Cenovus Christina Lake In-situ oil sands scheme 8591 2015 update

Subsurface June 24, 2015

Oil & gas and financial information

Oil & gas information

The estimates of reserves and contingent resources were prepared effective December 31, 2014 and the estimates of bitumen initially-in-place were prepared effective December 31, 2012. All estimates were prepared by independent qualified reserves evaluators, based on definitions contained in the Canadian Oil and Gas Evaluation Handbook and in accordance with National Instrument 51-101. Additional information with respect to the significant factors relevant to the resources estimates, the specific contingencies which prevent the classification of the contingent resources as reserves, pricing and additional reserves and other oil and gas information, including the material risks and uncertainties associated with reserves and resources estimates, is contained in our AIF and Form 40-F for the year ended December 31, 2014, available on SEDAR at www.sedar.com, EDGAR at www.sec.gov and on our website at cenovus.com.

There is no certainty that it will be commercially viable to produce any portion of the contingent resources. There is no certainty that any portion of the prospective resources will be discovered. If discovered, there is no certainty that it will be commercially viable to produce any portion of those resources. Actual resources may be greater than or less than the estimates provided.

Total bitumen initially-in-place (BIIP) estimates, and all subcategories thereof, including the definitions associated with the categories and estimates, are disclosed and discussed in our July 24, 2013 news release, available on SEDAR at sedar.com and at cenovus.com. BIIP estimates include unrecoverable volumes and are not an estimate of the volume of the substances that will ultimately be recovered. Cumulative production, reserves and contingent resources are disclosed on a before royalties basis. All estimates are best estimate, billion barrels (Bbbls). *Total BIIP* (143 Bbbls); *discovered BIIP* (143 Bbbls); *discovered BIIP* (143 Bbbls); *discovered BIIP* (50 Bbbls); prospective resources (8.5 Bbbls); *unrecoverable portion of discovered BIIP* (42 Bbbls). Any contingent resources as at December 31, 2012 that are sub-economic or that are classified as being subject to technology under development have been grouped into the unrecoverable portion of discovered BIIP. Petroleum initially-in-place (PIIP) estimates for Pelican Lake are effective December 31, 2012 and were prepared by McDaniel. All estimates are best estimate discovered PIIP volumes as follows: *Mobile Wabiskaw* total PIIP (2.11 Bbbls); cumulative production (0.11 Bbbls); reserves (0.25 Bbbls); unrecoverable protocon (0.11 Bbbls); unrecoverable discovered PIIP (1.22 Bbbls); unrecoverable discovered PIIP (1.22 Bbbls); unrecoverable discovered PIIP (1.22 Bbbls); contingent resources (0.25 Bbbls); unrecoverable discovered PIIP (1.22 Bbbls); contingent resources (0.25 Bbbls); unrecoverable discovered PIIP (1.26 Bbbls); unrecoverable production (0.11 Bbbls); reserves (0.25 Bbbls); unrecoverable discovered PIIP (1.23 Bbbls); contingent resources (0 Bbbls); unrecoverable discovered PIIP (0 Bbbls). *Immobile Wabiskaw* total PIIP (1.33 Bbbls); uncoverable discovered PIIP (1.33 Bbbls); uncovered PIIP (1.33 Bbbls); uncovereable PIIP (1.33 Bbbls); uncovereable PIIP (0 Bbbls); uncovereable PIIP (0 Bbbls).

Certain natural gas volumes have been converted to barrels of oil equivalent (BOE) on the basis of one barrel (bbl) to six thousand cubic feet (Mcf). BOE may be misleading, particularly if used in isolation. A conversion ratio of one bbl to six Mcf is based on an energy equivalency conversion method primarily applicable at the burner tip and does not represent value equivalency at the well head.

Non-GAAP measures

Certain financial measures in this document do not have a standardized meaning as prescribed by IFRS such as, Operating Cash Flow, Cash Flow, Operating Earnings, Free Cash Flow, Debt, Net Debt, Capitalization and Adjusted Earnings before Interest, Taxes, Depreciation and Amortization ("Adjusted EBITDA") and therefore are considered non-GAAP measures. These measures may not be comparable to similar measures presented by other issuers. These measures have been described and presented in order to provide shareholders and potential investors with additional measures for analyzing our ability to generate funds to finance our operations and information regarding our liquidity. This additional information should not be considered in isolation or as a substitute for measures prepared in accordance with IFRS. Readers are encouraged to review our most recent Management's Discussion and Analysis, available at cenovus.com for a full discussion of the use of each measure.

