurray	533	533	2959	kpaa
2014-12-31	1AA/06-11-070-06W4/01	Basal McMurray	533	533	2964	kpaa
2015-01-31	1AA/06-11-070-06W4/01	Basal McMurray	533	533	2969	kpaa
2015-02-28	1AA/06-11-070-06W4/01	Basal McMurray	533	533	2973	kpaa

Date	uwi	Fluids / Zones	TVD (mKB)		Reported Value	Units
2014-04-30	1AA/06-11-070-06W4/00	L Grand Rapids	404	404	2024	kpaa
2014-04-30	1AA/08-11-070-06/W4/00	L Grand Rapids	404	404	2023	
2014-06-30	1AA/08-11-070-06W4/00	L Grand Rapids	404	404	2023	kpaa koaa
2014-07-31	1AA/06-11-070-06W4/00	L Grand Rapids	404	404	2022	kpaa
2014-08-31	1AA/08-11-070-08W4/00	L Grand Rapids	404	404	2019	kpaa
2014-09-30	1AA/08-11-070-06W4/00	L Grand Rapids	404	404	2013	kpaa
2014-10-31	1AA/06-11-07 0-06W/4/00	L Grand Rapids	404	404	2015	kpaa
2014-11-30	1AA/08-11-070-08W4/00	L Grand Rapids	404	404	2013	kpaa
2014-12-31	1AA/08-11-070-06W4/00	L Grand Rapids	404	404	2014	kpaa kpaa
2015-01-31			404	404		
2015-01-31	1AA/08-11-070-06W4/00 1AA/08-11-070-06W4/00	L Grand Rapids	404	404	2011 2010	kpaa
		L Grand Rapids				kpaa
2014-04-30 2014-05-31	100/02-21-070-04W4/00 100/02-21-070-04W4/00	Colorado Shale Colorado Shale	241 241	241	3745 3712	kpaa
2014-06-30	100/02-21-070-04W4/00		241	241	3712	kpaa
		Colorado Shale				kpaa
2014-07-31	100/02-21-070-04W4/00	Colorado Shale	241	241	3710	kpaa
2014-08-31	100/02-21-070-04W4/00	Colorado Shale	241	241	3750	kpaa
2014-09-30	100/02-21-070-04W4/00	Colorado Shale	241	241	3758	kpaa
2014-10-31	100/02-21-070-04W4/00	Colorado Shale	241	241	3764	kpaa
2014-11-30	100/02-21-070-04W4/00	Colorado Shale	241	241	3770	kpaa
2014-12-31	100/02-21-070-04W4/00	Colorado Shale	241	241	3777	kpaa
2015-01-31	100/02-21-070-04W4/00	Colorado Shale	241	241	3777	kpaa
2015-02-28	100/02-21-070-04W4/00	Colorado Shale	241	241	3778	kpaa
2015-03-31	100/02-21-070-04W4/00	Colorado Shale	241	241	3775	kpaa
2014-04-30	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3168	kpaa
2014-05-31	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3145	kpaa
2014-06-30	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3142	kpaa
2014-07-31	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3180	kpaa
2014-08-31	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3447	kpaa
2014-09-30	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3605	kpaa
2014-10-31	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3687	kpaa
2014-11-30	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3696	kpaa
2014-12-31	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3426	kpaa
2015-01-31	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3482	kpaa
2015-02-28	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3447	kpaa
2015-03-31	1AB/07-20-070-04W4/03	Basal McMurray	525	584.98	3375	kpaa
2014-04-30	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3137	kpaa
2014-05-31	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3099	kpaa
2014-06-30	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3093	kpaa
2014-07-31	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3175	kpaa
2014-08-31	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3656	kpaa
2014-09-30	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3769	kpaa
2014-10-31	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3811	kpaa
2014-11-30	1AB/07-20-07 0-04W4/02	Basal McMurray	500.73	505.97	3770	kpaa
2014-12-31	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3427	kpaa
2015-01-31	1AB/07-20-07 0-04W4/02	Basal McMurray	506.73	565.97	3509	kpaa
2015-02-28	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3434	kpaa
2015-03-31	1AB/07-20-070-04W4/02	Basal McMurray	506.73	565.97	3334	kpaa

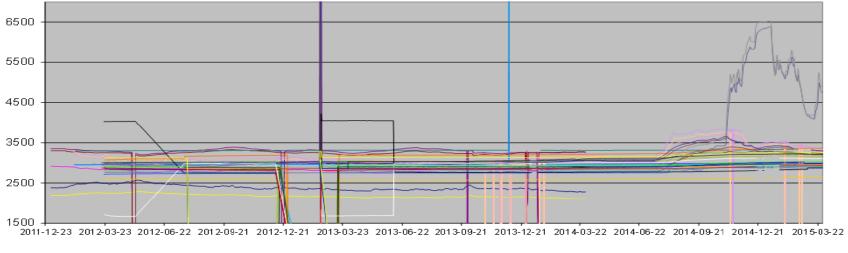
					Reported	
Date	UWI	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3112	kpaa
2014-05-31	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3065	kpaa
2014-06-30	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3063	kpaa
2014-07-31	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3110	kpaa
2014-08-31	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3525	kpaa
2014-09-30	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3667	kpaa
2014-10-31	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3717	kpaa
2014-11-30	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3721	kpaa
2014-12-31	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3417	kpaa
2015-01-31	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3448	kpaa
2015-02-28	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3393	kpaa
2015-03-31	1AB/07-20-070-04W4/01	Basal McMurray	492.14	556.79	3318	kpaa
2014-04-30	1AB/07-20-070-04W4/00	L Grand Rapids	365.16	389.67	1616	kpaa
2014-05-31	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1614	kpaa
2014-06-30	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1613	kpaa
2014-07-31	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1611	kpaa
2014-08-31	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1609	kpaa
2014-09-30	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1607	kpaa
2014-10-31	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1605	kpaa
2014-11-30	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1602	kpaa
2014-12-31	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1602	kpaa
2015-01-31	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1600	kpaa
2015-02-28	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1599	kpaa
2015-03-31	1AB/07-20-070-04W4/00	L Grand Rapids	355.15	389.67	1598	kpaa
2014-04-30	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2753	kpaa
2014-05-31	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2752	kpaa
2014-06-30	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2753	kpaa
2014-07-31	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2755	kpaa
2014-08-31	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2824	kpaa
2014-09-30	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2831	kpaa
2014-10-31	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2874	kpaa
2014-11-30	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2882	kpaa
2014-12-31	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2876	koaa
2015-01-31	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2877	kpaa
2015-02-28	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2874	koaa
2015-03-31	102/09-23-070-05W4/03	Basal McMurray	487.2	582	2868	kpaa
2014-04-30	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2810	kpaa
2014-05-31	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2812	kpaa
2014-06-30	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2814	kpaa
2014-07-31	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2816	kpaa
2014-08-31	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2825	kpaa
2014-09-30	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2849	kpaa
2014-10-31	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2872	kpaa
2014-11-30	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2898	kpaa
2014-12-31	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2919	kpaa
2015-01-31	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2933	kpaa
2015-02-28	102/09-23-070-05W4/03	Basal McMurray	493.8	591	2940	kpaa
2015-02-20	102/09-23-070-05/W4/03	Basal McMurray	493.8	591	2937	kpaa
2015-03-31		Basal McMurray	493.0	620	3051	
2014-04-30	102/05-23-070-05/04/03	basal monurray	010	020	3001	kpaa

					Reported	
Date	uwi	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-05-31	102/09-23-070-05W4/03	Basal McMurray	515	620	3050	kpaa
2014-06-30	102/09-23-070-05W4/03	Basal McMurray	515	620	3050	kpaa
2014-07-31	102/09-23-070-05W4/03	Basal McMurray	515	620	3052	kpaa
2014-08-31	102/09-23-070-05W4/03	Basal McMurray	515	620	3079	kpaa
2014-09-30	102/09-23-070-05W4/03	Basal McMurray	515	620	3115	kpaa
2014-10-31	102/09-23-070-05W4/03	Basal McMurray	515	620	3138	kpaa
2014-11-30	102/09-23-070-05W4/03	Basal McMurray	515	620	3156	kpaa
2014-12-31	102/09-23-070-05W4/03	Basal McMurray	515	620	3161	kpaa
2015-01-31	102/09-23-070-05W4/03	Basal McMurray	515	620	3171	kpaa
2015-02-28	102/09-23-070-05W4/03	Basal McMurray	515	620	3170	kpaa
2015-03-31	102/09-23-070-05W4/03	Basal McMurray	515	620	3158	kpaa
2014-04-30	102/11-23-070-05W4/00	Basal McMurray	480	560	2589	kpaa
2014-05-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2591	kpaa
2014-06-30	102/11-23-070-05W4/00	Basal McMurray	480	560	2593	kpaa
2014-07-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2595	kpaa
2014-08-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2597	kpaa
2014-09-30	102/11-23-070-05W4/00	Basal McMurray	480	560	2600	kpaa
2014-10-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2606	kpaa
2014-11-30	102/11-23-070-05W4/00	Basal McMurray	480	560	2614	koaa
2014-12-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2626	kpaa
2015-01-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2640	kpaa
2015-02-28	102/11-23-070-05W4/00	Basal McMurray	480	560	2647	kpaa
2015-03-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2654	kpaa
2014-04-30	102/11-23-070-05W4/00	Basal McMurray	480	560	2853	koaa
2014-05-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2855	kpaa
2014-06-30	102/11-23-070-05W4/00	Basal McMurray	480	560	2856	kpaa
2014-07-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2857	kpaa
2014-08-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2873	kpaa
2014-09-30	102/11-23-070-05W4/00	Basal McMurray	480	560	2905	kpaa
2014-10-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2940	kpaa
2014-11-30	102/11-23-070-05W4/00	Basal McMurray	480	560	2991	kpaa
2014-12-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2986	kpaa
2015-01-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2978	kpaa
2015-02-28	102/11-23-070-05W4/00	Basal McMurray	480	560	2975	kpaa
2015-03-31	102/11-23-070-05W4/00	Basal McMurray	480	560	2972	kpaa
2014-04-30	102/11-23-070-05W4/00	Basal McMurray	522.3	622	3217	kpaa
2014-05-31	102/11-23-070-05W4/00	Basal McMurray	522.3	622	3220	kpaa
2014-06-30	102/11-23-070-05W4/00	Basal McMurray	522.3	622	3222	kpaa
2014-07-31	102/11-23-070-05W4/00	Basal McMurray	522.3	622	3226	kpaa
2014-08-31	102/11-23-070-05W4/00	Basal McMurray	522.3	622	3244	koaa
2014-08-31	102/11-23-070-05/V4/00	Basal McMurray	522.3	622	3276	kpaa kpaa
2014-09-30	102/11-23-070-05/V4/00	Basal McMurray	522.3	622	3298	
2014-10-31	102/11-23-070-05/V4/00		522.3	622	3319	kpaa koaa
2014-11-30	102/11-23-070-05/04/00	Basal McMurray Basal McMurray	522.3	622	3332	kpaa kpaa
2015-01-31	102/11-23-070-05W4/00	Basal McMurray	522.3	622	3348	
					3348	kpaa
2015-02-28	102/11-23-070-05W4/00	Basal McMurray	522.3	622		kpaa
2015-03-31	102/11-23-070-05W4/00	Basal McMurray	522.3	622	3361	kpaa

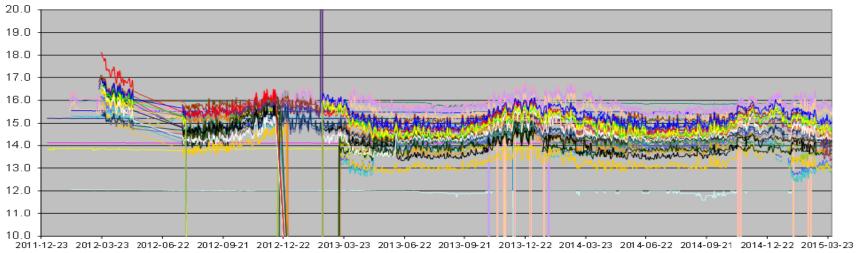
					Reported	
Date	UWI	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30	102/12-19-070-04W4/00	Basal McMurray	484.1	573	2783	kpaa
2014-05-31	102/12-19-070-04W4/00	Basal McMurray	484.1	573	2784	kpaa
2014-06-30	102/12-19-070-04W4/00	Basal McMurray	484.1	573	2786	kpaa
2014-07-31	102/12-19-070-04W4/00	Basal McMurray	484.1	573	2798	kpaa
2014-08-31	102/12-19-070-04W4/00	Basal McMurray	484.1	573	3017	kpaa
2014-09-30	102/12-19-070-04W4/00	Basal McMurray	484.1	573	3264	kpaa
2014-10-31	102/12-19-070-04W4/00	Basal McMurray	484.1	573	3379	kpaa
2014-11-30	102/12-19-070-04W4/00	Basal McMurray	484.1	573	4722	kpaa
2014-12-31	102/12-19-070-04W4/00	Basal McMurray	484.1	573	6001	kpaa
2015-01-31	102/12-19-070-04W4/00	Basal McMurray	484.1	573	5705	koaa
2015-02-28	102/12-19-070-04W4/00	Basal McMurray	484.1	573	5171	kpaa
2015-03-31	102/12-19-070-04W4/00	Basal McMurray	484.1	573	4396	kpaa
2014-04-30	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	2925	kpaa
2014-05-31	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	2925	kpaa
2014-06-30	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	2927	kpaa
2014-07-31	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	2938	kpaa
2014-08-31	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	3168	kpaa
2014-09-30	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	3409	kpaa
2014-10-31	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	3521	kpaa
2014-11-30	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	4958	kpaa
2014-12-31	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	6217	kpaa
2015-01-31	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	5759	kpaa
2015-02-28	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	5256	kpaa
2015-03-31	102/12-19-070-04W4/00	Basal McMurray	494.4	587.3	4498	kpaa
2014-04-30	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3073	kpaa
2014-05-31	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3074	kpaa
2014-06-30	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3076	kpaa
2014-07-31	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3084	kpaa
2014-08-31	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3159	kpaa
2014-09-30	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3227	kpaa
2014-10-31	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3241	kpaa
2014-11-30	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3262	kpaa
2014-12-31	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3268	kpaa
2015-01-31	102/12-19-070-04W4/00	Basal McMurray	504.5	001.25	3269	kpaa
2015-02-28	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3238	kpaa
2015-03-31	102/12-19-070-04W4/00	Basal McMurray	504.5	601.25	3211	kpaa
2014-04-30	102/05-13-070-05W4/04	Basal McMurray	504.5	601	2860	kpaa
2014-05-31	102/05-13-070-05W4/04	Basal McMurray	504.5	601	2861	kpaa
2014-06-30	102/05-13-070-05W4/04	Basal McMurray	504.5	601	2861	kpaa
2014-07-31	102/05-13-070-05/W4/04	Basal McMurray	504.5	601	2862	kpaa
2014-07-31	102/05-13-070-05/W4/04	Basal McMurray	504.5	601	2864	
2014-08-31	102/05-13-070-05/W4/04	Basal McMurray	504.5	601	2870	kpaa kpaa
2014-09-30	102/05-13-070-05/W4/04	Basal McMurray	504.5	601	2878	kpaa
2014-10-31	102/05-13-070-05/W4/04 102/05-13-070-05/W4/04	Basal McMurray	504.5	801	2887	kpaa kpaa
2014-11-30	102/05-13-070-05/04/04	Basal McMurray	504.5	601	2887	kpaa kpaa
2015-01-31	102/05-13-070-05W4/04		504.5	601	2903	
2015-01-31	102/05-13-070-05W4/04 102/05-13-070-05W4/04	Basal McMurray		601	2903	kpaa
		Basal McMurray	504.5			kpaa
2015-03-31	102/05-13-070-05W4/04	Basal McMurray	504.5	601	2913	kpaa

					Reported	
Date	uwi	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30	102/05-13-070-05W4/04	Basal McMurray	510	609	2912	kpaa
2014-05-31	102/05-13-070-05W4/04	Basal McMurray	510	609	2913	kpaa
2014-06-30	102/05-13-070-05W4/04	Basal McMurray	510	609	2914	kpaa
2014-07-31	102/05-13-070-05W4/04	Basal McMurray	510	609	2915	kpaa
2014-08-31	102/05-13-070-05W4/04	Basal McMurray	510	609	2919	kpaa
2014-09-30	102/05-13-070-05W4/04	Basal McMurray	510	609	2930	kpaa
2014-10-31	102/05-13-070-05W4/04	Basal McMurray	510	609	2940	kpaa
2014-11-30	102/05-13-070-05W4/04	Basal McMurray	510	609	2951	kpaa
2014-12-31	102/05-13-070-05W4/04	Basal McMurray	510	609	2959	kpaa
2015-01-31	102/05-13-070-05W4/04	Basal McMurray	510	609	2966	kpaa
2015-02-28	102/05-13-070-05W4/04	Basal McMurray	510	609	2972	kpaa
2015-03-31	102/05-13-070-05W4/04	Basal McMurray	510	609	2977	kpaa
2014-04-30	102/05-13-070-05W4/04	Basal McMurray	520	624	3102	kpaa
2014-05-31	102/05-13-070-05W4/04	Basal McMurray	520	624	3105	kpaa
2014-06-30	102/05-13-070-05W4/04	Basal McMurray	520	624	3110	kpaa
2014-07-31	102/05-13-070-05W4/04	Basal McMurray	520	624	3114	kpaa
2014-08-31	102/05-13-070-05W4/04	Basal McMurray	520	624	3142	kpaa
2014-09-30	102/05-13-070-05W4/04	Basal McMurray	520	624	3167	kpaa
2014-10-31	102/05-13-070-05W4/04	Basal McMurray	520	624	3185	kpaa
2014-11-30	102/05-13-070-05W4/04	Basal McMurray	520	624	3207	kpaa
2014-12-31	102/05-13-070-05W4/04	Basal McMurray	520	624	3212	kpaa
2015-01-31	102/05-13-070-05W4/04	Basal McMurray	520	624	3217	kpaa
2015-02-28		Basal McMurray	520	624	3217	kpaa
2015-03-31	102/05-13-070-05W4/04	Basal McMurray	520	624	3209	kpaa
2014-04-30	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	2900	kpaa
2014-05-31	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	2896	kpaa
2014-06-30	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	2895	kpaa
2014-07-31	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	2898	kpaa
2014-08-31	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	3021	kpaa
2014-09-30	104/12-20-070-04VV4/02	Basal McMurray	487.2	008.3	3215	kpaa
2014-10-31	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	3331	kpaa
2014-11-30	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	3380	kpaa
2014-12-31	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	3307	kpaa
2015-01-31	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	3268	kpaa
2015-02-28	104/12-20-070-04W4/02		487.2	608.3	3269	
2015-02-28	104/12-20-070-04W4/02	Basal McMurray	487.2	608.3	3237	kpaa
2015-03-31	104/12-20-070-04W4/02	Basal McMurray	494.3	619.4	3237	kpaa
2014-04-30		Basal McMurray			3048	kpaa
2014-06-30	104/12-20-070-04W4/02 104/12-20-070-04W4/02	Basal McMurray	494.3 494.3	619.4 619.4	3030	kpaa
2014-07-31	104/12-20-070-04W4/02	Basal MoMurray	494.3	619.4	3036	kpaa
2014-07-31	104/12-20-070-04W4/02 104/12-20-070-04W4/02	Basal McMurray	494.3	619.4	3057	kpaa
2014-08-31		Basal McMurray	494.3			kpaa
2014-09-30	104/12-20-070-04W4/02 104/12-20-070-04W4/02	Basal McMurray	494.3	619.4	3477	kpaa
		Basal McMurray		619.4		kpaa
2014-11-30	104/12-20-070-04W4/02	Basal McMurray	494.3	619.4	3544	kpaa
2014-12-31	104/12-20-070-04W4/02	Basal McMurray	494.3	619.4	3379	kpaa
2015-01-31	104/12-20-070-04W4/02	Basal McMurray	494.3	619.4	3377	kpaa
2015-02-28	104/12-20-070-04W4/02	Basal McMurray	494.3	619.4	3373	kpaa
2015-03-31	104/12-20-070-04W4/02	Basal McMurray	494.3	619.4	3303	kpaa
2014-04-30	104/12-20-070-04W4/02	Basal McMurray	499.2	627.35	3057	kpaa
2014-05-31	104/12-20-070-04W4/02	Basal McMurray	499.2	627.35	3047	kpaa
2014-06-30		Basal McMurray	499.2	627.35	3050	kpaa
2014-07-31	104/12-20-070-04W4/02	Basal McMurray	499.2	627.35	3093	kpaa

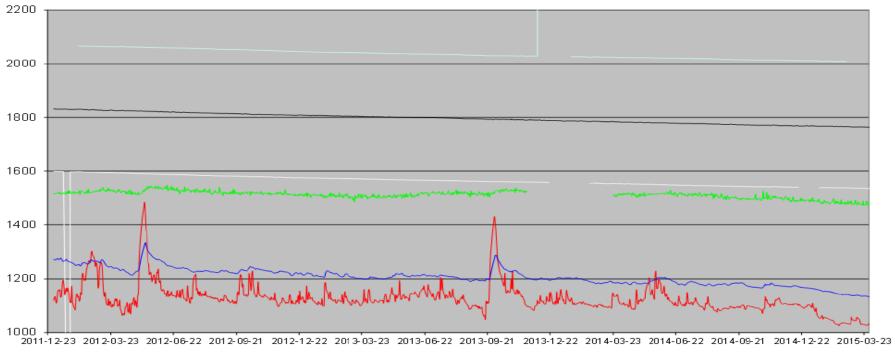
					Reported	
Date	UWI	Fluids / Zones	TVD (mKB)		Value	Units
2014-04-30	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2771	kpaa
2014-05-31	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2773	kpaa
2014-06-30	100/13-13-070-05VV4/03	Basal McMurray	494.6	603.5	2774	kpaa
2014-07-31	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2776	kpaa
2014-08-31	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2776	kpaa
2014-09-30	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2780	kpaa
2014-10-31	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2789	kpaa
2014-11-30	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2798	kpaa
2014-12-31	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2809	kpaa
2015-01-31	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2827	kpaa
2015-02-28	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2833	kpaa
2015-03-31	100/13-13-070-05W4/03	Basal McMurray	494.6	603.5	2871	kpaa
2014-04-30	100/13-13-070-05VV4/03	Basal McMurray	502.1	015	2998	kpaa
2014-05-31	100/13-13-070-05W4/03	Basal McMurray	502.1	615	2999	kpaa
2014-06-30	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3000	kpaa
2014-07-31	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3002	kpaa
2014-08-31	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3032	kpaa
2014-09-30	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3070	kpaa
2014-10-31	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3093	kpaa
2014-11-30	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3110	kpaa
2014-12-31	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3113	koaa
2015-01-31	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3118	kpaa
2015-02-28	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3114	kpaa
2015-03-31	100/13-13-070-05W4/03	Basal McMurray	502.1	615	3106	kpaa
2014-04-30	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2846	kpaa
2014-05-31	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2849	kpaa
2014-06-30	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2851	kpaa
2014-07-31	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2852	kpaa
2014-08-31	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2856	kpaa
2014-09-30	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2868	kpaa
2014-10-31	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2883	kpaa
2014-11-30	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2896	kpaa
2014-12-31	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2910	kpaa
2015-01-31	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2927	kpaa
2015-02-28	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2931	kpaa
2015-03-31	100/13-13-070-05W4/03	Basal McMurray	516.4	637	2938	kpaa
2014-04-30	102/10-14-070-05W4/02	Basal McMurray	500	614.5	2928	kpaa
2014-05-31	102/10-14-070-05W4/02	Basal McMurray	500	614.5	2929	kpaa
2014-06-30	102/10-14-070-05W4/02	Basal McMurray	500	614.5	2930	kpaa
2014-07-31	102/10-14-070-05W4/02	Basal McMurray	500	614.5	2932	kpaa
2014-08-31	102/10-14-070-05W4/02	Basal McMurray	500	614.5	2942	kpaa
2014-09-30	102/10-14-070-05W4/02	Basal McMurray	500	614.5	2967	kpaa
2014-10-31	102/10-14-070-05W4/02	Basal MoMurray	500	614.5	2988	kpaa
2014-11-30	102/10-14-070-05W4/02	Basal McMurray	500	614.5	3004	kpaa
2014-12-31	102/10-14-070-05W4/02	Basal McMurray	500	614.5	3015	kpaa
2015-01-31	102/10-14-070-05W4/02	Basal McMurray	500	614.5	3021	kpaa
2015-02-28	102/10-14-070-05W4/02	Basal McMurray	500	614.5	3026	kpaa


					Reported	
Date	uwi	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2015-03-31	102/10-14-070-05W4/02	Basal McMurray	500	614.5	3025	kpaa
2014-04-30	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2882	kpaa
2014-05-31	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2887	kpaa
2014-06-30	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2891	kpaa
2014-07-31	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2897	kpaa
2014-08-31	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2910	kpaa
2014-09-30	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2937	kpaa
2014-10-31	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2962	kpaa
2014-11-30	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2983	kpaa
2014-12-31	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2997	kpaa
2015-01-31	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	3007	kpaa
2015-02-28	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	3015	kpaa
2015-03-31	102/10-14-070-05W4/02	Basal McMurray	505.7	623.5	2993	kpaa
2014-04-30	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3147	kpaa
2014-05-31	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3149	kpaa
2014-06-30	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3151	kpaa
2014-07-31	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3154	kpaa
2014-08-31	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3178	kpaa
2014-09-30	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3212	kpaa
2014-10-31	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3234	kpaa
2014-11-30	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3250	kpaa
2014-12-31	102/10-14-070-05W4/02	Basal McMurray	528.5	660	3255	kpaa
2015-01-31	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3261	kpaa
2015-02-28	102/10-14-070-05W4/02	Basal McMurray	520.5	660	3262	kpaa
2015-03-31	102/10-14-070-05W4/02	Basal McMurray	526.5	660	3258	kpaa
2014-04-30	102/01-20-070-05W4/02	Basal McMurray	526	526	3106	kpaa
2014-05-31	102/01-20-070-05W4/02	Basal McMurray	526	526	3107	kpaa
2014-06-30	102/01-20-070-05W4/02	Basal McMurray	526	526	3108	kpaa
2014-07-31	102/01-20-070-05W4/02	Basal McMurray	526	526	3109	kpaa
2014-08-31	102/01-20-070-05W4/02	Basal McMurray	526	526	3112	kpaa
2014-09-30	102/01-20-070-05W4/02	Basal McMurray	526	526	3119	kpaa
2014-10-31	102/01-20-070-05W4/02	Basal McMurray	526	526	3128	kpaa
2014-11-30	102/01-20-070-05W4/02	Basal McMurray	526	526	3139	kpaa
2014-12-31	102/01-20-070-05W4/02	Basal McMurray	526	526	3147	kpaa
2015-01-31	102/01-20-070-05W4/02	Basal McMurray	526	526	3154	kpaa
2015-02-28	102/01-20-070-05W4/02	Basal McMurray	526	526	3159	kpaa
2015-03-31	102/01-20-070-05W4/02	Basal McMurray	526	526	3160	kpaa
2014-04-30	102/01-20-070-05W4/01	Basal McMurray	516.5	516.5	3017	kpaa
2014-05-31	102/01-20-070-05W4/01	Basal McMurray	516.5	516.5	3017	kpaa
2014-06-30	102/01-20-070-05W4/01	Basal McMurray	516.5	516.5	3018	kpaa
2014-07-31	102/01-20-070-05W4/01	Basal McMurray	516.5	516.5	3018	kpaa
2014-08-31	102/01-20-070-05W4/01	Basal McMurray	516.5	516.5	3021	kpaa
2014-09-30	102/01-20-070-05W4/01	Basal McMurray	516.5	516.5	3029	kpaa
2014-03-30	102/01-20-070-05/V4/01	Basal McMurray	516.5	510.5	3025	kpaa
2014-10-31	102/01-20-070-05/V4/01	Basal McMurray	516.5	510.5	3052	kpaa
2014-12-31	102/01-20-070-05/V4/01	Basal McMurray	516.5	516.5	3060	kpaa
2015-01-31	102/01-20-070-05/V4/01	Basal McMurray	516.5	516.5	3067	kpaa kpaa
2015-01-31	102/01-20-070-05W4/01	Basal McMurray	516.5	516.5	3072	
2015-02-28	102/01-20-070-05W4/01 102/01-20-070-05W4/01	Basal McMurray Basal McMurray	516.5	516.5	3072	kpaa
2010-03-31	102/01-20-070-05004/01	basai McMurray	010.0	010.0	3073	kpaa

				Reported		
Date	UWI	Fluids / Zones	TVD (mKB)	MD (mKB)	Value	Units
2014-04-30	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2730	kpaa
2014-05-31	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2731	kpaa
2014-06-30	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2732	kpaa
2014-07-31	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2731	kpaa
2014-08-31	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2737	kpaa
2014-09-30	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2742	kpaa
2014-10-31	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2745	kpaa
2014-11-30	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2753	kpaa
2014-12-31	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2757	kpaa
2015-01-31	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2761	kpaa
2015-02-28	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2765	kpaa
2015-03-31	102/01-20-070-05W4/00	Basal McMurray	491.8	491.8	2764	kpaa
2014-04-30	1AB/03-27-070-05W4/02	Basal McMurray	520.8	520.8	3139	kpaa
2014-05-31	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3139	kpaa
2014-06-30	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3139	kpaa
2014-07-31	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3140	kpaa
2014-08-31	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3147	kpaa
2014-09-30	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3164	kpaa
2014-10-31	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3177	kpaa
2014-11-30	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3192	kpaa
2014-12-31	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3201	kpaa
2015-01-31	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3207	kpaa
2015-02-28	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3210	kpaa
2015-03-31	1AB/03-27-070-05W4/02	Basal McMurray	526.8	526.8	3208	kpaa
2014-04-30	1AB/03-27-070-05W4/01	Basal McMurray	512	512	2929	kpaa
2014-05-31	1AB/03-27-070-05W4/01	Basal McMurray	512	512	2929	kpaa
2014-06-30	1AB/03-27-070-05W4/01	Basal McMurray	512	512	2929	kpaa
2014-07-31	1AB/03-27-070-05W4/01	Basal McMurray	512	512	2929	kpaa
2014-08-31	1AB/03-27-070-05W4/01	Basal McMurray	512	512	2936	kpaa
2014-09-30	1AB/03-27-070-05W4/01	Basal McMurray	512	512	2953	kpaa
2014-10-31	1AB/03-27-070-05W4/01	Basal McMurray	512	512	2969	kpaa
2014-11-30	1AB/03-27-070-05W4/01	Basal McMurray	512	512	2985	kpaa
2014-12-31 2015-01-31	1AB/03-27-070-05W4/01 1AB/03-27-070-05W4/01	Basal McMurray Basal McMurray	512 512	512 512	2994 3000	kpaa kpaa
2015-02-28	1AB/03-27-07 0-05/W4/01		512	512	3003	
2015-02-28	1AB/03-27-070-05W4/01	Basal McMurray Basal McMurray	512	512	3003	kpaa kpaa
2013-03-31	1AB/03-27-070-05W4/01	Basal McMurray Basal McMurray	495.2	495.2	2819	kpaa kpaa
2014-04-30	1AB/03-27-07 0-05/W4/00	Basal McMurray	495.2	495.2	2819	
2014-06-30	1AB/03-27-070-05W4/00	Basal McMurray	495.2	495.2	2820	kpaa kpaa
2014-07-31	1AB/03-27-07 0-05/W4/00	Basal McMurray	495.2	495.2	2818	_
2014-07-31	1AB/03-27-070-05W4/00		495.2	495.2	2818	kpaa
2014-08-31	1AB/03-27-070-05004/00 1AB/03-27-070-05004/00	Basal McMurray Basal McMurray	495.2	495.2	2820	kpaa
2014-09-30	1AB/03-27-070-05W4/00		495.2	495.2	2820	kpaa
2014-10-31	1AB/03-27-070-05004/00 1AB/03-27-070-05004/00	Basal McMurray Basal McMurray	495.2	495.2	2830	kpaa kpaa
2014-11-30	1AB/03-27-07/0-05/04/00 1AB/03-27-07/0-05/04/00	Basal McMurray	495.2	495.2	2848	kpaa kpaa
2015-01-31	1AB/03-27-070-05W4/00	Basal McMurray	495.2	495.2	2864	
2015-01-31	1AB/03-27-070-05W4/00 1AB/03-27-070-05W4/00	Basal McMurray	495.2	495.2	2804	kpaa koaa
						kpaa
2015-03-31	1AB/03-27-070-05W4/00	Basal McMurray	495.2	495.2	2872	kpaa

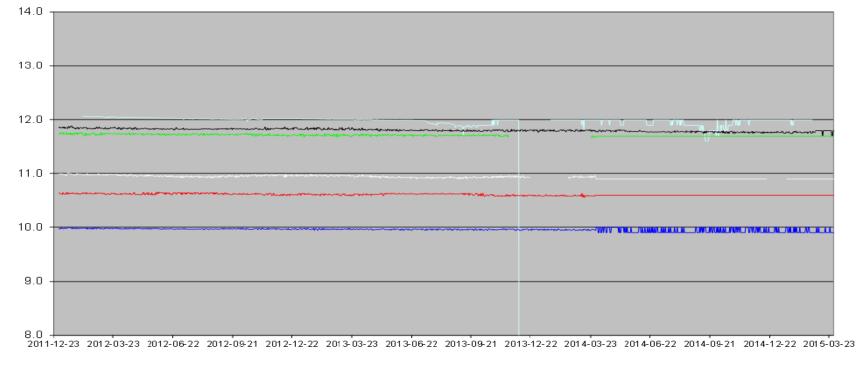

Foster Creek Mcmurray Pressures Observation Well Piezometer Data

	—— 102/13-21-070-04W4	—— 1F1/05-19-070-02W4	100/10-20-070-02W4	100/15-12-070-04W4
	100/06-11-070-06VV4/01		100/06-11-070-06VV4/03	
100/14-16-070-07W4/02	100/14-16-070-07W4/03	1AB/07-20-070-04W4/01	1AB/07-20-070-04VV4/02	1AB/07-20-070-04W4/03
	102/09-23-070-05VV4/02		102/11-23-070-05VV4/03	102/11-23-070-05W4/02
	102/12-19-070-04VV4/03			102/05-13-070-05W4/03
	102/05-13-070-05VV4/01			
	100/13-13-070-05//4/02	<u> </u>	102/10-14-070-05W4/03	


Foster Creek Mcmurray Temperatures Observation Well Piezometer Data

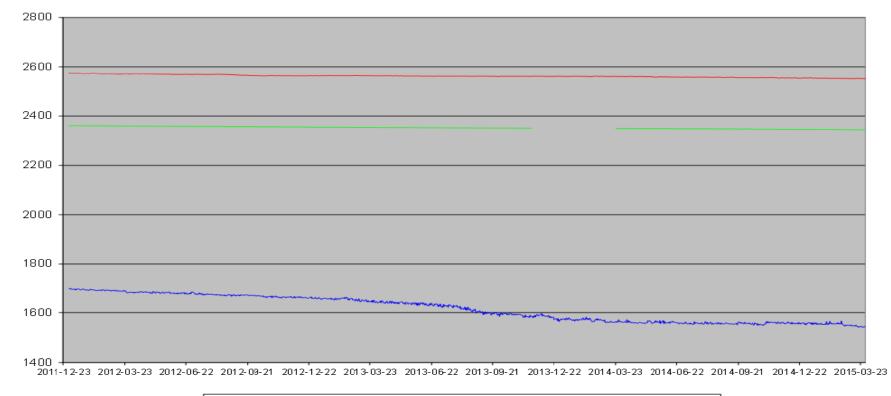
Γ		—— 102/13-21-070-04W4	—— 1F 1/05-19-070-02W4	100/10-20-070-02W4	100/15-12-070-04W4
		100/14-16-070-07/V4/02	100/14-16-070-07W4/03	1AB/07-20-070-04W4/01	—— 1AB/07-20-070-04W4/02
		102/09-23-070-05VV4/03	102/09-23-070-05W4/02		
		102/11-23-070-05W4/01			
			102/05-13-070-05W4/01		
		100/13-13-070-05/V4/03	100/13-13-070-05W4/02		
		102/10-14-070-05W4/01			
	100/14-16-070-07W4/01 1AB/07-20-070-04W4/03 102/11-23-070-05W4/02 102/05-13-070-05W4/03 104/12-20-070-04W4/01	100/14-16-070-07VV4/02 102/09-23-070-05VV4/03 102/11-23-070-05VV4/01 102/05-13-070-05VV4/02 100/13-13-070-05VV4/03	100/14-16-070-07W4/03 102/09-23-070-05W4/02 102/12-19-070-04W4/03 102/05-13-070-05W4/01	1AB/07-20-070-04VV4/01 102/09-23-070-05VV4/01 102/12-19-070-04VV4/02 104/12-20-070-04VV4/03	1AB/07-20-070-04W4 102/11-23-070-05W4/ 102/12-19-070-04W4/ 102/12-20-070-04W4/

Foster Creek Grand Rapids Pressures Observation Well Piezometer Data



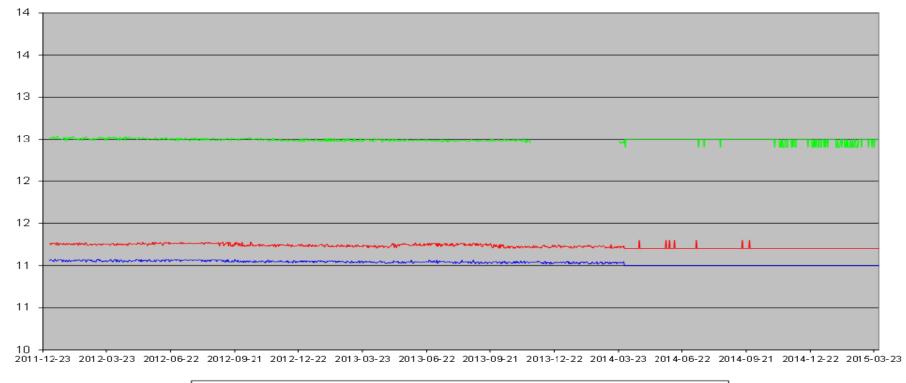
|--|

	 	100/11-14-070-05774
1F 1/03-27-070-03W4/02	 	

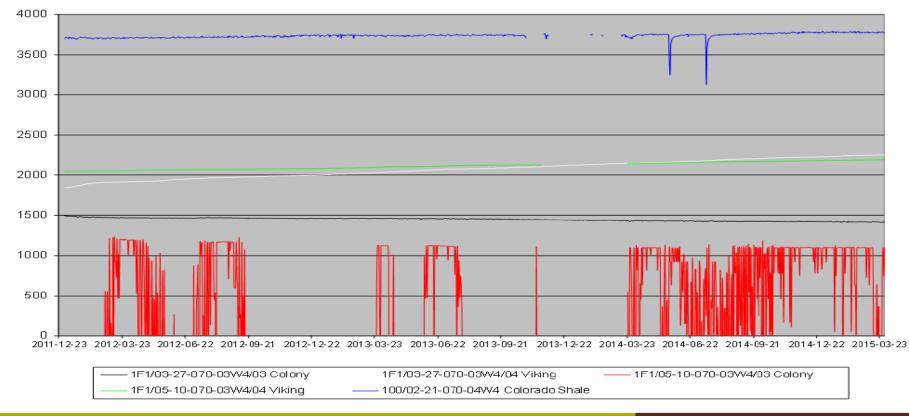

селоуиз	© 2015 Cenovus Energy Inc. 56
---------	-------------------------------

Foster Creek Grand Rapids Temperatures Observation Well Piezometer Data

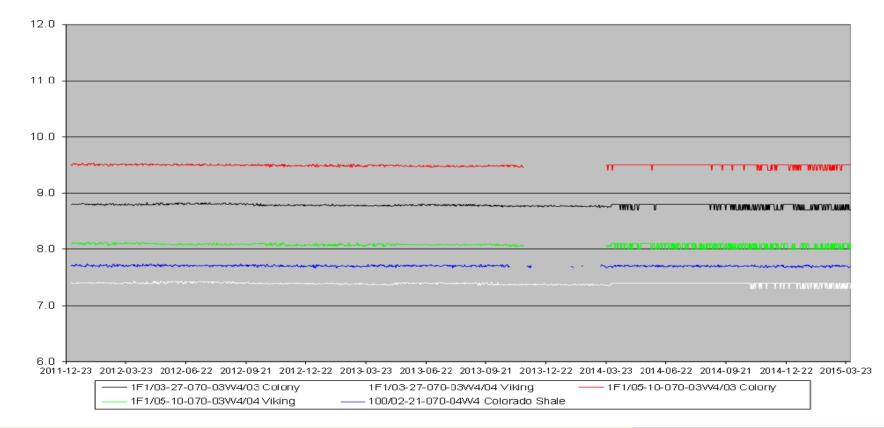
100/06-11-070-06W4/04	 - 100/14-16-070-07VV4/04	 100/11-14-070-05VV4
	 - 1F1/05-10-070-03W4/02	


Foster Creek Clear Water Pressures Observation Well Piezometer Data

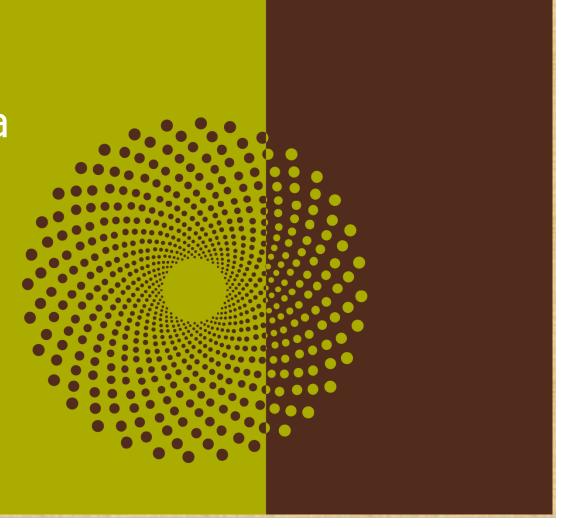
— 1F1/03-27-070-03V4/01 — 1F1/05-10-070-03VV4/01 — 103/13-29-070-03VV4/01


Foster Creek Clear Water Temperatures Observation Well Piezometer Data

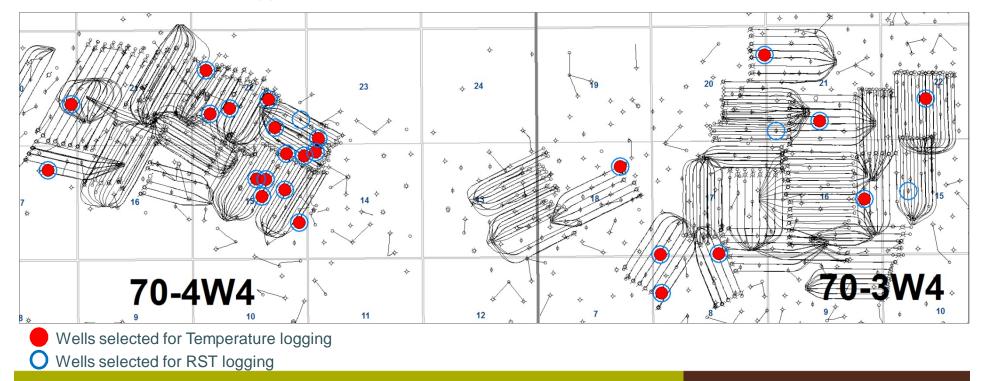
—— 1F1/03-27-070-03W4/01 —— 1F1/05-10-070-03W4/01 —— 103/13-29-070-03W4/01



Foster Creek Misc Zones Pressures Observation Well Piezometer Data


Foster Creek Misc Zones Temperatures Observation Well Piezometer Data

селоуиз		© 2015 Cenovus Energy Inc.	61
---------	--	----------------------------	----


Temperature data

Foster Creek temperature and RST data

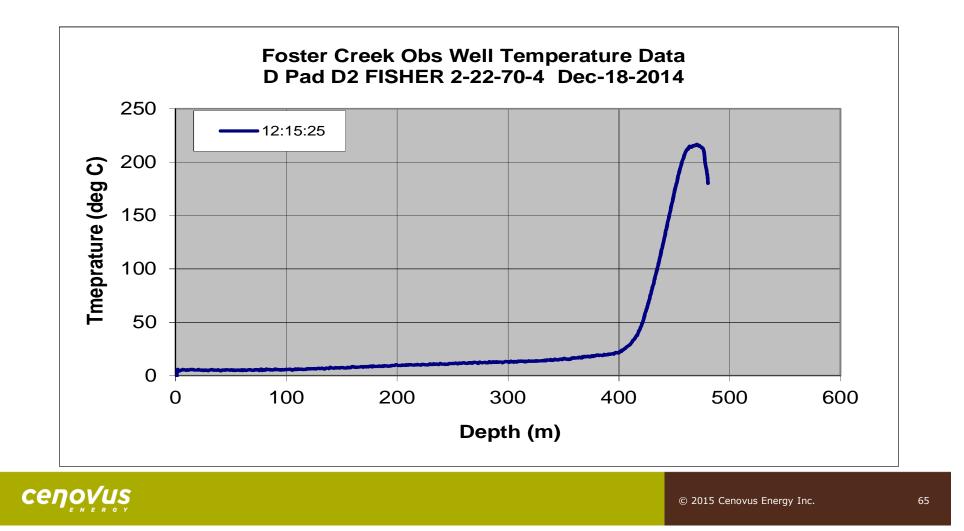
24 observation wells logged to acquire temperature data 27 observation wells logged to acquire RST data

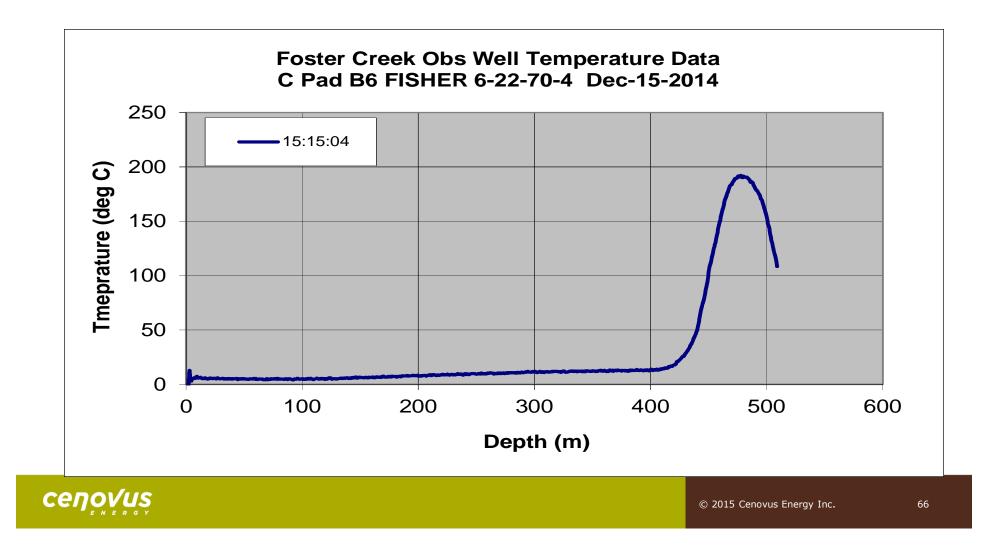
селоуиз

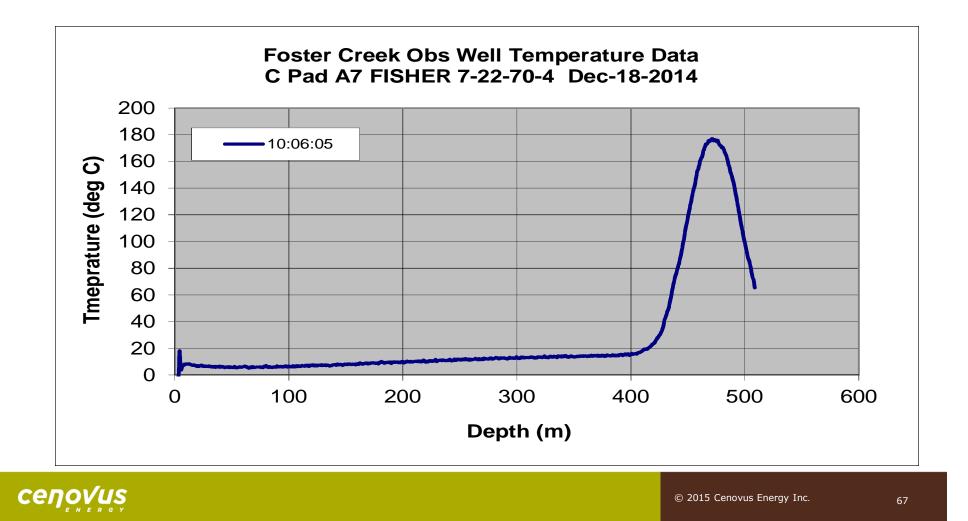
© 2015 Cenovus Energy Inc.