[™] denotes a trademark of Cenovus Energy Inc. © 2015 Cenovus Energy Inc.

Subsection 3.1.1-1) Brief background

Major scheme/project updates

- Q1 2000 EUB project approval
- Q2 2002 First steam of phase A pilot
- Q4 2005 Approval of phase B expansion
- Q2 2008 Phase B expansion first steam
- Q3 2008 Approval of phase C/D amendment
- Q1 2010 Approval of large gas cap air re-pressurization
- Q2 2011 Approval of phase E/F/G EIA application
- Q2 2011 Phase C expansion first steam
- Q2 2012 Phase D expansion first steam
- Q4 2012 Approval of phase F and G amendment
- Q1 2013 Filing phase H and eastern expansion EIA
- Q4 2013 CDE 2nd stage OTSG amendment
- Q3 2013 Approval of development area expansion
- Q4 2014 Receipt of phase H and eastern expansion SIR round 2

Recovery process

- The Christina Lake Thermal Project uses the dual-horizontal well SAGD (steam-assisted gravity drainage) process to recover bitumen from the McMurray formation
- Two horizontal wells one above the other approximately 5 m apart
- Steam injected into upper well heat the bitumen and allows gravity to drain
- Oil and water emulsion pumped to the surface and treated

Area Map

селоуиз

Strong integrated portfolio

TSX, NYSE | CVE

Enterprise value	C\$25 billion
Shares outstanding	829 MM
2015F production	
Oil & NGLs	204 Mbbls/d
Natural gas	438 MMcf/d
2014 proved & probable reserves	3.9 BBOE
Bitumen	
Economic contingent resources*	9.3 Bbbls
Discovered bitumen initially in place*	93 Bbbls
Lease rights**	1.5 MM net acres
P&NG rights	5.6 MM net acres
Refining capacity	230 Mbbls/d net

Values are approximate. Forecast production based on midpoints of January 28, 2015 guidance. Cenovus land at December 31, 2014. *See advisory. **Includes an additional 0.5 million net acres of exclusive lease rights to lease on our behalf and our assignee's behalf.

© 2015 Cenovus Energy Inc. June 24, 2015

село

© 2015 Cenovus Energy Inc. June 24, 2015

Commercial SAGD wells as of March 31, 2015

*Well using Wedge Well[™] technology

Well* drilled but not producing

© 2015 Cenovus Energy Inc. June 24, 2015

Source and Disposal Wells as of March 31, 2015

селоуиз

Subsection 3.1.1 – 2) Geology and Geoscience

Ashley Saunders Geologist

село

AER approved project area

Reservoir properties (project area)

Reservoir depth:	350m TVD
Original reservoir pressure:	2500 kPa
Original reservoir temperature:	12°C
Average horizontal permeability:	7.0 Darcies
Average vertical permeability:	4.2 Darcies
Average SAGD pay:	21 meters
Average porosity (Ø):	33%
Average oil saturation:	80%
Rock volume:	1,954 x 10 ⁶ m ³
SOIP=	516 x 10 ⁶ m ³

Note: Cenovus Volumetric Estimates, not IQRE estimates SOIP = Rock Volume in Project area x phi (.33) x So (.80)

Christina Lake geological database

Stratigraphic wells within PA: 554 (-Cenovus 494/60 Others)- 2014 - 2D seismic - 155 km - 3D seismic - 80 km² (entire project area now covered by 3D) PA = Project Area

•2014 4D – 11.86 km2 •2014 – 3 Strat Wells, 38 obs wells

•2015 – 4D - 14.32 km2 •2015 – 2 strat wells, 39 obs wells

селоүиş

© 2015 Cenovus Energy Inc. June 24, 2015

Christina Lake core analysis (McMurray)

- Total cored wells within PA- 203
- 2015 cored wells within PA- 4
- 2014 cored wells within PA- 10
- Total steam chamber cores- 8

Analysis:

- Routine core analysis
- Photos
- Strat and strat/cored wells are generally abandoned
- Some strat and strat/cored wells are cased if they are further used for SAGD observation wells
- All abandoned and cased wells are examined for integrity by the completions department prior to SAGD startup

SAGD Pay Isopach (Thickness in Meters)