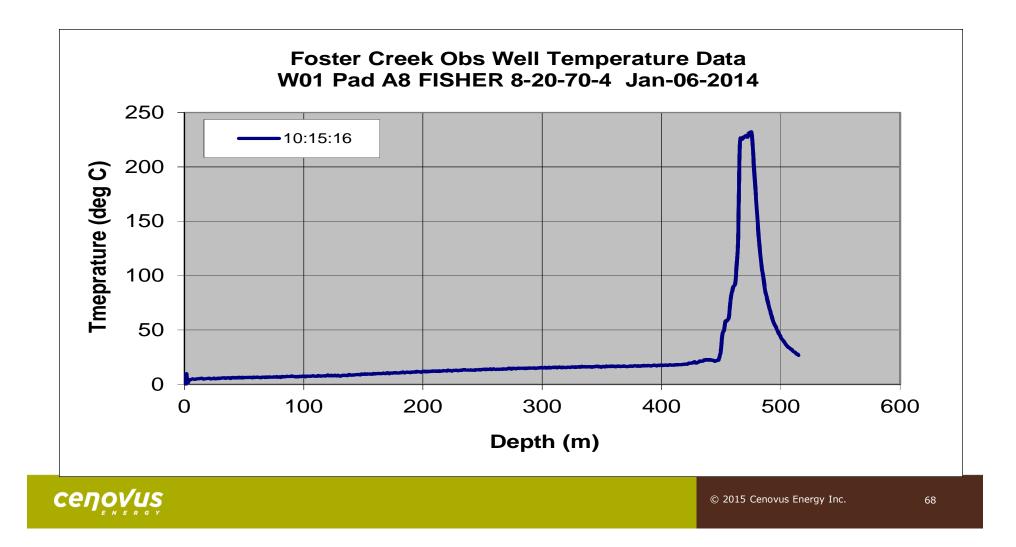
63

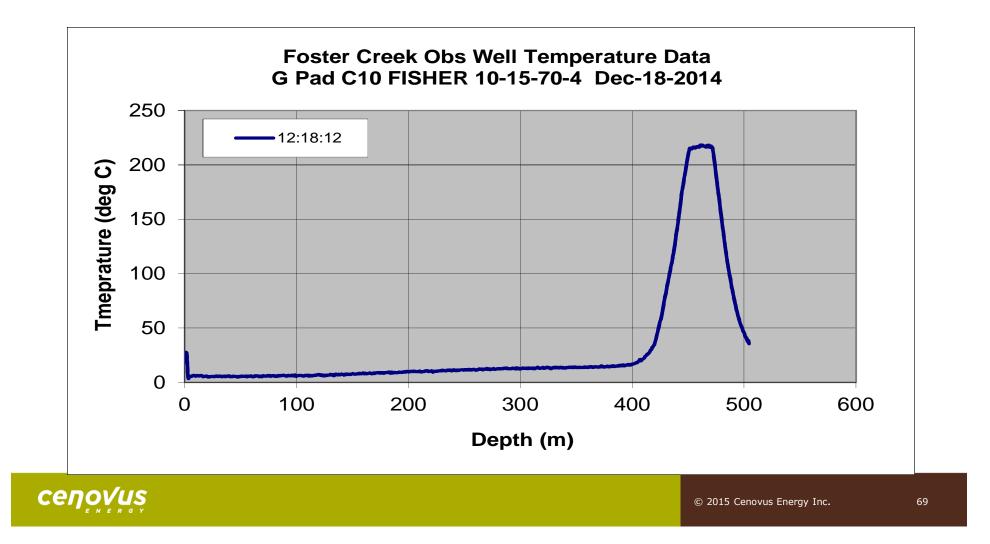
Observation well temperature data

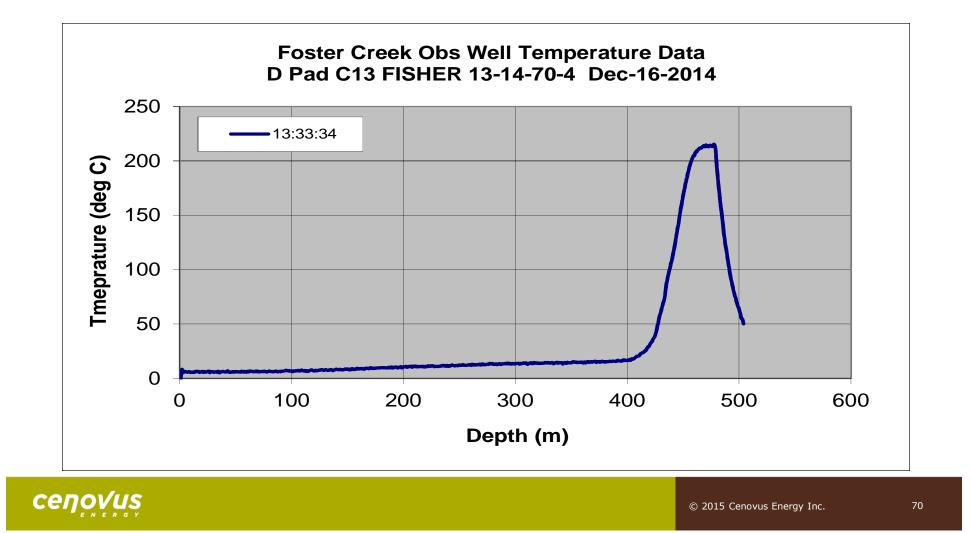

Pad	Well Name	UWI	Location
A PAD	CVE FCCL 12C FISHER 12-22-70-4	103/12-22-070-04W4/00	AP4 TOE
A PAD	CVE FCCL 5-22 FISHER 5-22-70-4	111/05-22-070-04W4/00	AP3 HEEL
B PAD	CVE FCCL 3-21 FISHER 3-21-70-4	103/03-21-070-04W4/00	BP31 HEEL
C PAD	CVE FCCL A7 FISHER 7-22-70-4	100/07-22-070-04W4/00	CP15 TOE
C PAD	CVE FCCL B6 FISHER 6-22-70-4	102/06-22-070-04W4/00	CP11 HEEL
D PAD	CVE FCCL B4 FISHER 4-23-70-4	102/04-23-070-04W4/00	DP19 TOE
D PAD	CVE FCCL C13 FISHER 13-14-70-4	100/13-14-070-04W4/00	DP21 TOE
D PAD	CVE FCCL C16 FISHER 16-15-70-4	103/16-15-070-04W4/00	DP34 MID/GP1 TOE
D PAD	CVE FCCL D16 FISHER 16-15-70-4	102/16-15-070-04W4/00	DP22-1 MID
D PAD	CVE FCCL D2 FISHER 2-22-70-4	100/02-22-070-04W4/00	DP21 HEEL
E PAD	CVE FCCL C13 FISHER 13-15-70-4	102/13-15-070-04W4/00	EP27 MID
E02 PAD	CVE FCCL A15 FISHER 15-13-70-4	102/15-13-070-04W4/00	E02P05/E02W06 MID
E02 PAD	CVE FCCL D7 FISHER 7-13-70-4	102/07-13-070-04W4/00	E02P01 HEEL
E03 PAD	CVE FCCL C4 FISHER 4-18-70-4	102/04-18-070-03W4/00	E03W05 MID
E04 PAD	CVE FCCL A10 FISHER 10-18-70-3	100/10-18-070-03W4/00	E04P04 TOE
E04 PAD	CVE FCCL A15 FISHER 15-18-70-3	100/15-18-070-03W4/00	EP04P06 TOE
E10 PAD	CVE FCCL B2 FISHER 2-17-70-3	100/02-17-070-03W4/00	E10P02 HEEL
E12 PAD	CVE FCCL FISHER 3-17-70-3	100/03-17-070-03W4/00	E12W03 TOE
E11 PAD	CVE FCCL B4 FISHER 4-17-70-3	100/04-17-070-03W4/00	E11P04 MID
E11 PAD	CVE FCCL C12 FISHER 12-8-70-3	100/12-08-070-03W4/00	E11P07/E11P08 TOE
E12 PAD	CVE FCCL 2A15 FISHER 15-17-70-3	102/15-17-070-03W4/00	E12P09/E12W07 HEEL
E12 PAD	CVE FCCL B6 FISHER 6-17-70-3	103/06-17-070-03W4/00	E12P02/E12W03 TOE
E12 PAD	CVE FCCL B7 FISHER 7-17-70-3	102/07-17-070-03W4/00	E12P06 TOE
E12 PAD	CVE FCCL C11 FISHER 11-17-70-3	102/11-17-070-03W4/00	E12W04 HEEL
E15 PAD	CVE FCCL C8 FISHER 8-16-70-3	102/08-16-070-03W4/00	E15I02 MID
E16 PAD	CVE FCCL A12 FISHER 12-15-70-3	102/12-15-070-03W4/00	E16W02 HEEL
E16 PAD	CVE FCCL D11 FISHER 11-15-70-3	100/11-15-070-03W4/00	E16W06 MID
E19 PAD	CVE FCCL B5 FISHER 5-22-70-3	103/05-22-070-03W4/00	E19P06 TOE
E19 PAD	CVE FCCL B8 FISHER 8-21-70-3	103/08-21-070-03W4/00	E19P13 TOE
E19 PAD	CVE FCCL D14 FISHER 14-16-70-3	102/14-16-070-03W4/00	E19P11 MID
E20 PAD	CVE FCCL A6 FISHER 6-22-70-3	103/06-22-070-03W4/00	E20P05 MID
E20 PAD	CVE FCCL B7 FISHER 7-22-70-3	102/07-22-070-03W4/00	E20P08 MID
E20 PAD	CVE FCCL D2 FISHER 2-22-70-3	102/02-22-070-03W4/00	E20W08/E20P09 HEEL
E21 PAD	CVE FCCL D3 FISHER 3-21-70-3	102/03-21-070-03W4/00	E21P04/E21P05 MID
E24 PAD	CVE FCCL B1 FISHER 1-20-70-3	102/01-20-070-03W4/00	E24W03 MID
E24 PAD	CVE FCCL B4 FISHER 4-21-70-3	103/04-21-070-03W4/00	E24102 HEEL
E24 PAD	CVE FCCL D2 FISHER 2-20-70-3	102/02-20-070-03W4/00	E24W05/E24P03 TOE
E24 PAD	CVE FCCL D7 FISHER 7-20-70-3	100/07-20-070-03W4/00	E24P07/E24W10 TOE
E25 PAD	CVE FCCL A16 FISHER 16-20-70-3	100/16-20-070-03W4/00	E25P04/E25P05 TOE
F PAD	CVE FCCL A8 FISHER 8-15-70-4	103/08-15-070-04W4/00	FP1 HEEL
F PAD	CVE FCCL B9 FISHER 9-15-70-4	102/09-15-070-04W4/00	FP4/FW5 MID
G PAD	CVE FCCL B10 FISHER 10-15-70-4	104/10-15-070-04W4/00	GP1 MID
G PAD	CVE FCCL C10 FISHER 10-15-70-4	100/10-15-070-04VV4/00	GW03/GP3 MID
G PAD	CVE FCCL D10 FISHER 10-15-70-4	103/10-15-070-04W4/00	GW02 MID
G PAD	CVE FCCL C7 FISHER 7-15-70-4	102/07-15-070-04W4/00	GP1 HEEL
W01 PAD	CVE FCCL A8 FISHER 8-20-70-4	100/08-20-070-04W4/00	W01P03 HEEL
W02 PAD	CVE FCCL 9-17 FISHER 16-17-70-4	100/16-17-070-04VV4/00	W02P03 MID
W02 PAD	CVE FCCL A15 FISHER 15-17-70-4	102/15-17-070-04W4/00	W02P05 TOE
WUZ FAD	OVE FOR AN TOTER 13-11-10-4	102/13-11-070-04/04/00	10021 03 TOE

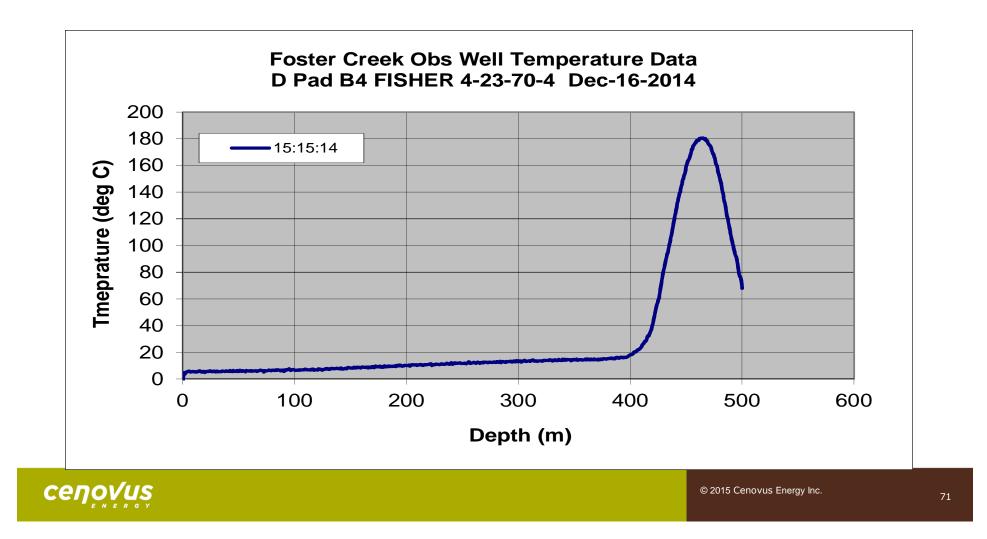

49 observation wells were logged with temperature fiber between January 2014 and March 2015

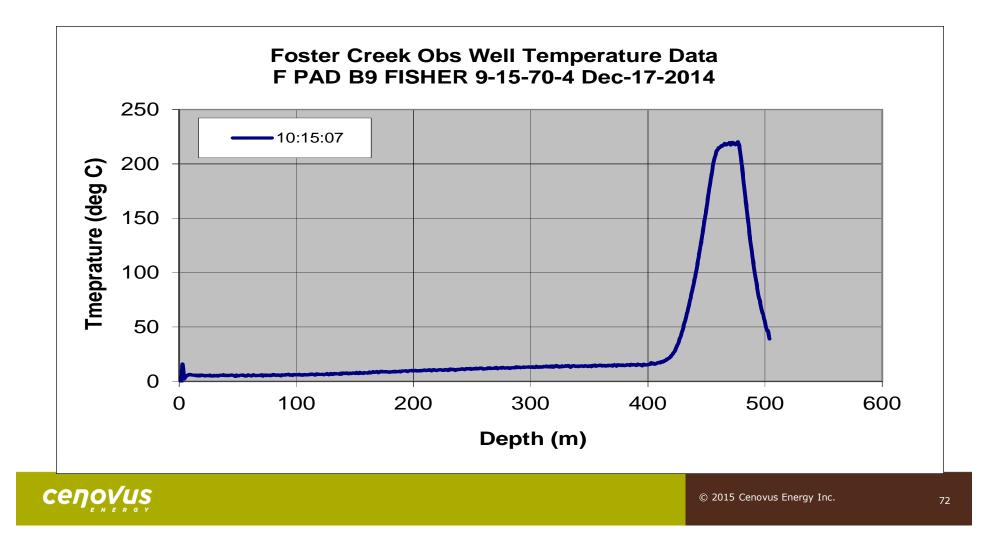

Some wells were logged 2-3 times between January 2014 March 2015.

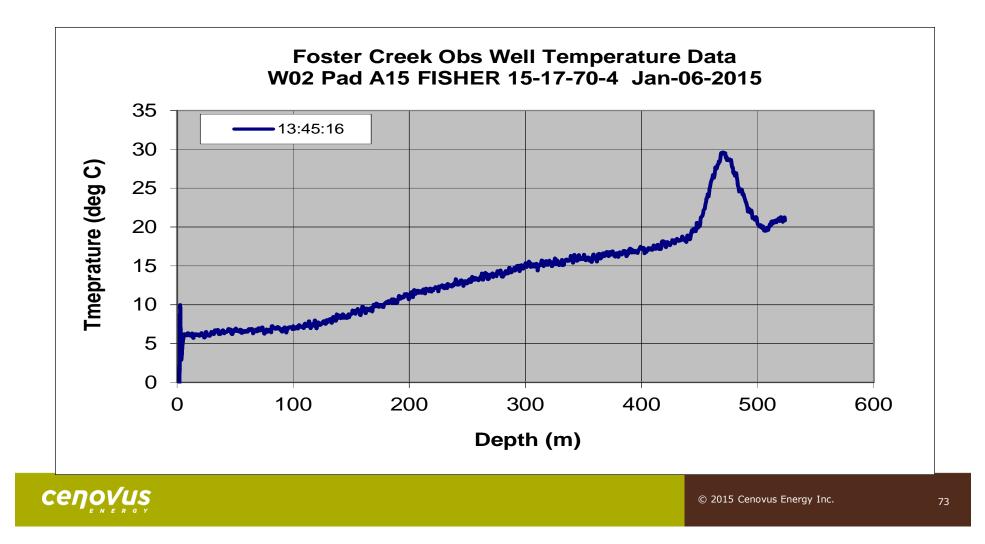


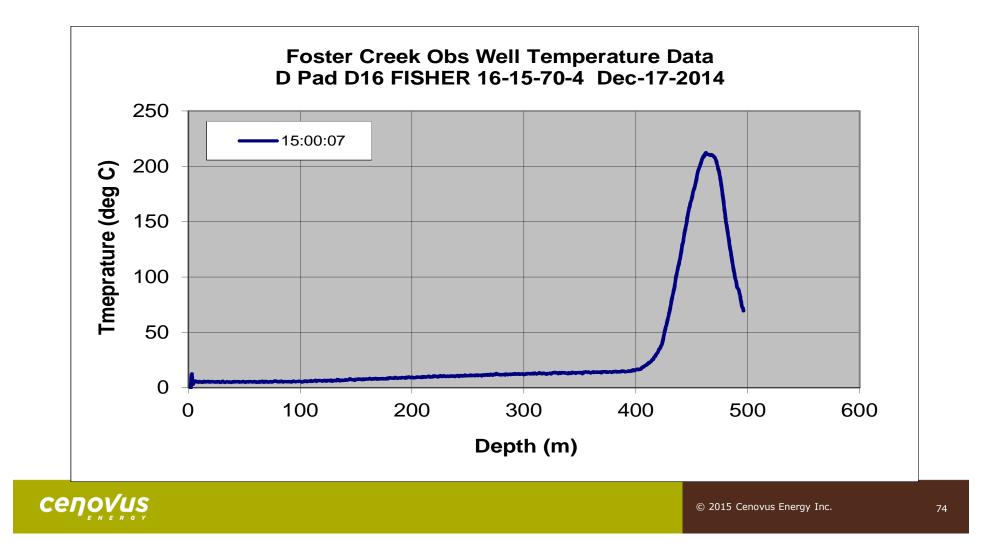

© 2015 Cenovus Energy Inc.

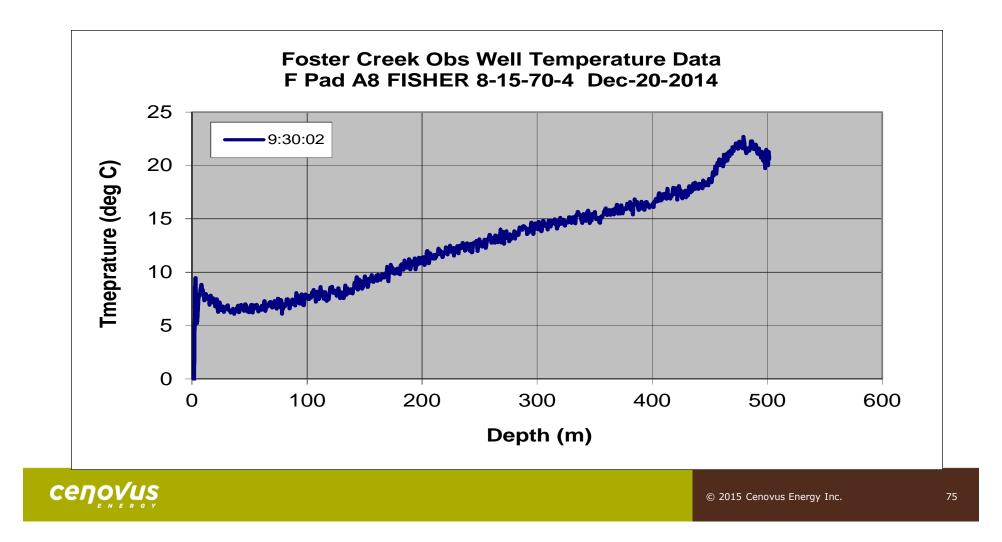


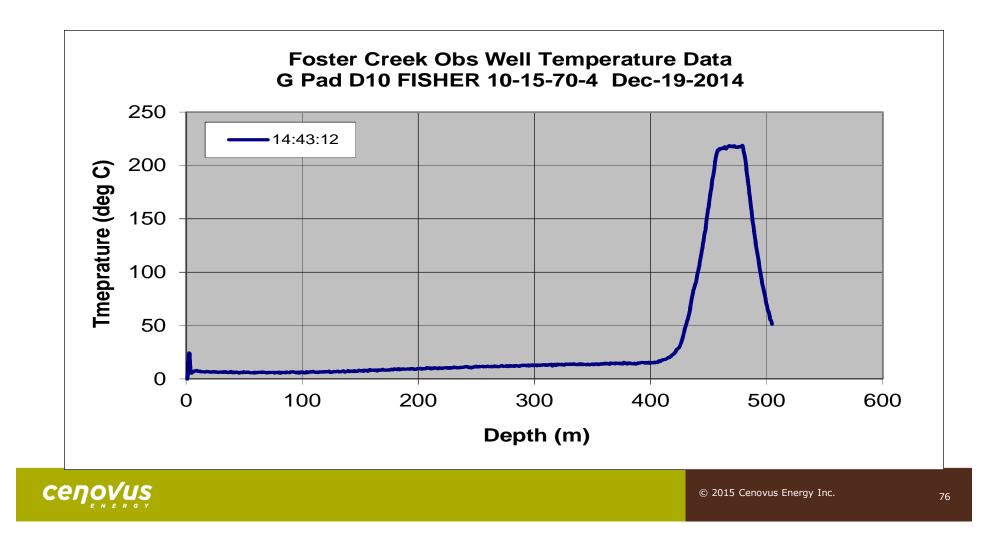


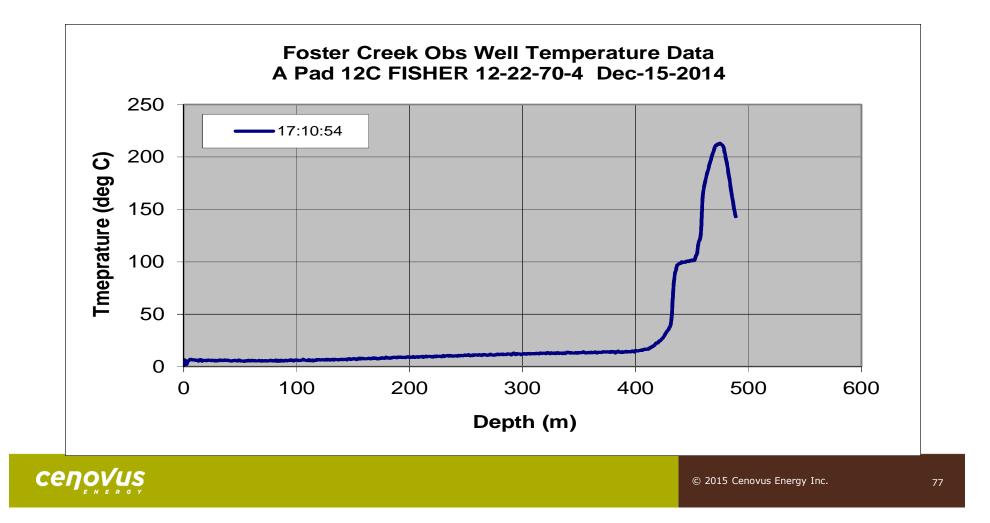


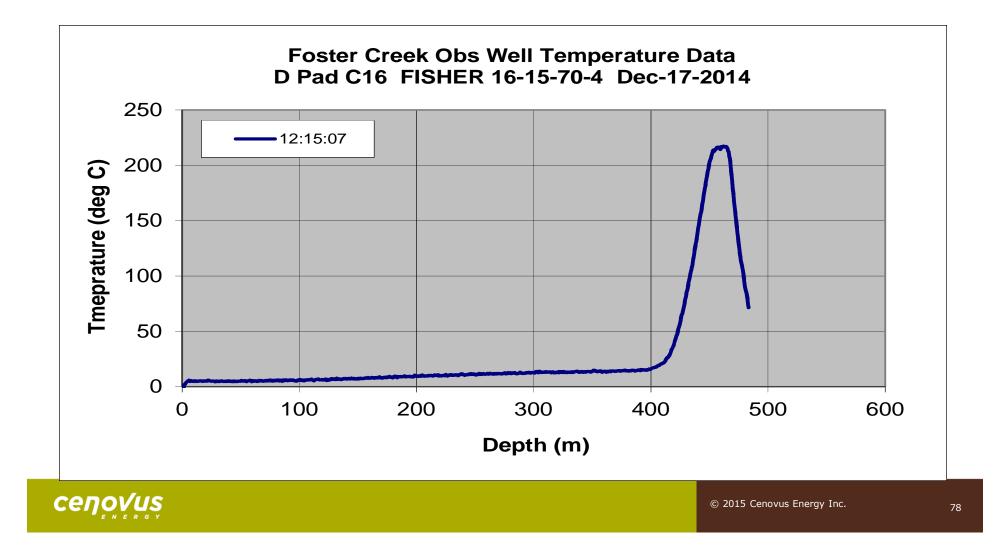


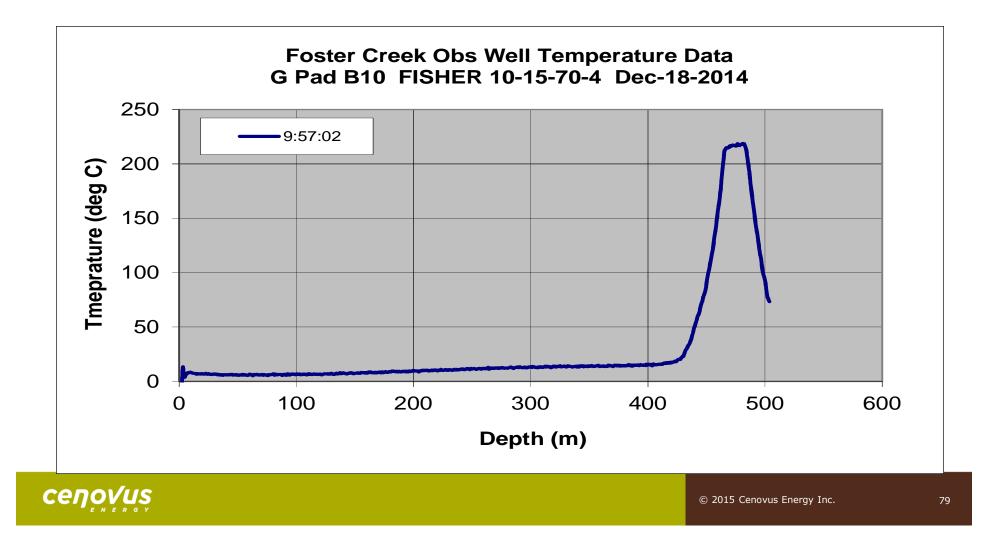


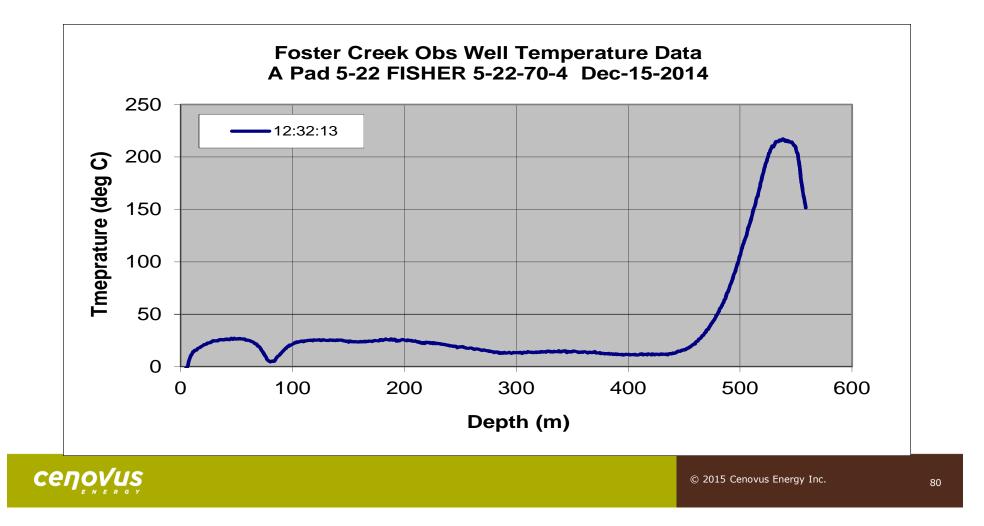


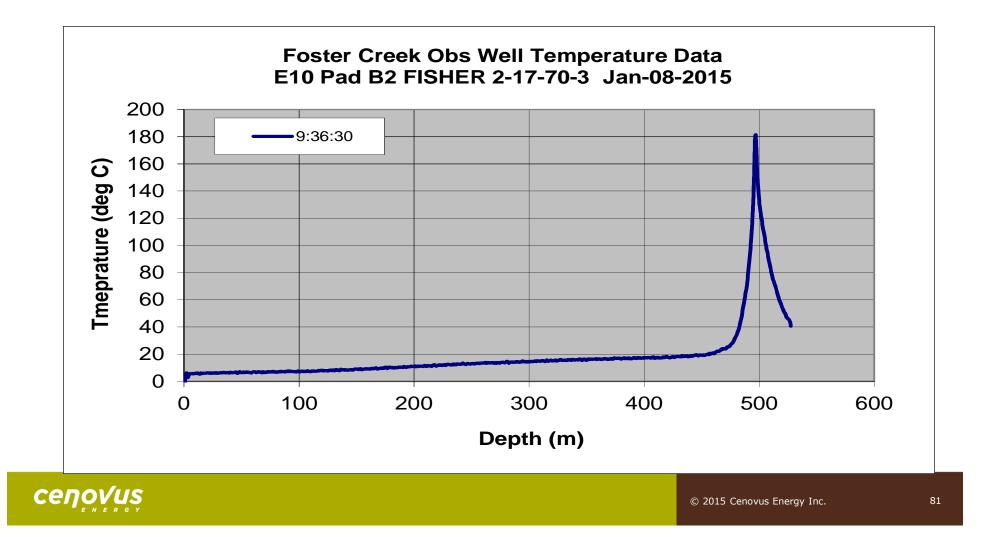


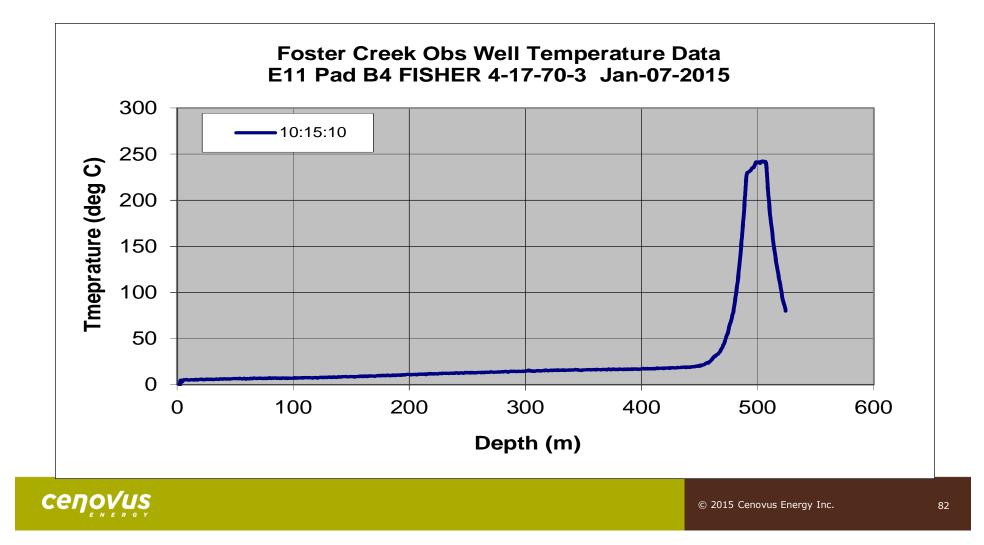


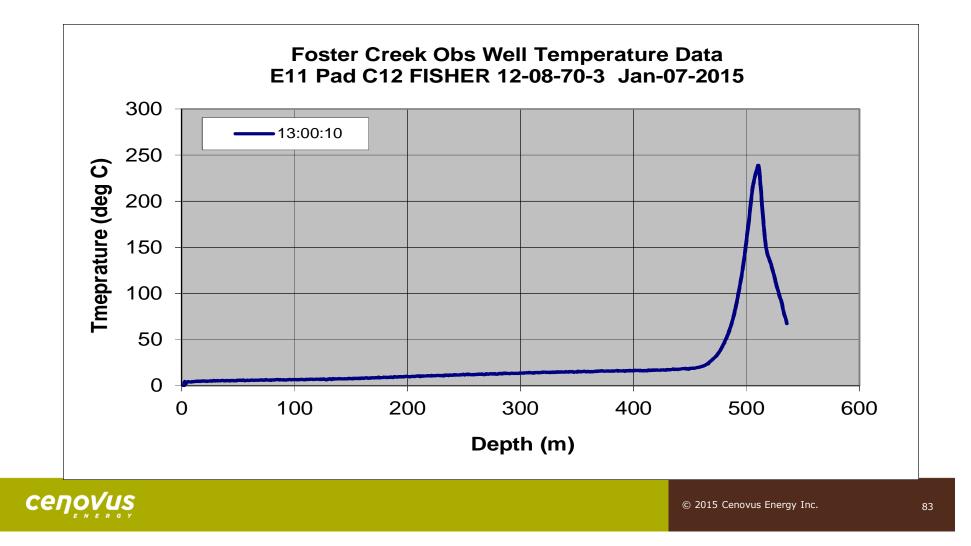


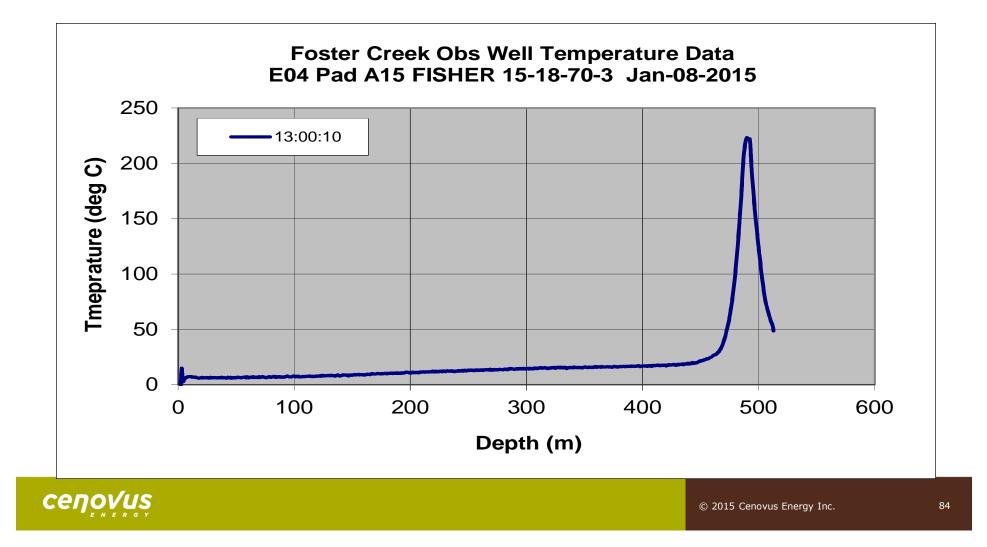


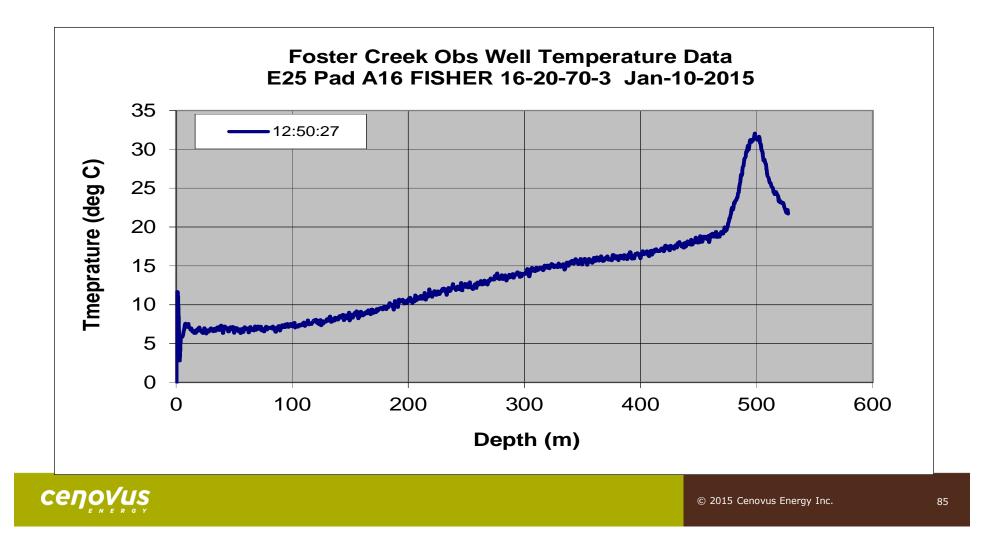


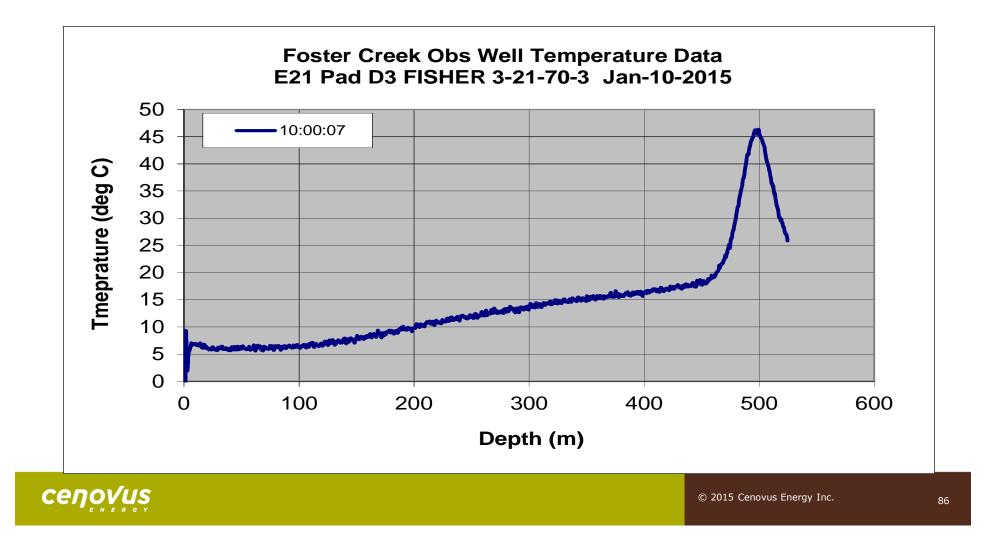


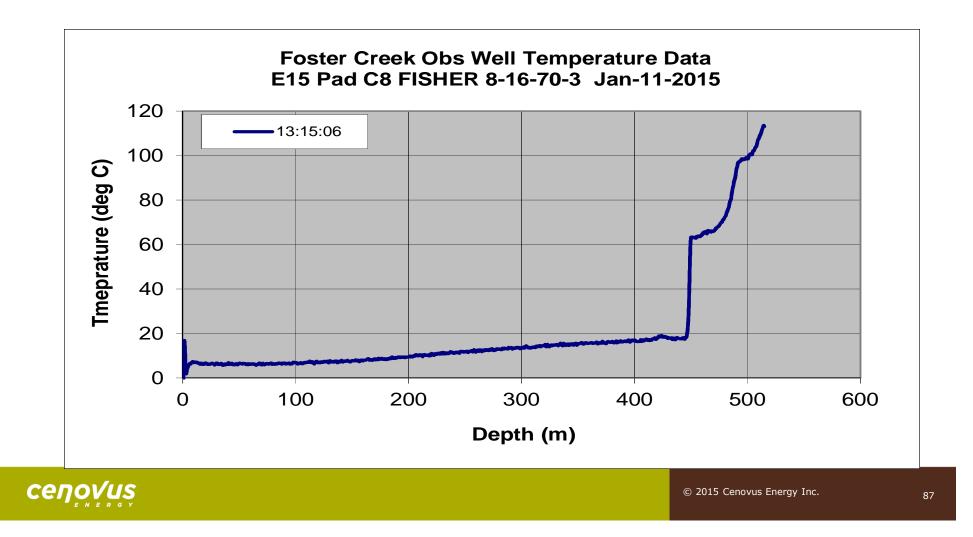


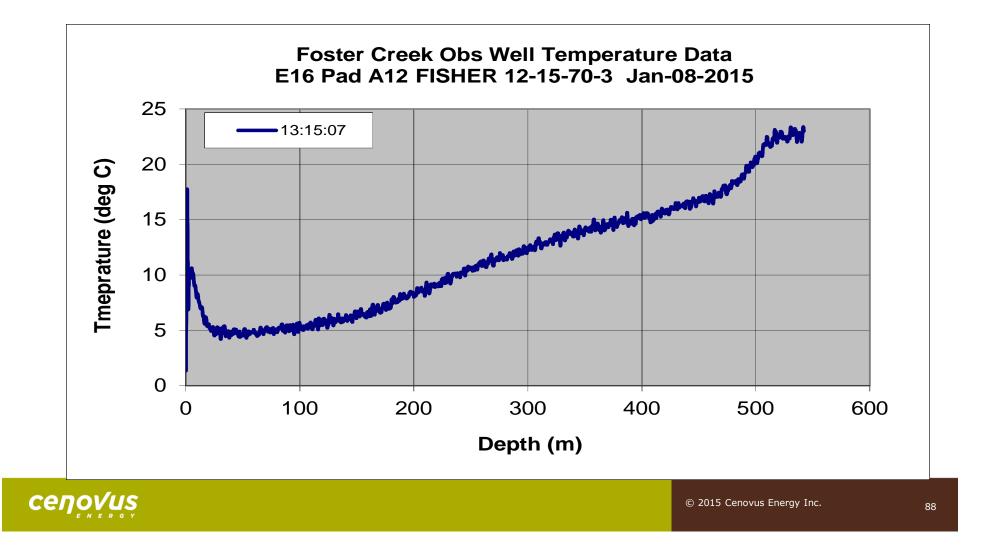