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

SAGD base structure

селоуиз

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

SAGD top structure

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Paleozoic structure

селоуиз

McMurray Isopach (thickness in metres)

селоуиз

McMurray Structure

SAGD Gas Isopach

(thickness in meters)

Composite type log: Phase B

- Pervasive basal mud layer often separates bitumen and McMurray water
- Basal mud is discontinuous and ranges from 0-4 metres in thickness
- Provides a good marker during SAGD operations

Location:

село

© 2015 Cenovus Energy Inc. June 24, 2015

Composite type log: Phase CDE

- Pervasive basal mud layer often separates bitumen and McMurray water
- Basal mud is discontinuous and ranges from 0-4 meters in thickness
- Provides a good marker during SAGD operations

Wabiskaw **McMurray** Shales

Location:

село

Representative cross section

© 2015 Cenovus Energy Inc. June 24, 2015

Cross section A-A' (saturation)

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Cross section B-B' (saturation)

селоуиз

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

28

R

B

Cross section B-B' (lithology)

Sand Mud

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Geomechanical and surface heave

- Integrated InSAR (Synthetic Aperture Radar) Land Deformation Monitoring took place between April-October 2014 by MDA Geospatial Services Inc.
- The measurements were successfully made on 75 active corner reflector (CR) locations installed since April 2008
- In addition to the corner reflectors, the deformation profiles at 19,710 point targets were estimated (coherent target monitoring-CTM). The location of these points coincides in general with pad, pipeline and plant structures

Refer to Appendix 1 for detailed heave data

Corner reflector (CR) locations:

Current Corner Reflectors: 75 Current Reference Corner Reflectors: 11

cenovus

Subsection 3.1.1 – 3) Drilling and Completions

Mike Ellis Production Engineer

SAGD summary to date

© 2015 Cenovus Energy Inc. June 24, 2015

Well pair drilled but not producing

Sample ESP producer completion with tailpipe

сепо

© 2015 Cenovus Energy Inc. June 24, 2015

Sample ESP producer completion without tailpipe

Sample injector completion

Inflow Control Devices (ICDs)

- No operational wells with ICDs
- First ICD production expected in 2016

Subsection 3.1.1 – 4) Artificial Lift

Mike Ellis Production Engineer

Review of artificial lift by well

Pad	Start date	Total producers	Total gas lift producer wells	Total ESP producer wells	Total wells using Wedge Well [™] technology and ESP
A Pad	2002	10	0	7	3
A02 Pad	2008	1	0	1	0
B01 Pad	2008	13	0	7	6
B02 Pad	2006	8	0	4	4
B02C Pad*	2013	6	0	6	0
B03 Pad	2011	16	0	8	8
B04 Pad	2011	16	0	8	8
B05 Pad	2012	9	0	9	0
B06 Pad	2012	8	0	8	0
B07 Pad	2012	8	0	8	0
B08 Pad	2013	10	0	10	0
B09 Pad	2014	11	0	11	0
B11 Pad	2013	12	0	12	0

*Note: B02C refers to the 6 well pairs on the north side of the B02 Pad Approved Drainage Box, which were drilled at a 50m lateral downhole spacing

Artificial lift performance

Gas lift (0 current wells):

- Typical operating pressure 4,000 5,000 kPag
- No temperature limitations, go as hot as ~263°C
- Average emulsion flow rate ~ 600-1600 m³/d

ESP (128 current wells):

- Majority of wells were converted to ESP after a gas lift phase
- ESP conversion occurs when thief zone intersected or other optimization purposes
- Typical operating pressure 1,800 4,000 kPag
- No temperature limitations, go as hot as ~235°C BHT
- Average emulsion flow rate ~ 200-1600 m³/d

Subsection 3.1.1 – 5) Instrumentation

Mike Ellis Production Engineer

SAGD Well Pressure Instrumentation

At Christina Lake all production and injector wells are equipped with bubble tubes to measure downhole pressures.

Currently there are 2 sizes of bubbles tubes:

- $3/_8$ inch
- $1/_2$ inch

We are replacing all $\frac{3}{8}$ inch bubble tubes with $\frac{1}{2}$ inch to increase reliability.

Fiber pressure gauges have been trialed with poor results

Moving forward bubble tubes will continue to be the pressure instrumentation of choice at Christina Lake.

43

SAGD Well Temperature Instrumentation

At Christina Lake production wells use type 'K' thermocouples to measure downhole temperatures.