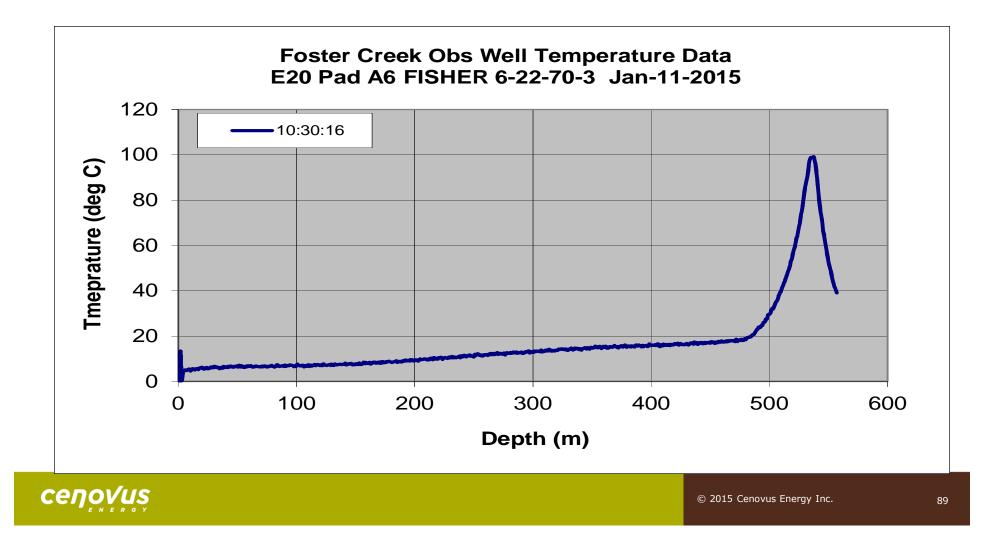


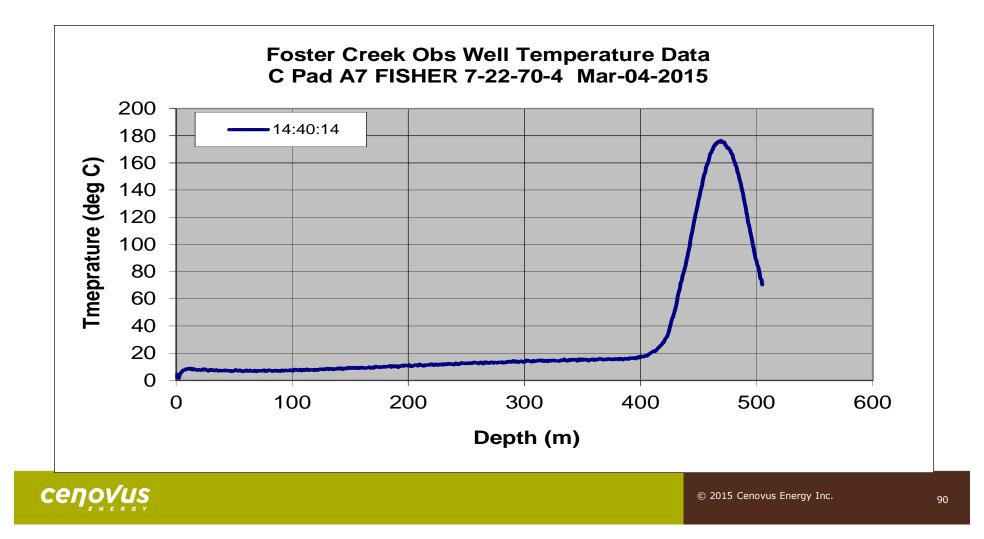


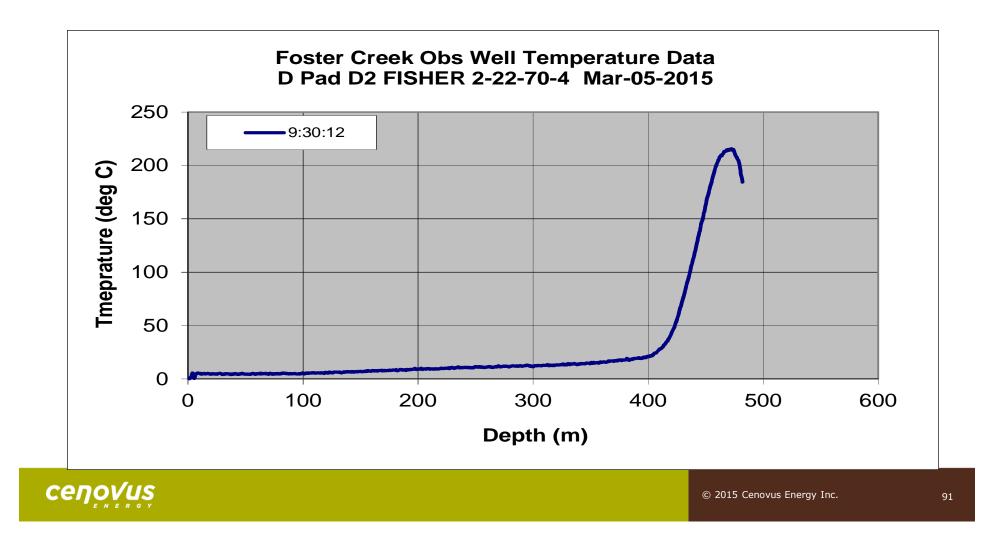


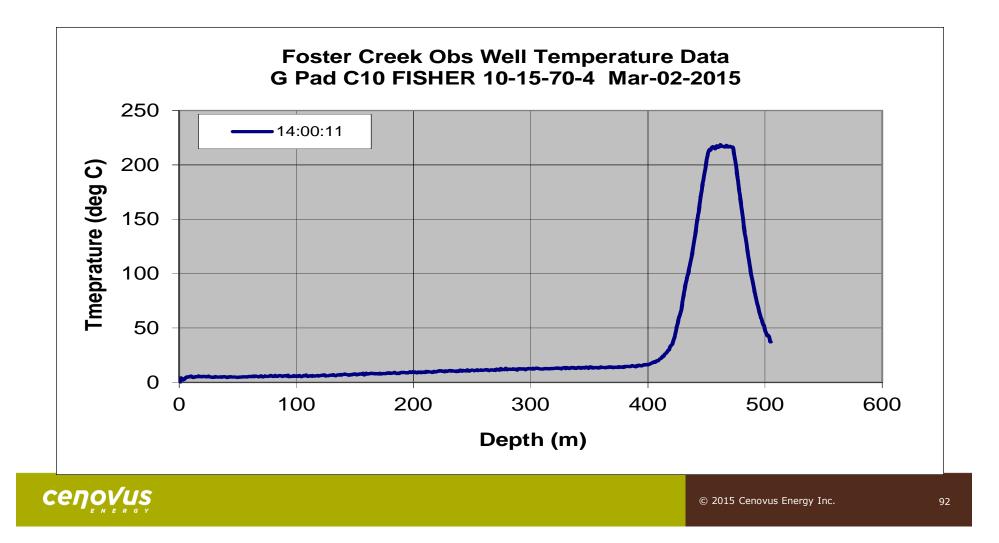


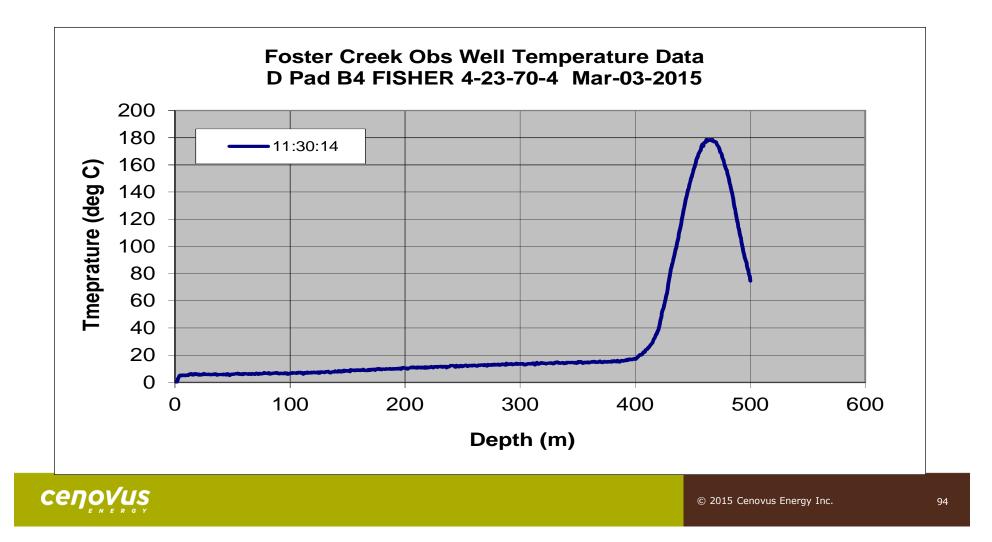


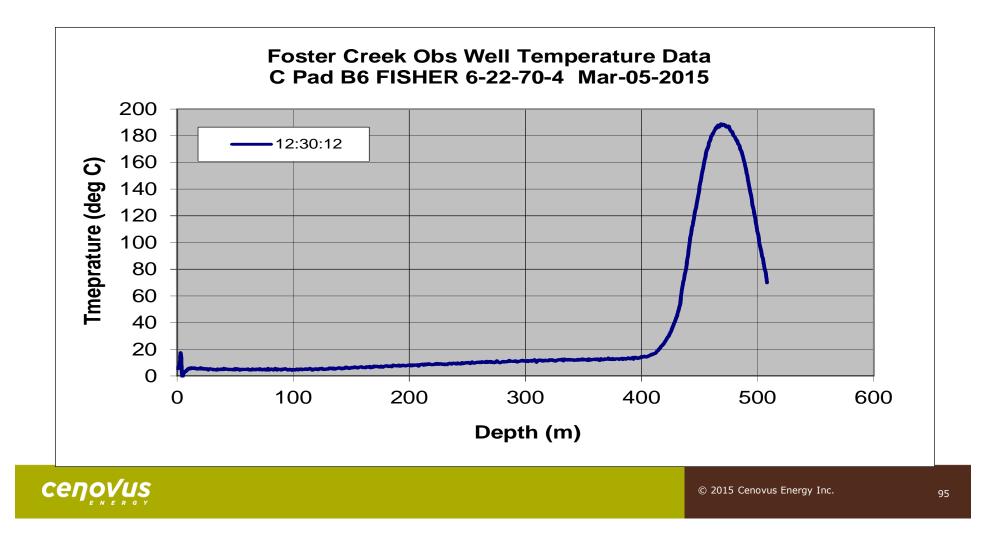


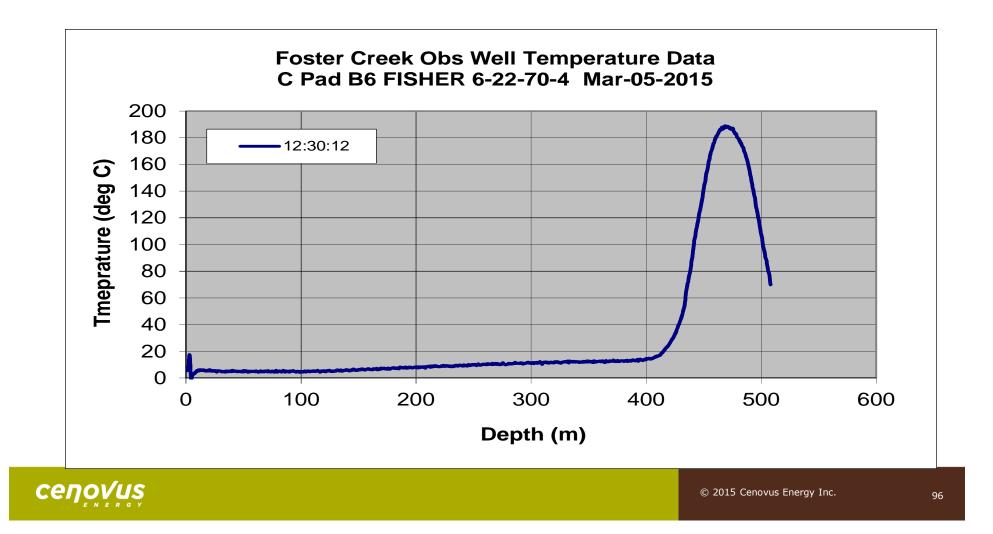


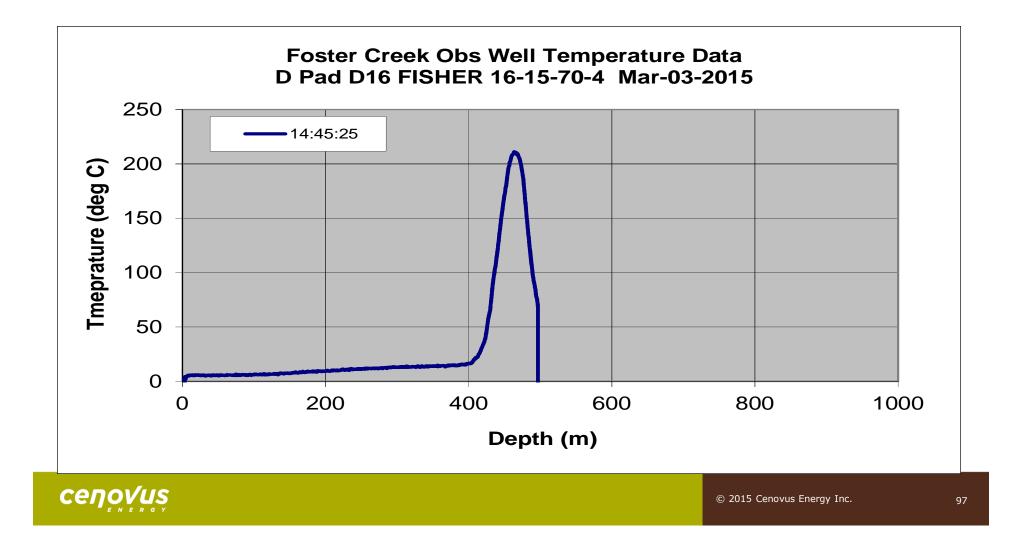


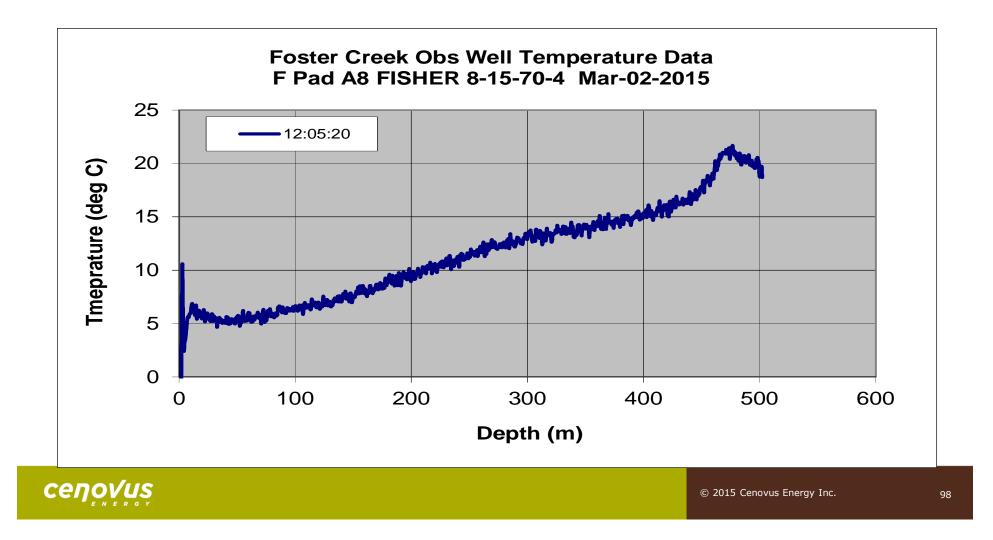


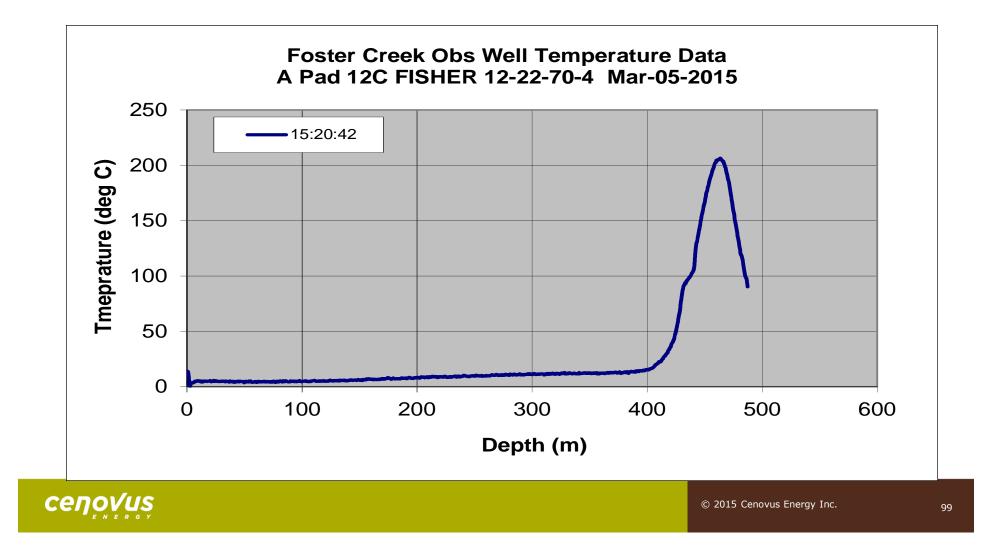


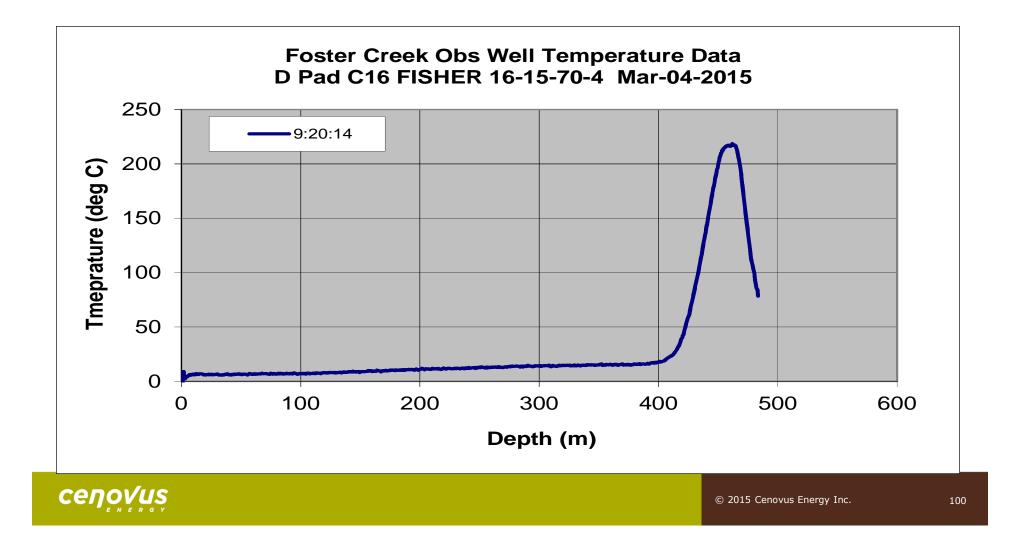


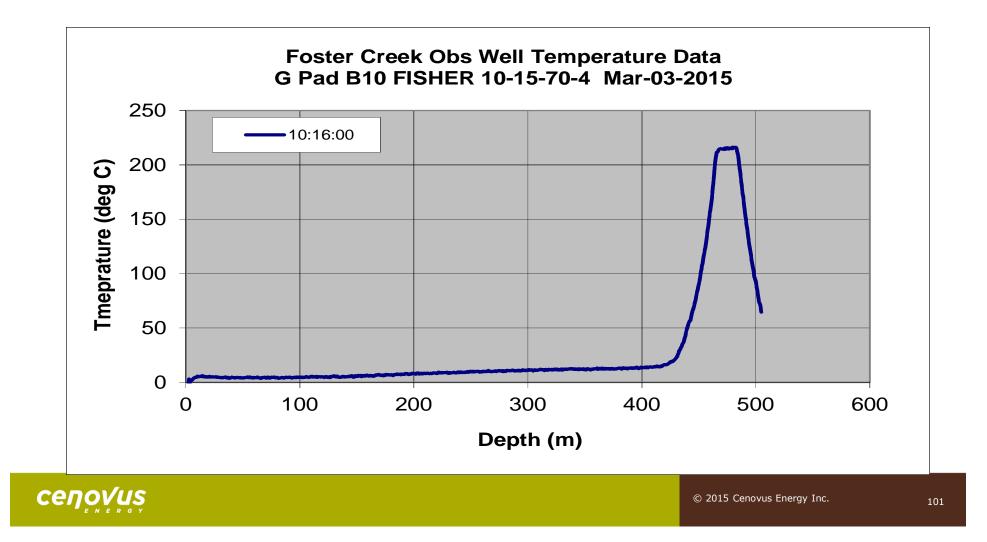


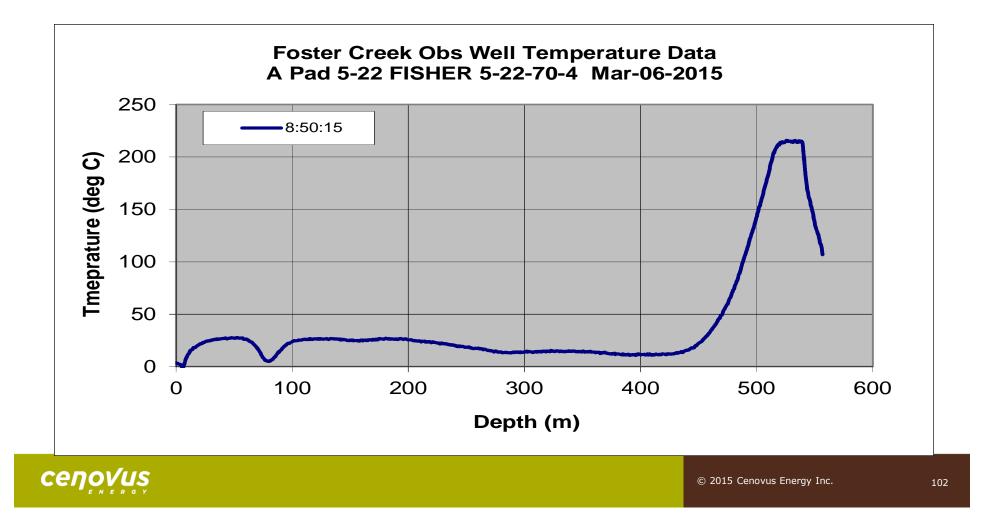


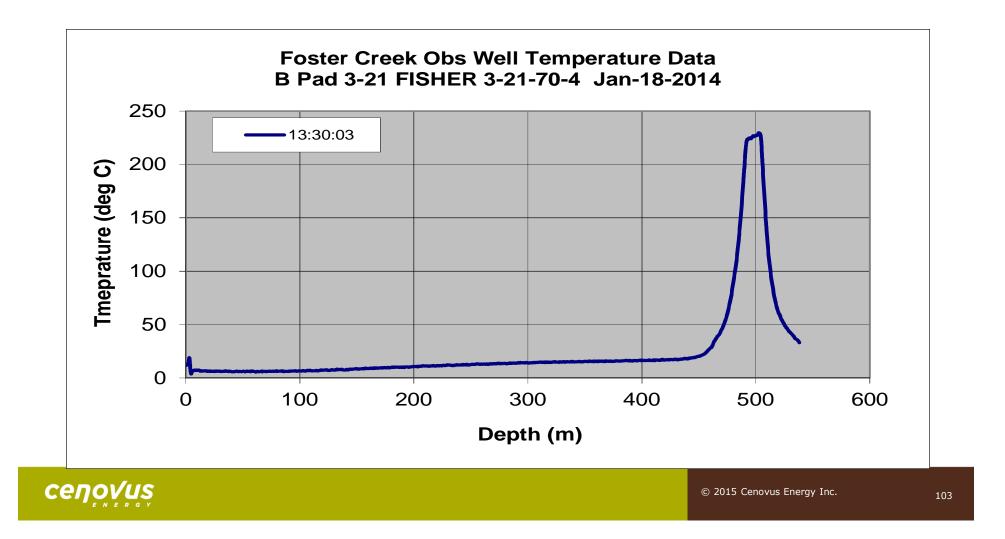


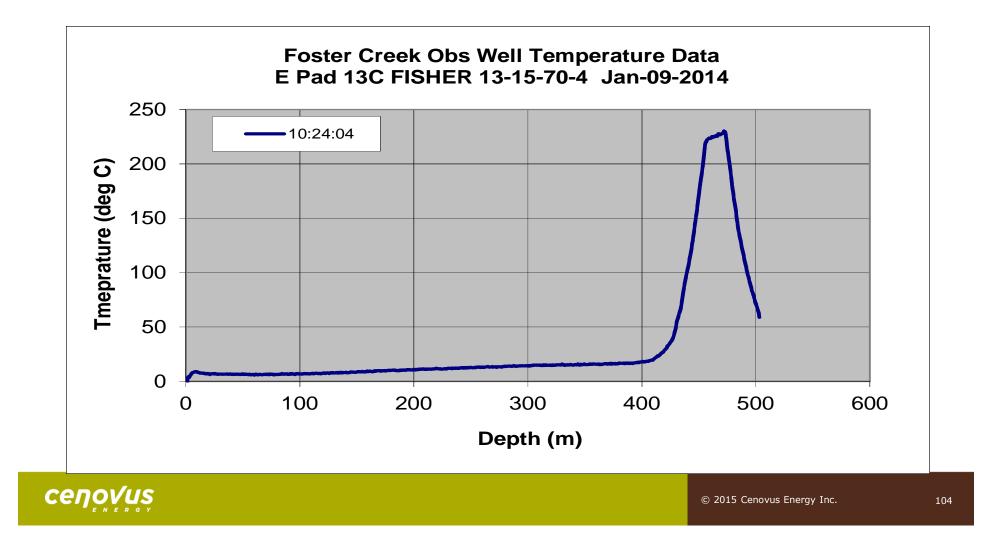


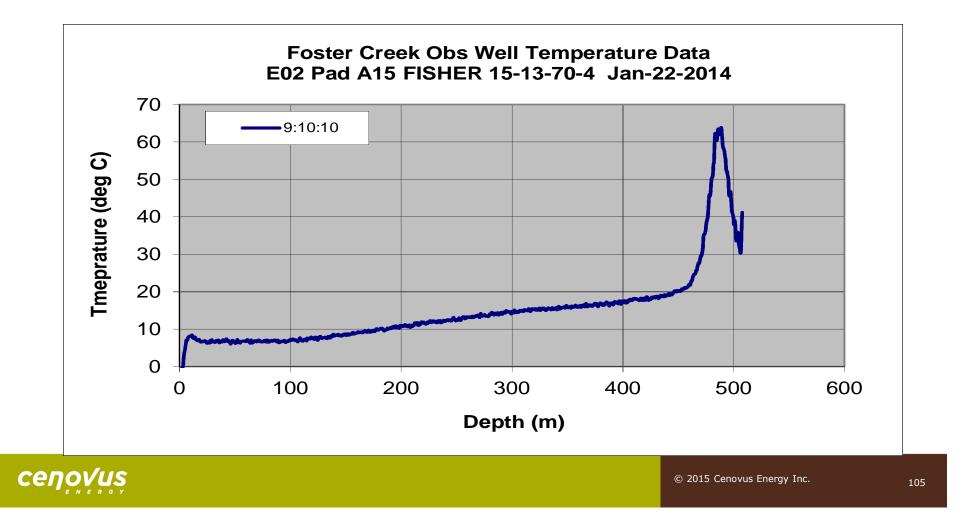


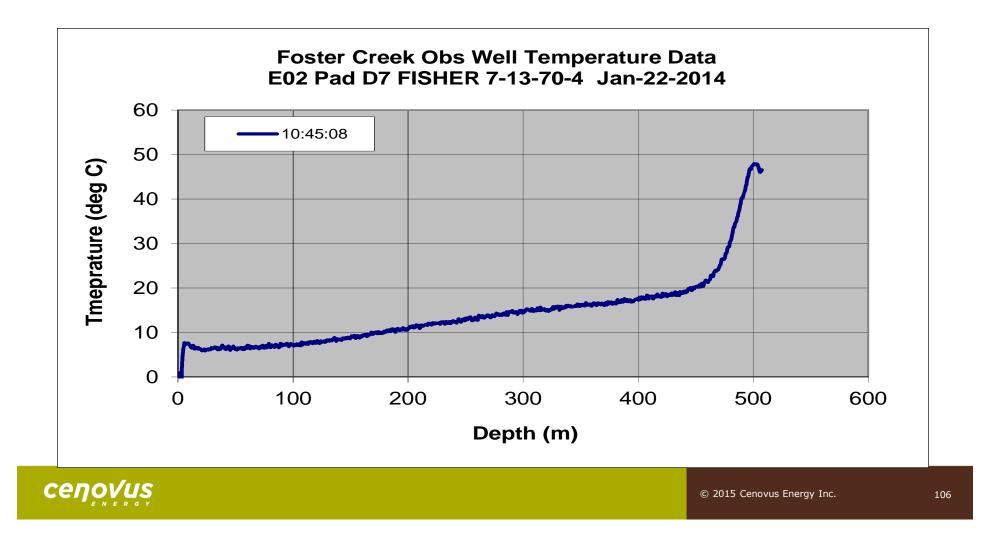


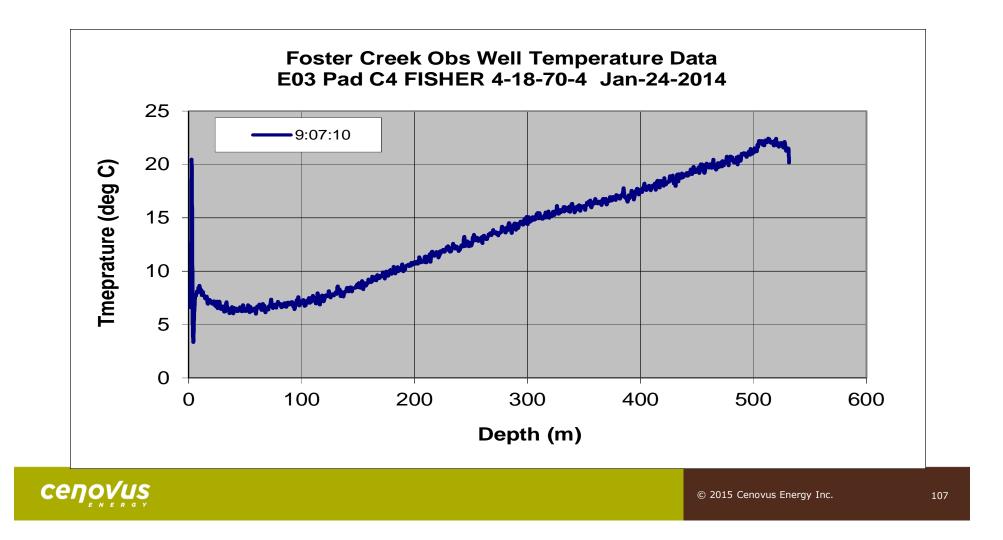


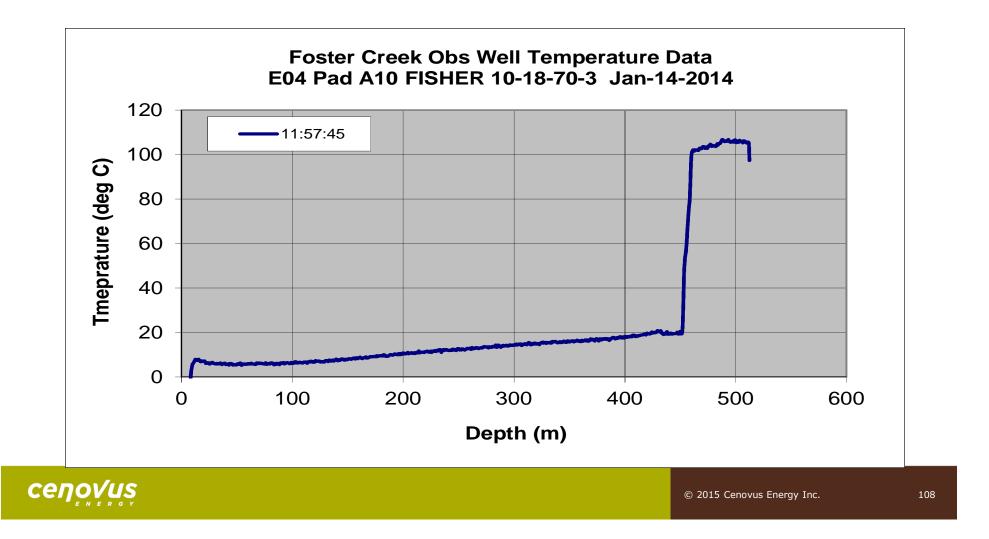


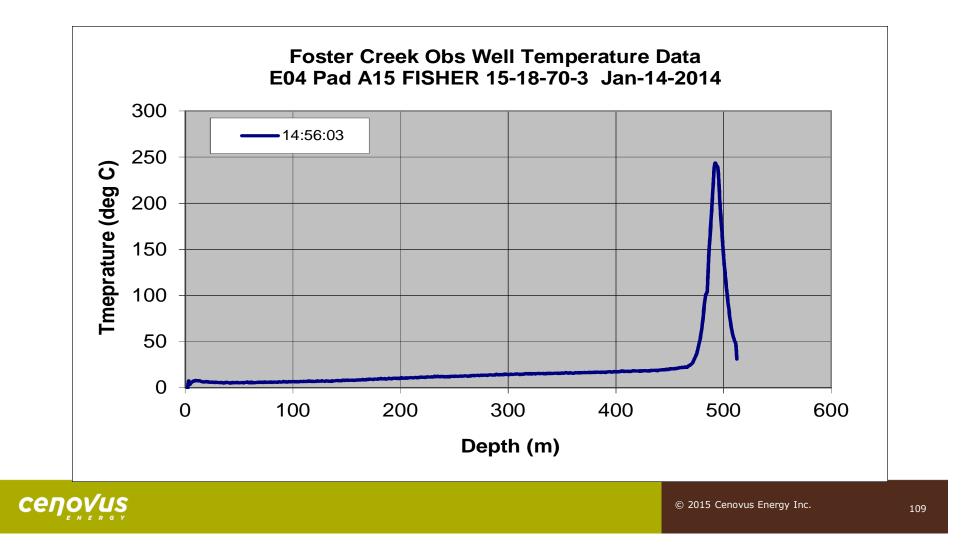


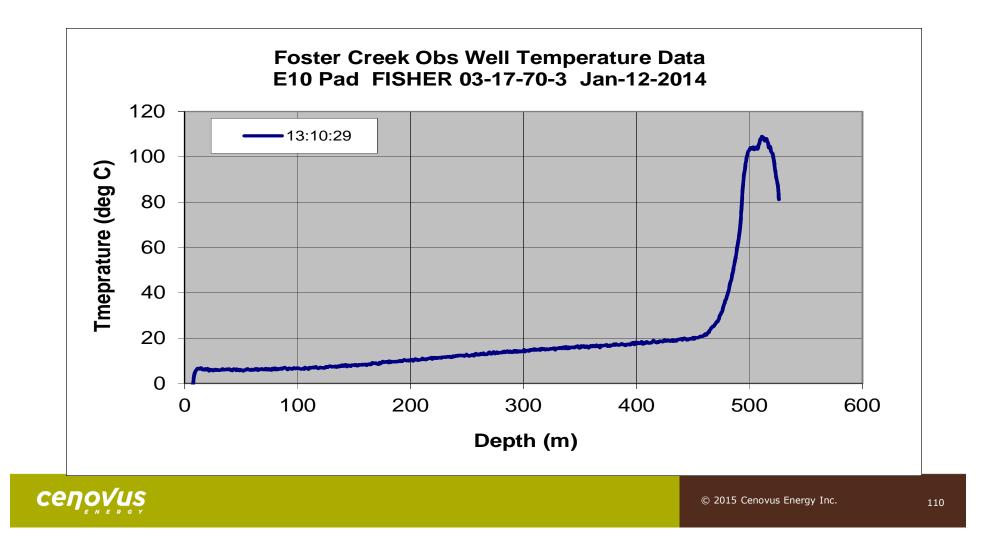


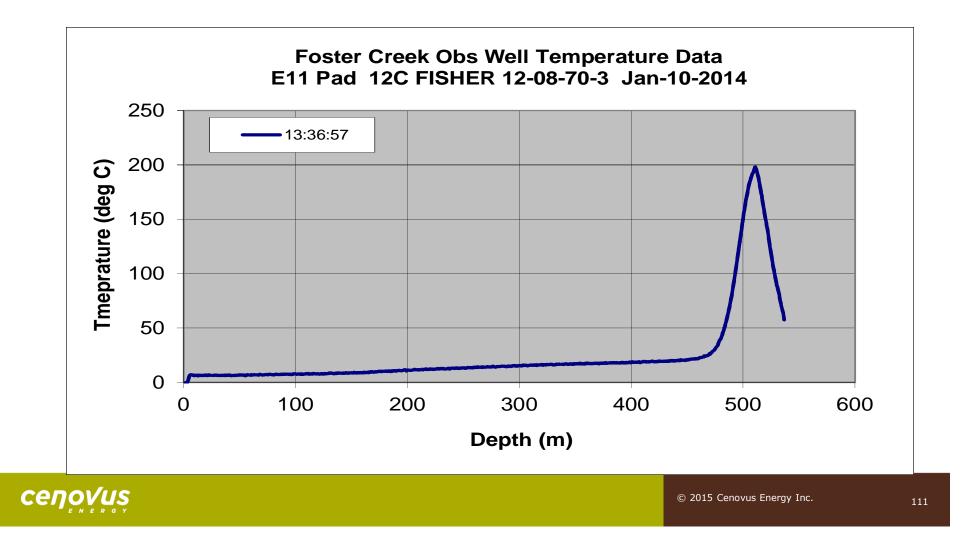


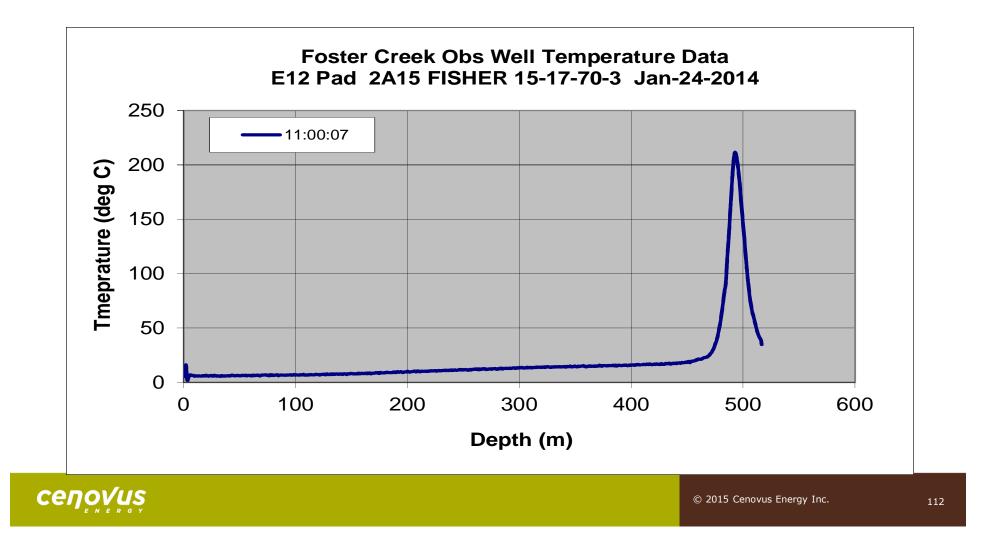


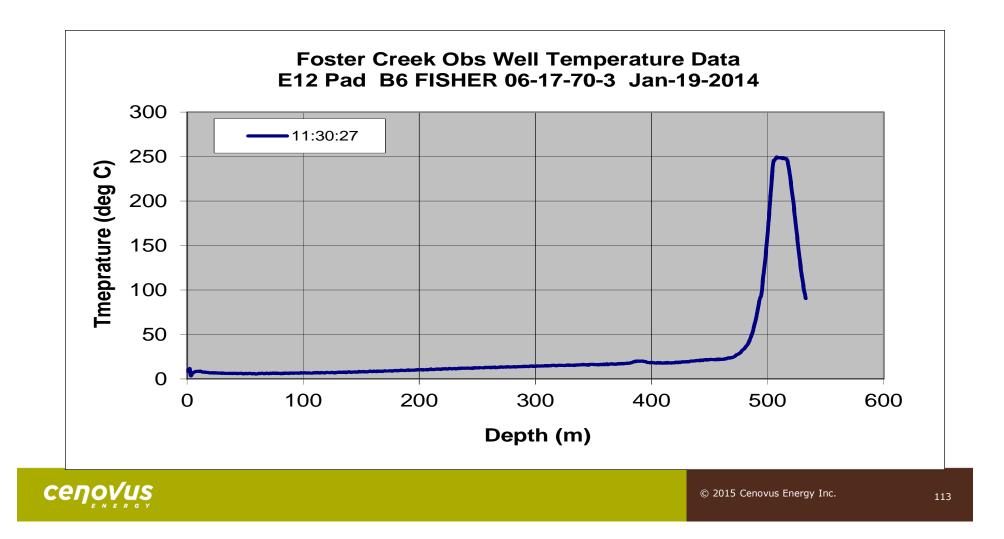


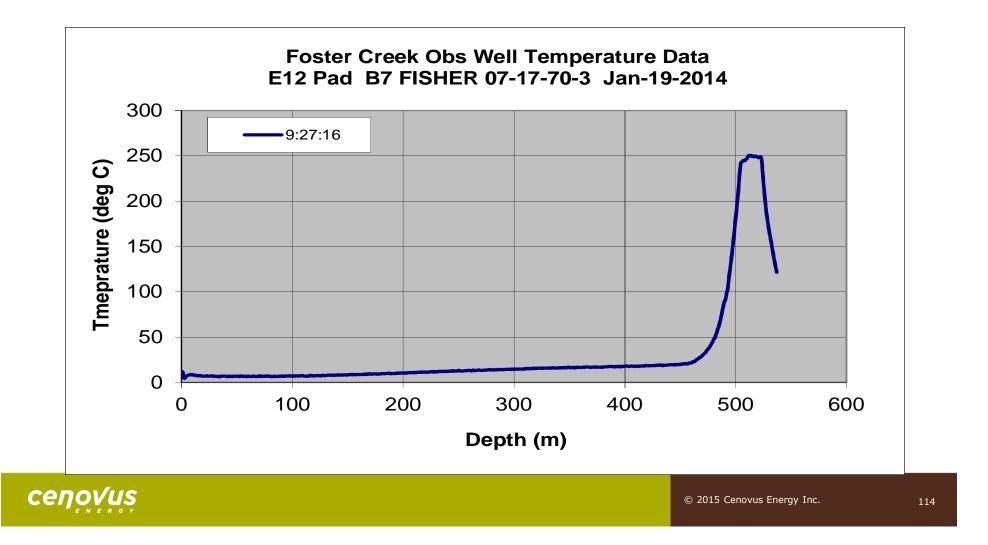


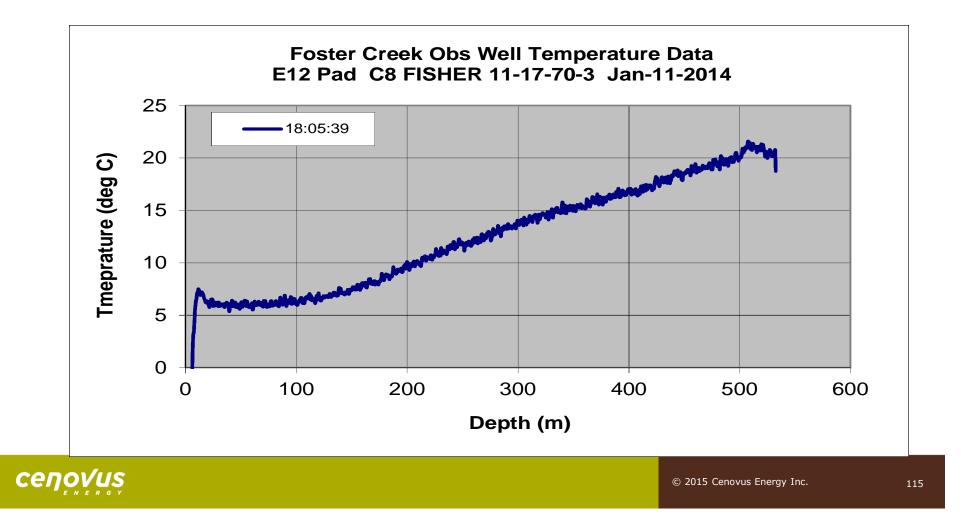


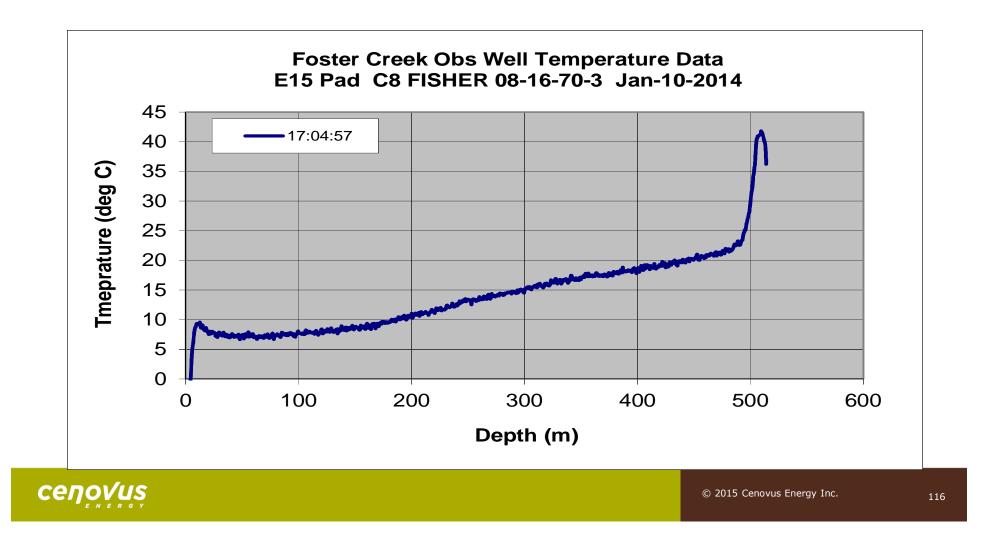


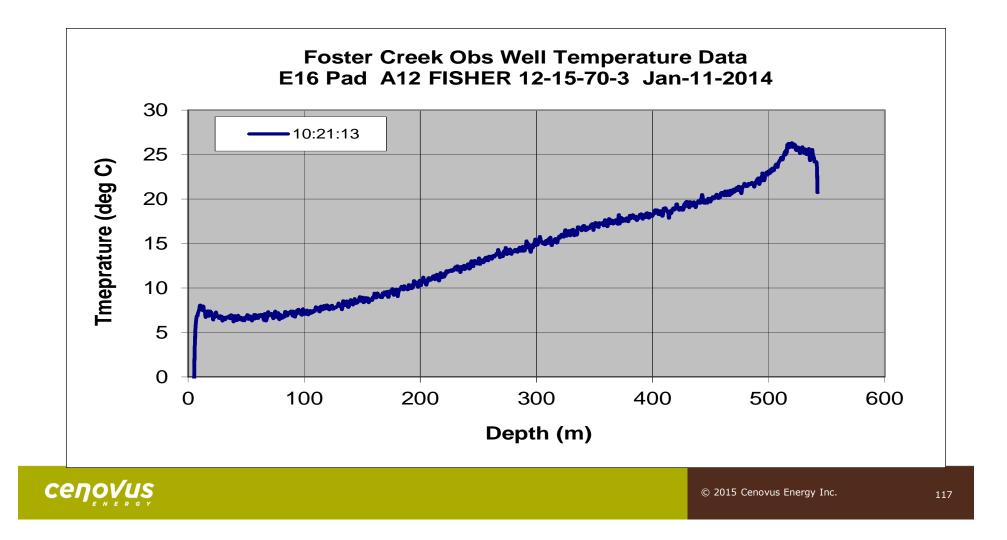


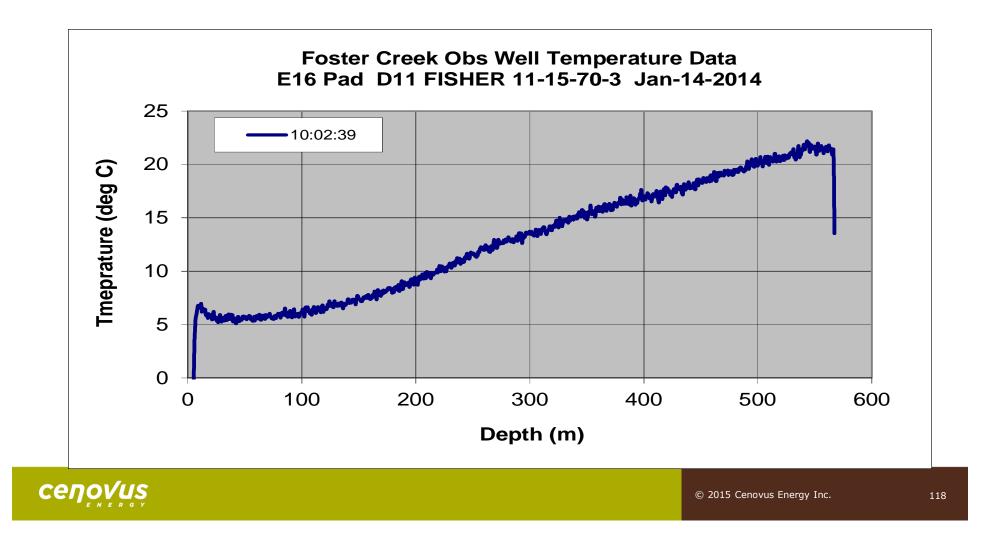


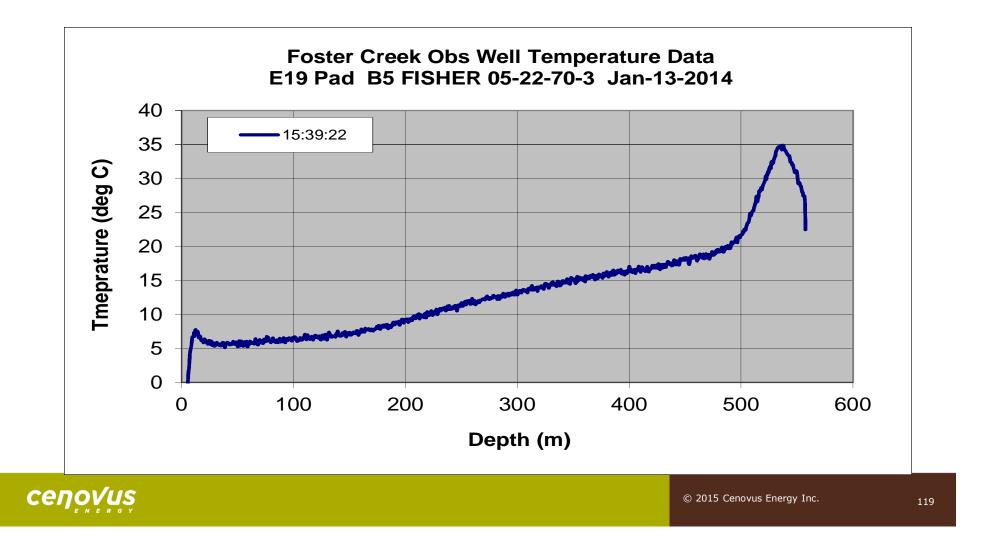


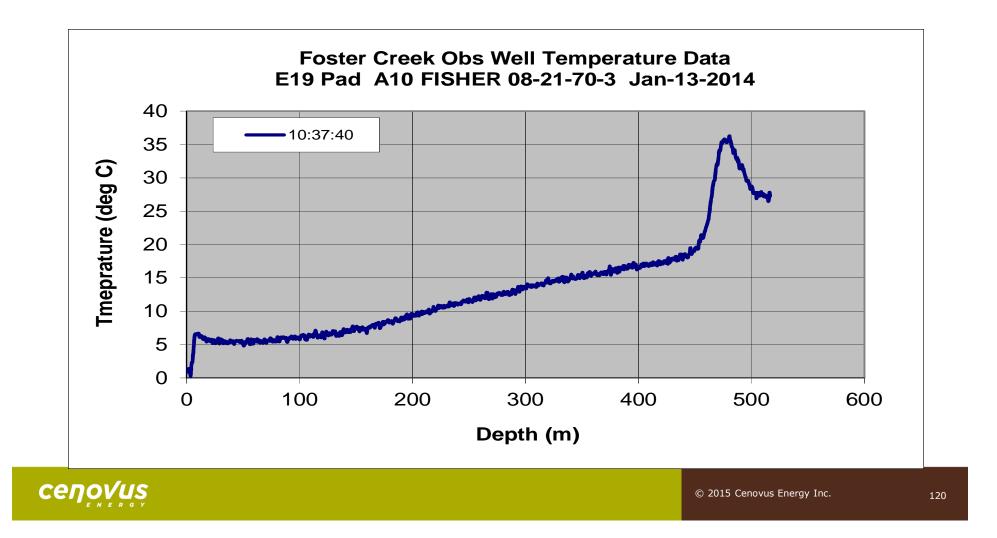


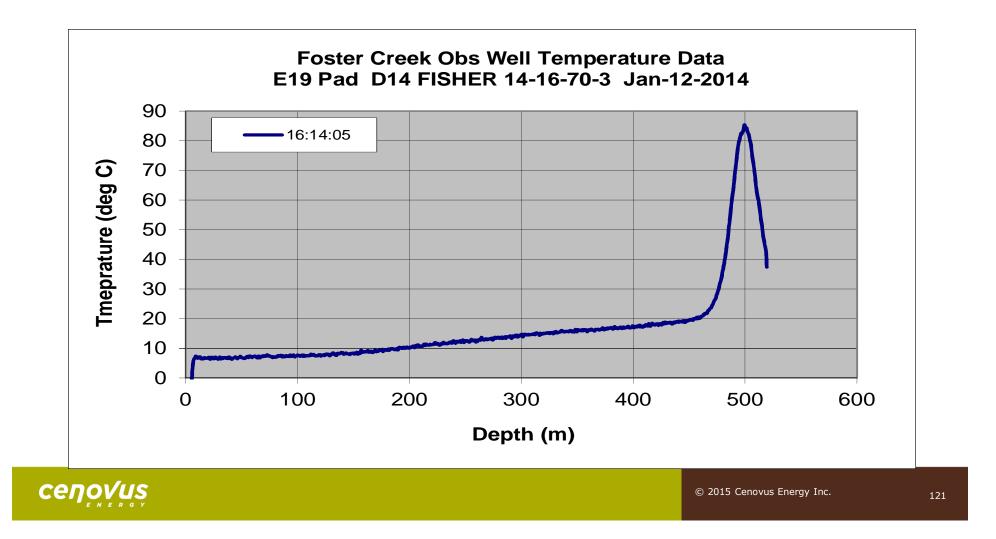


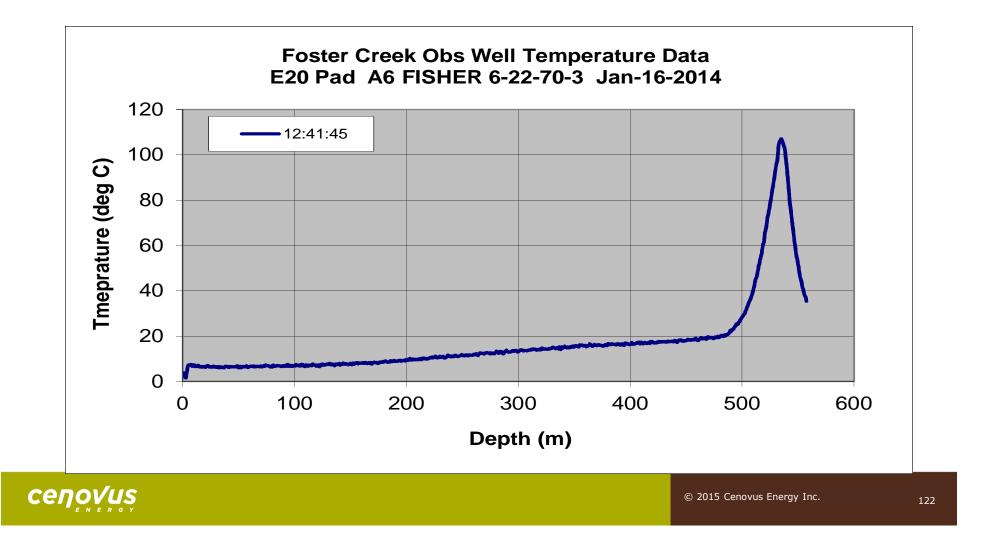


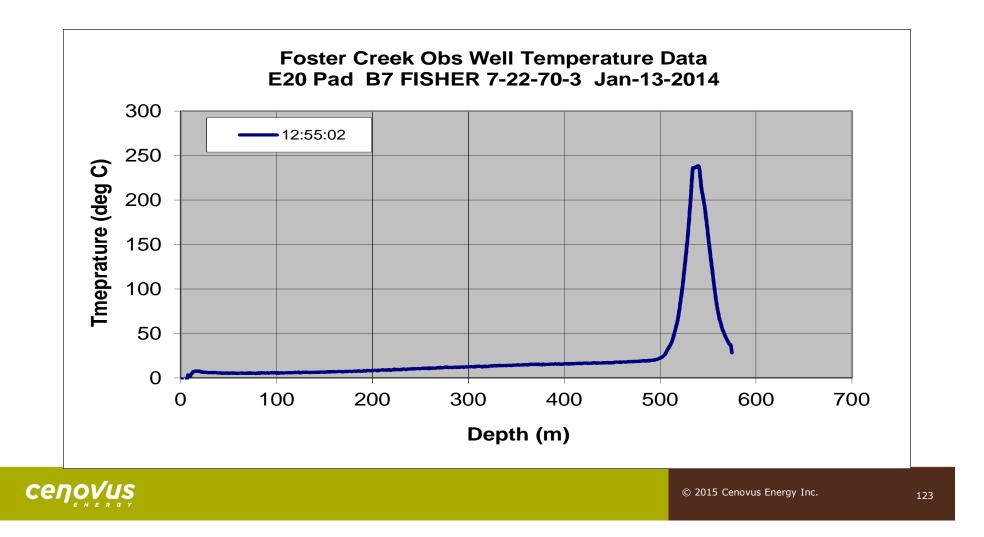


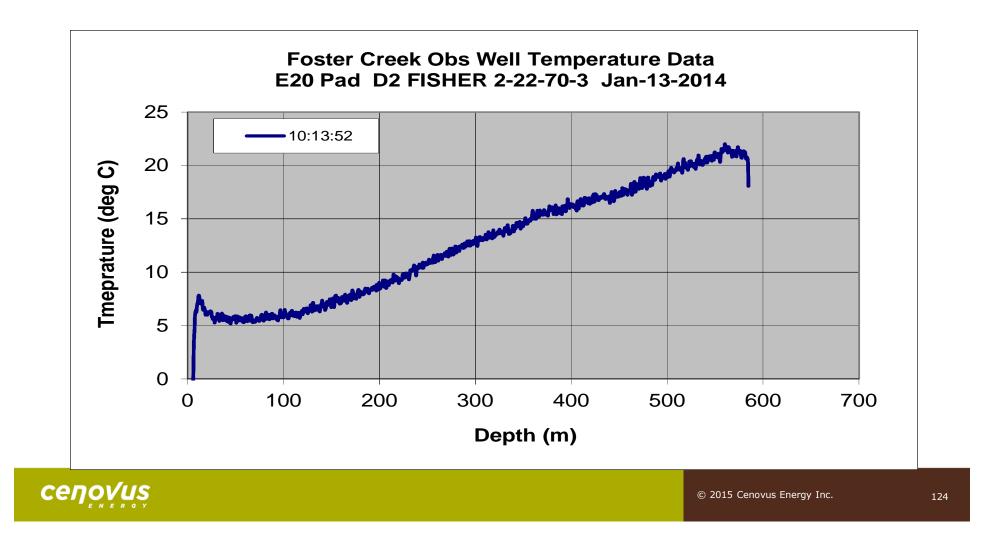


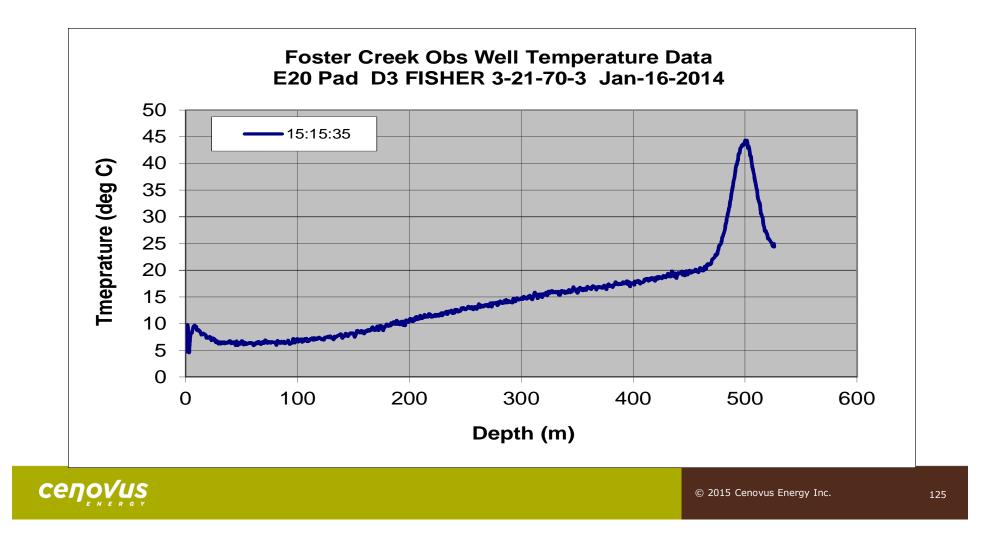


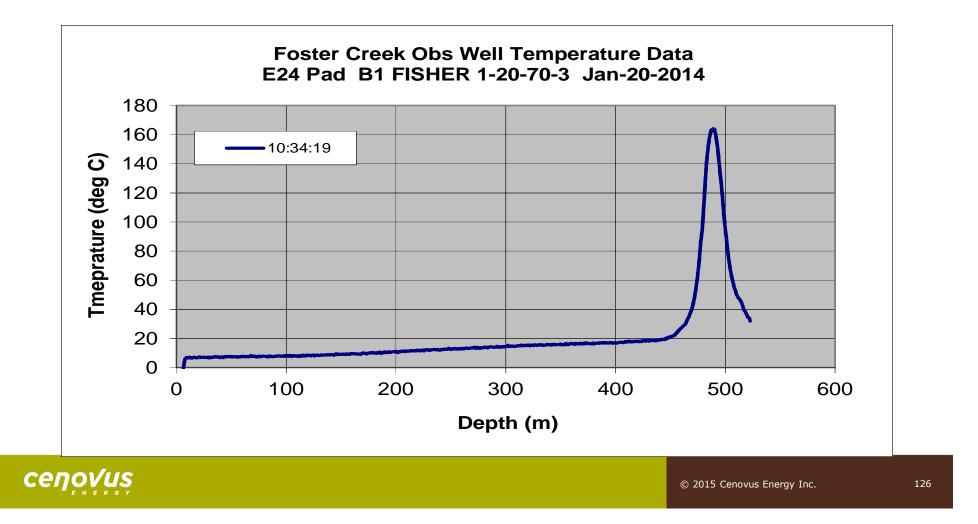


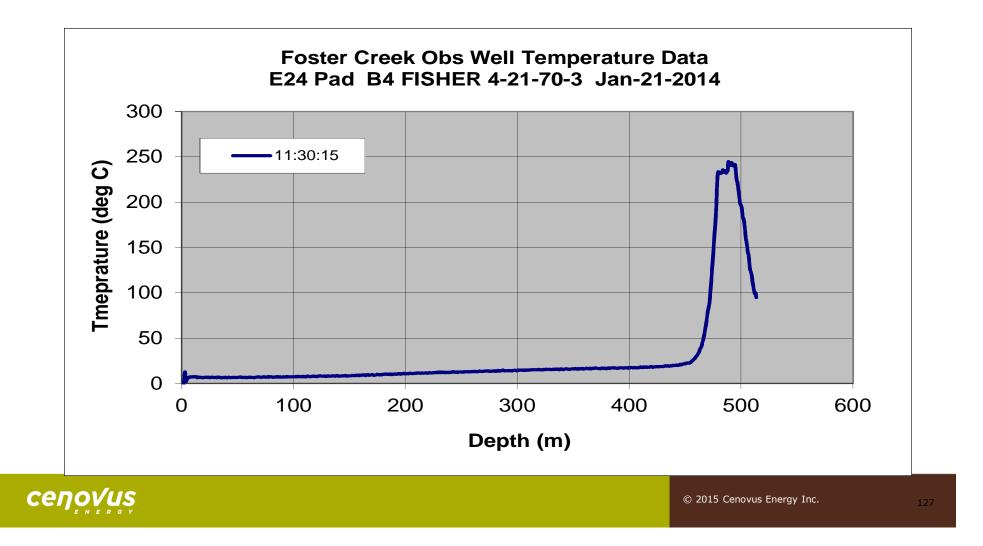


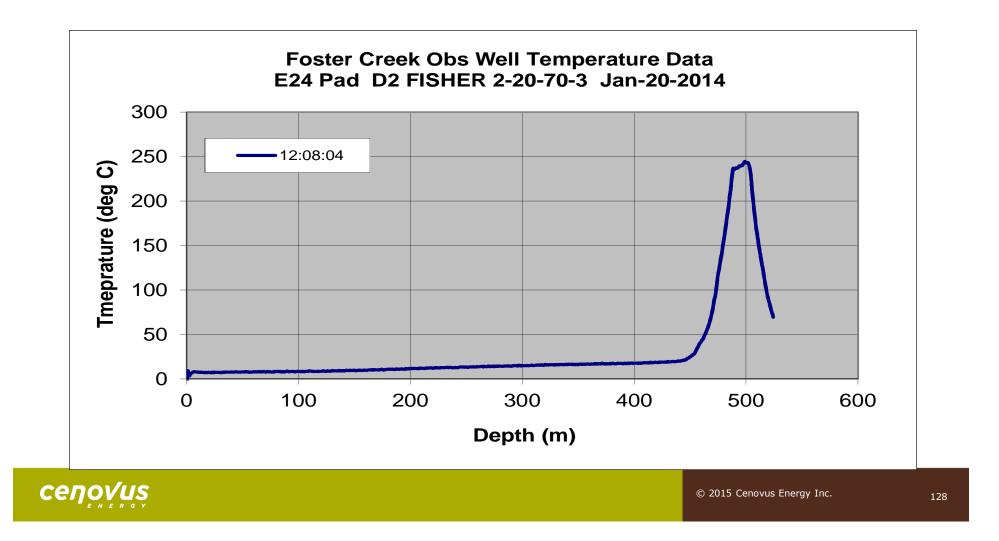


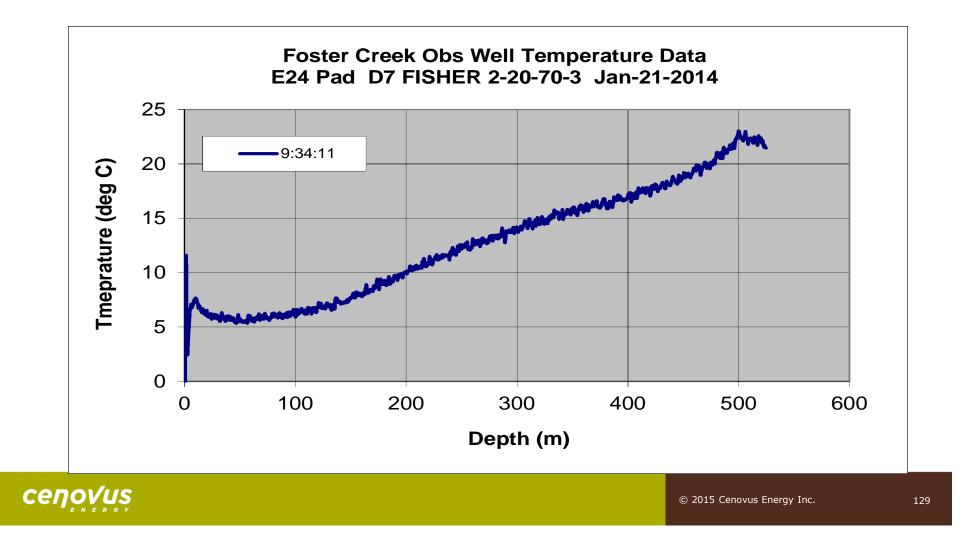


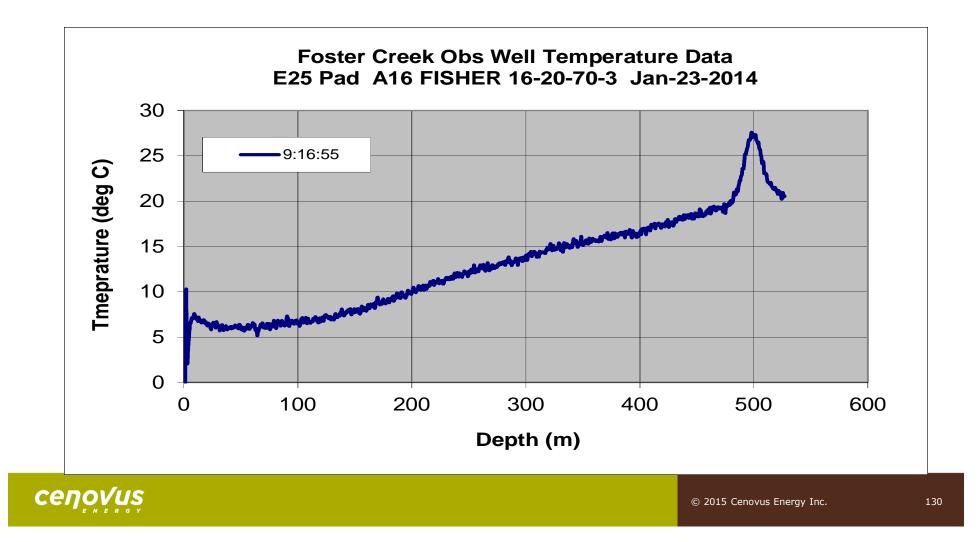


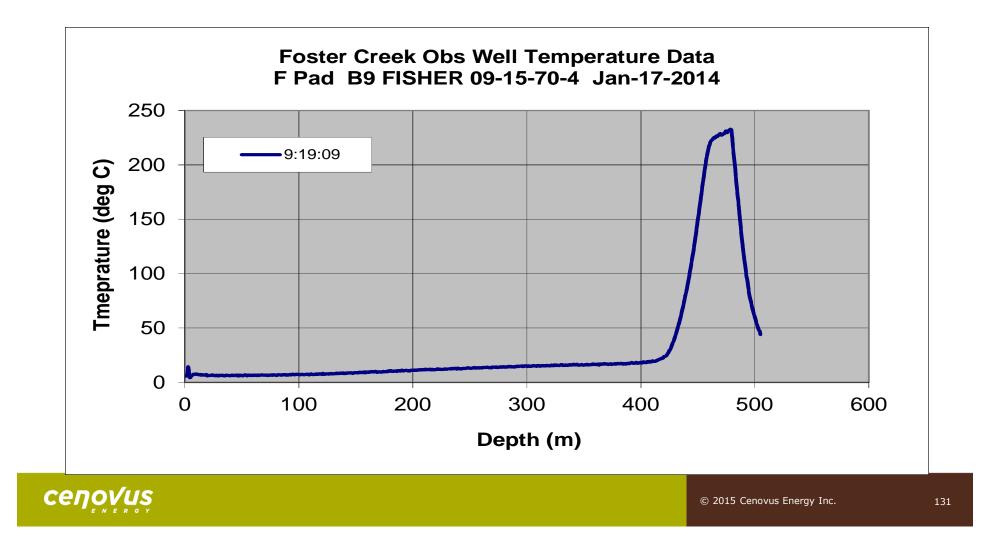


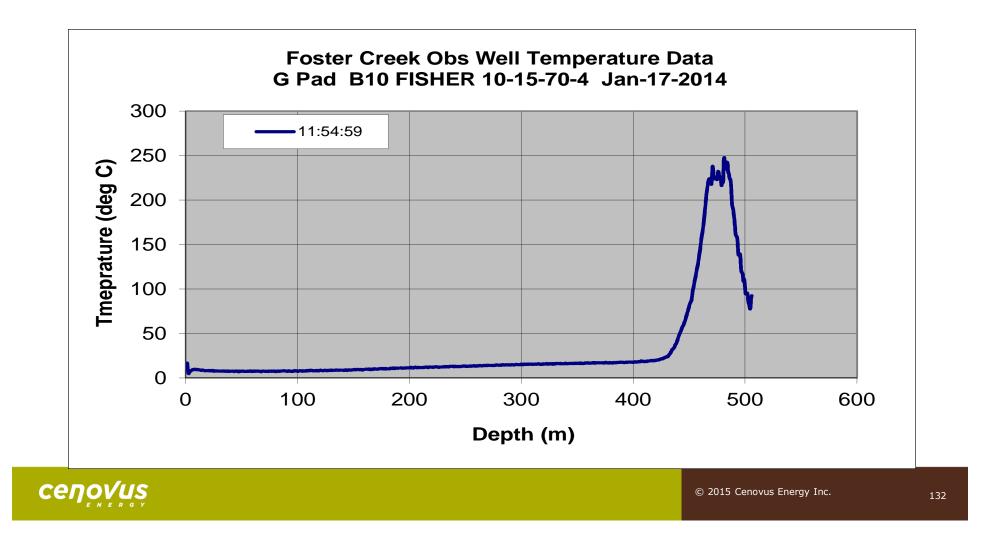


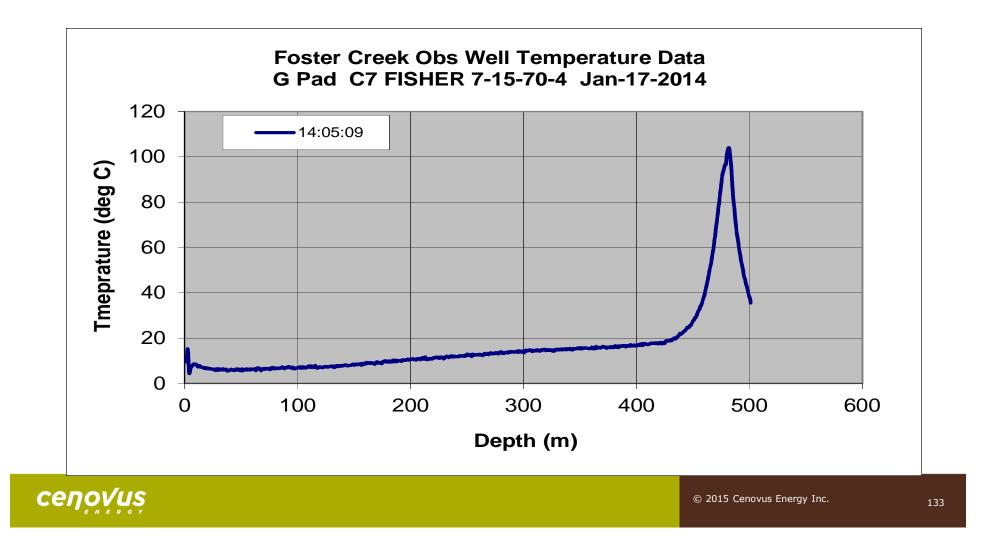


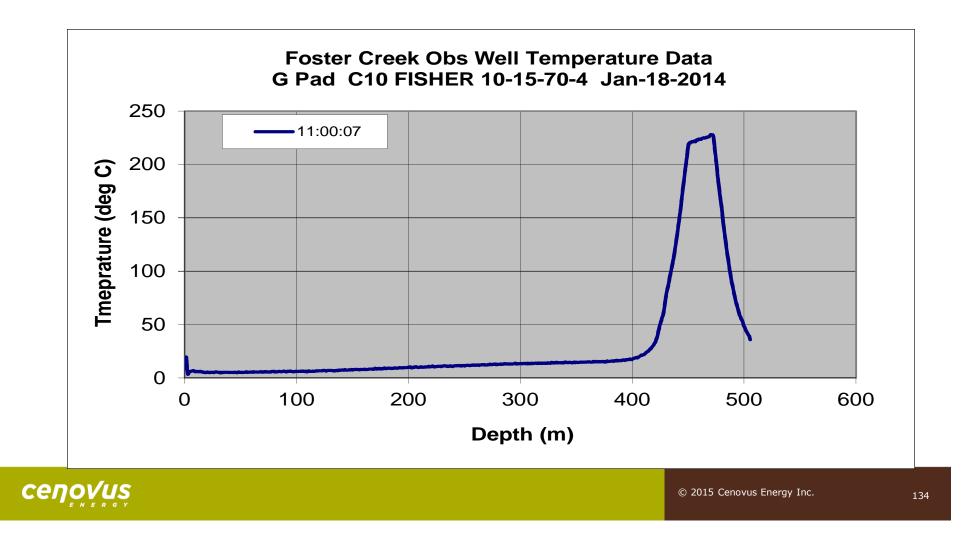


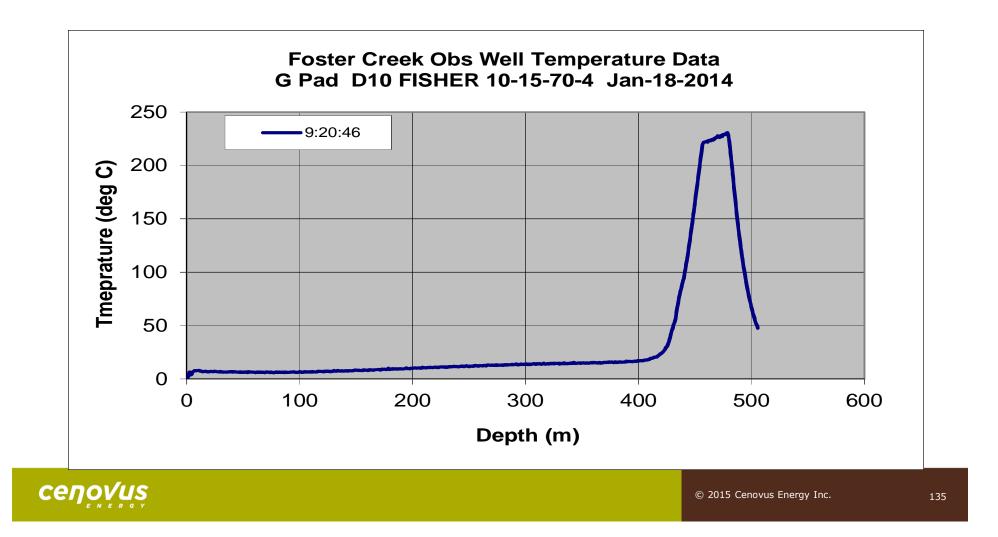


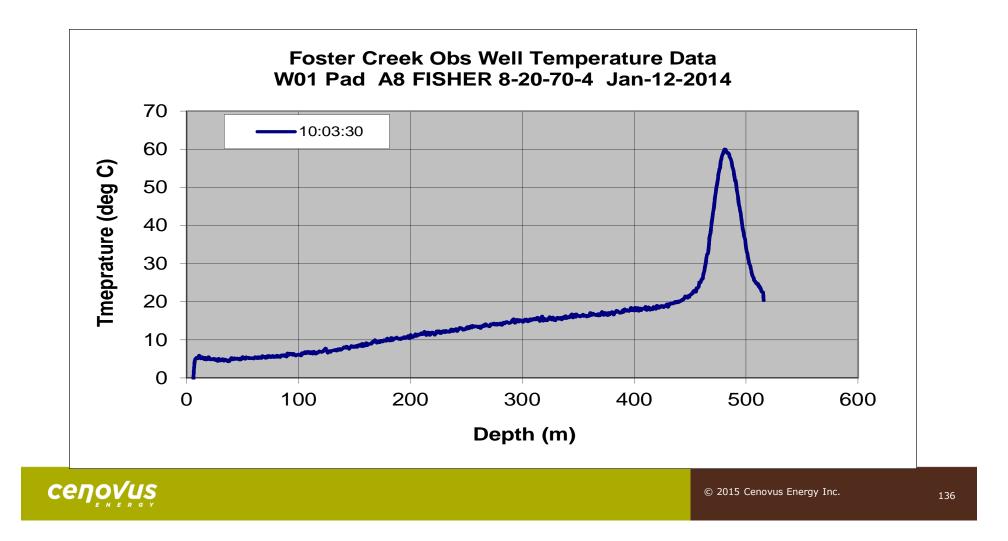


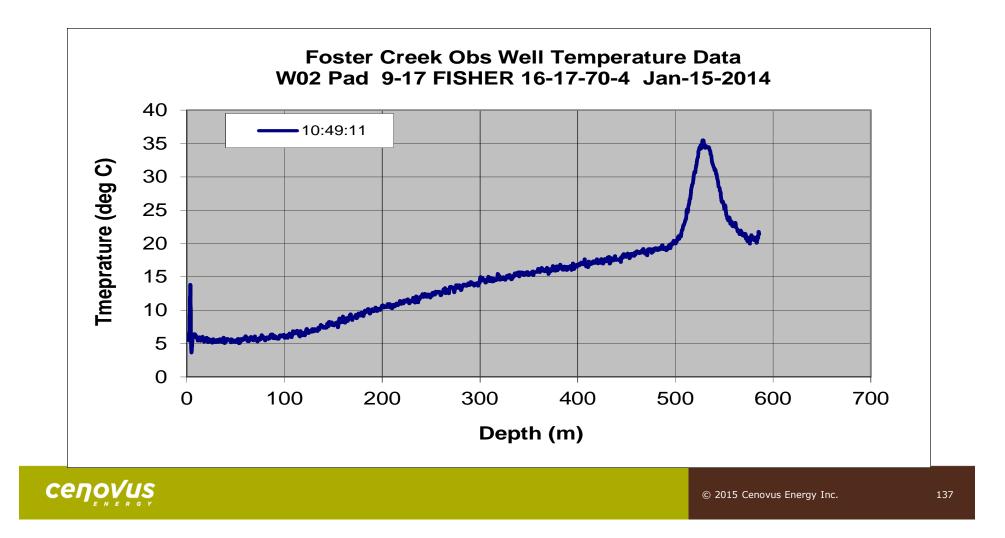


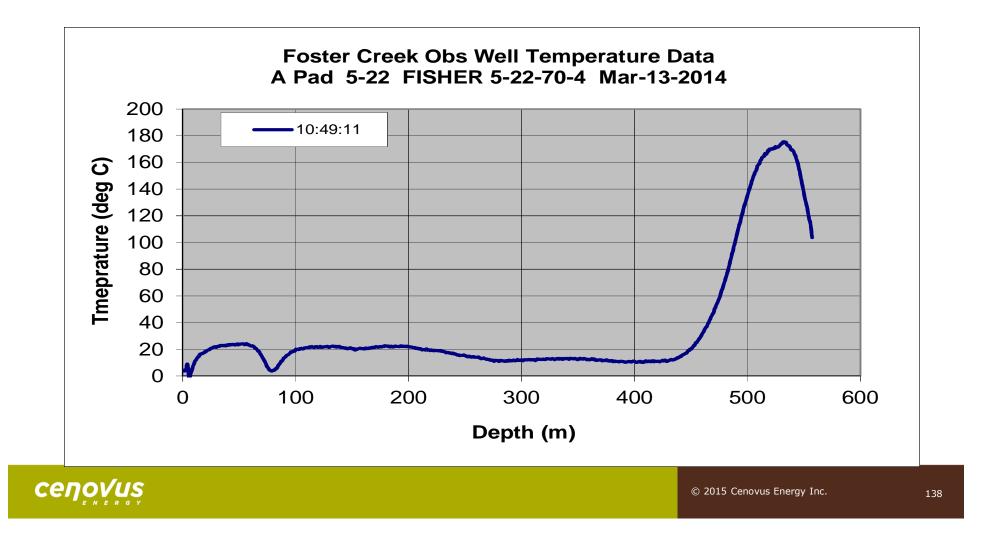


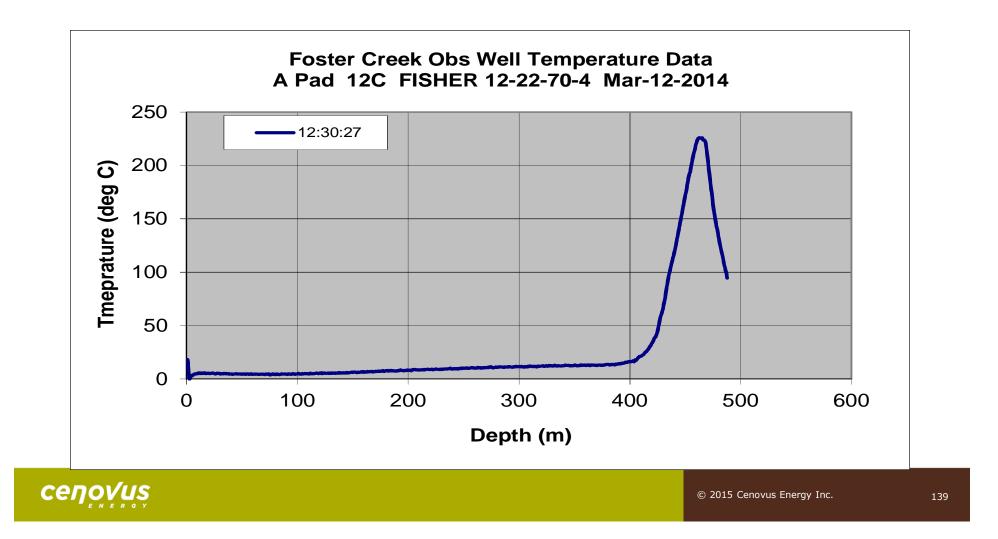


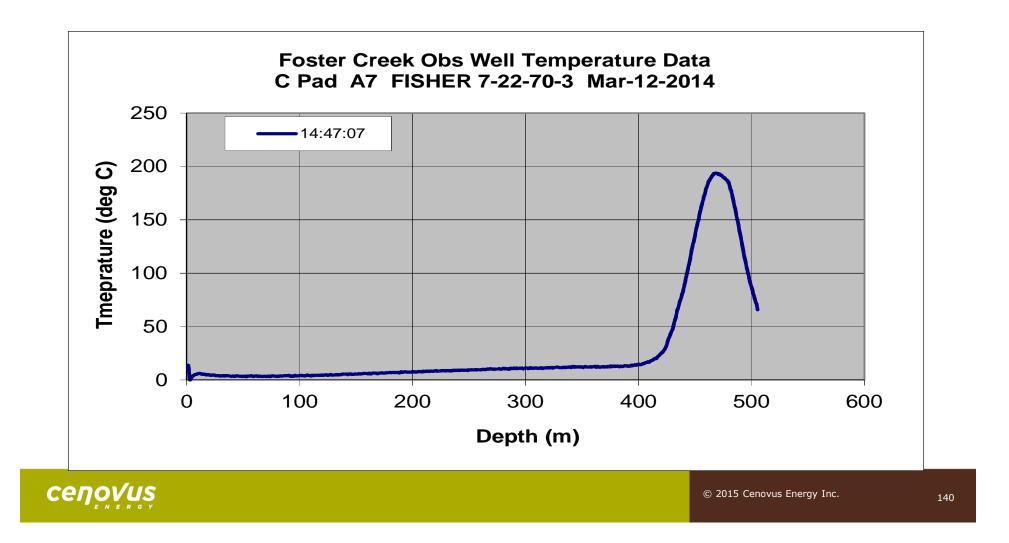


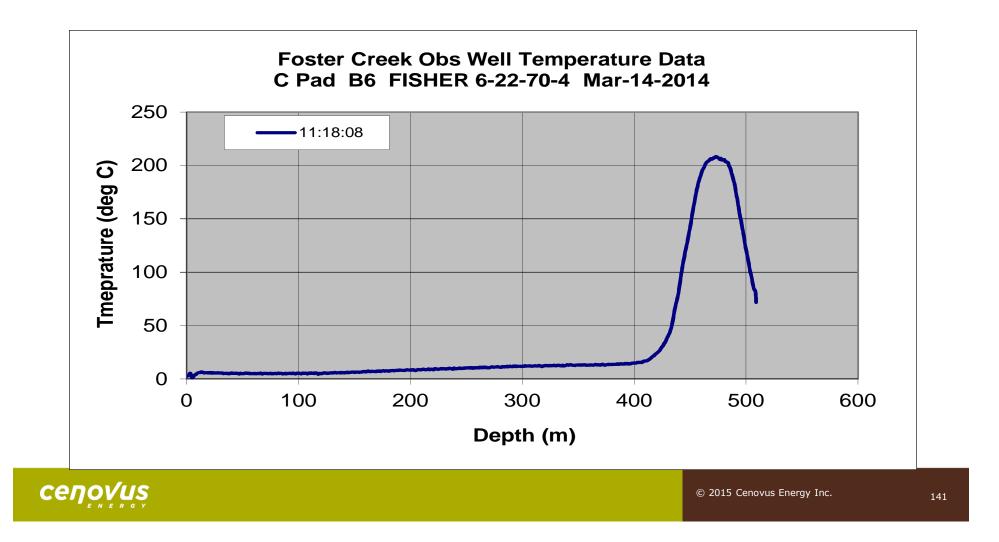


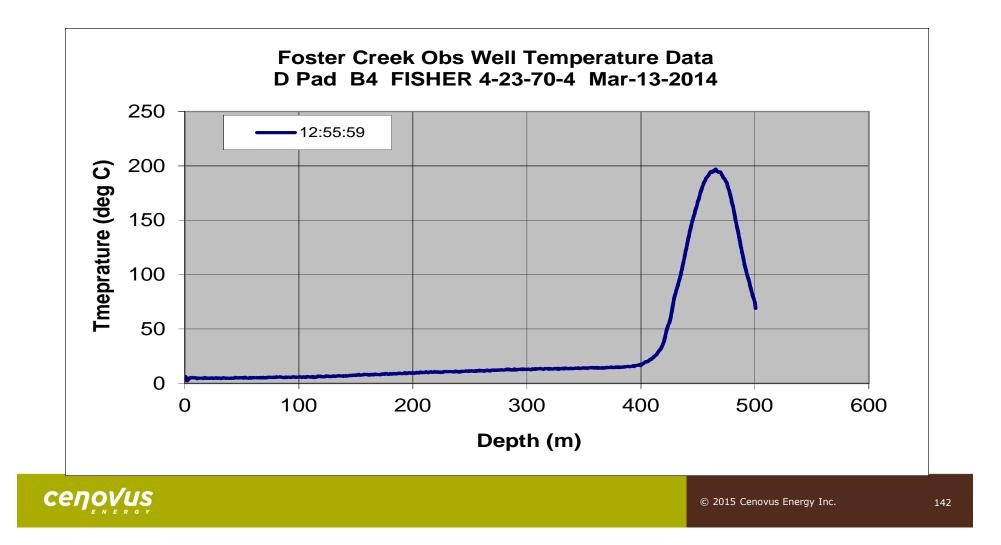


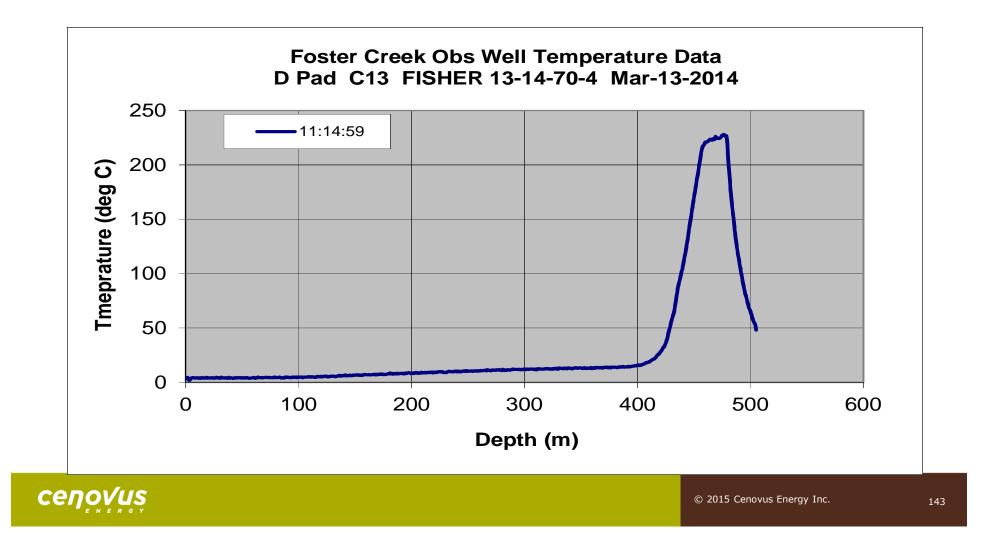


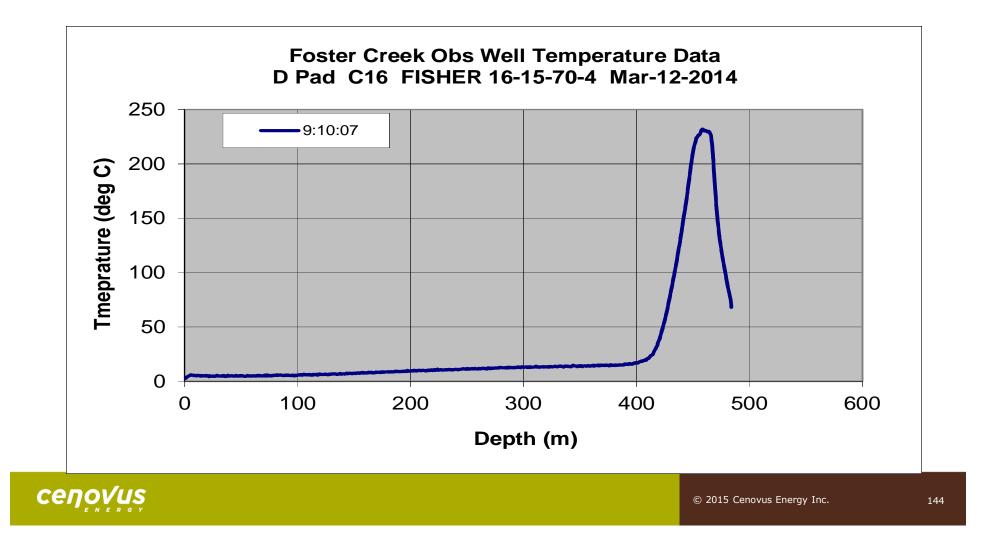


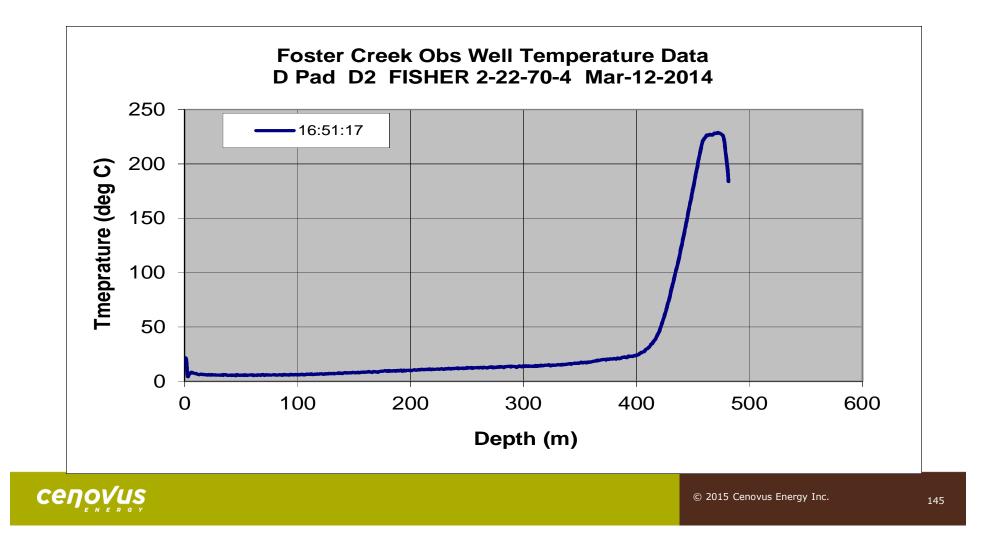


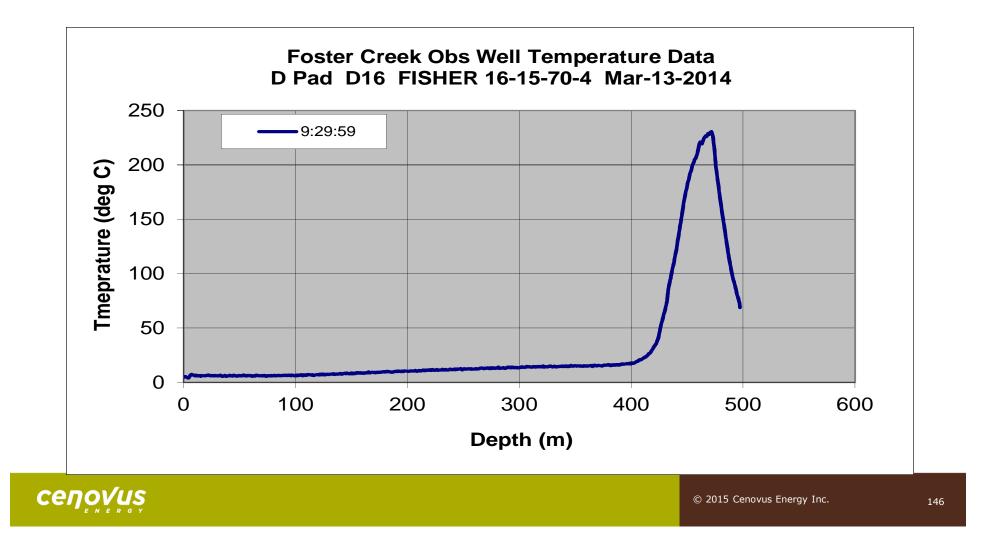












END

© 2015 Cenovus Energy Inc.

147