There are 2 thermocouple formats installed:

- Single point installed at the heel
- 6 point that is installed along the producer horizontal

Distributed temperature sensing (DTS) fiber instrumentation will be used new wells and on a go forward basis. (B07B- Oct 2015 forward)

44

Instrumentation in observation wells (typical completions)

село

Temperature observation

Cemented casing piezometers

Observation Well Equipment Reliability

Type 'K' Thermocouples

Hanging piezometers

Cemented piezometers

- Reliability has been very good
- Easy to replace if failed
- Thermocouple failures arise when the mineral insulated (MI) cable is compromised downhole.

- Reliability has been good
- Easy to replace if failed

- Hanging piezometer failures occur most often during workovers. Either during RST logging or packer isolation work.
- Equipment failures have occurred but are rare.

- Reliability has been poor
- Impossible to replace
- Early piezometer installs used standard vibrating wire piezometer rated to 80c – Many failed due to high temperatures
- Since 2013 all piezometer installed have been high temperature vibrating wire piezometer rated to 250C – Have seen an increase in equipment reliability
- Have seen failures as a result of improper installation and well securement issues

Observation wells

Subsection 3.1.1–5c) & d) instrumentation data

Requirements under subsection 3.1.1 5c) and d) are located in Appendices 2 & 3

Subsection 3.1.1 – 6) 4D Seismic

Kevin Beary Reservoir Engineer

2014 Steam-affected top structure from 4D Seismic (TVDSS)

селоуиз

2014 Steam-affected top structure from 4D seismic (TVDSS)

2014 Steam-affected top structure from 4D seismic (TVDSS)

2014 Steam-affected top structure from 4D seismic (TVDSS)

Subsection 3.1.1 – 7) Scheme performance

Kevin Beary Reservoir Engineer

Scheme performance prediction

- Predict well pair performance based on modified Butler's equation
- Predict well pair CSOR using published CSOR correlations (Edmunds & Chhina 2002)
- Generate overall scheme production performance by adding individual well forecasts over time to honour predicted steam capacity and water treating availability

Wellpair Type Curve

SAGD summary to date

© 2015 Cenovus Energy Inc. June 24, 2015

Well pair drilled but not producing

SAGD summary to date

128 total production wells in operation to date:

- 98 standard well pairs
 - all on ESP, no gas lift
- one offset toe producer well
 - **ESP**
 - increase recovery from A01-3 well pair
- 29 wedge wells using patented Wedge Well[™] technology
 - all on ESP
 - 3 located in A01 pad
 - 1 in between B01 and B02 pad
 - 6 located in B01 pad
 - 3 located in B02 pad
 - 8 located in B03 pad
 - 8 located in B04 pad

Christina Lake Performance

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

Christina Lake Project SOR

© 2015 Cenovus Energy Inc. June 24, 2015

59

Christina Lake CSOR

Christina Lake Performance

селоуиз

*Well using Wedge Well[™] technology

© 2015 Cenovus Energy Inc. June 24, 2015

61

SAGDable vs. producible OIP (SOIP VS. POIP)

We are presenting two tables

SAGDable OIP & producible OIP

We define SAGDable OIP as:

- (Planned length) x (Spacing) x (Net SAGD pay: <u>Base</u> to top SAGD) x (S_o) x (Ø)
- Used during the planning phase
- Doesn't change after well pair plans finalized
- Used to plan additional wells (Wedge Well[™] technology, bypassed pay producers, re-drills, new pairs)
- We aim to drill the full planned length (typically 800m), and drill the producer well as low as possible in relation to Base SAGD

We define producible OIP as:

- (Effective length) x (Spacing) x (Effective pay: <u>Producer</u> to top SAGD) x (S_o) x (Ø)
- An "after-drilling" OOIP, based on well pair potential
- Changes with time and interpretation (obs. wells, 4D seismic, MWD error, etc.)
- Used to plan blowdown strategy
- This reflects actual well pair performance
 - incorporates actual overlapping slotted liner lengths initially (including blank sections <100m)
 - incorporates actual elevation of the producing well
 - incorporates lithology

Producible OIP is always < SAGDable OIP

SAGDable vs. producible OIP (definition)

POIP and RF per pad

Note: Down spaced pads are not planned to incorporate Wedge WellTM technology

Producible Oil in Place (POIP) and % Recovery									
Pad	Pad Area (m ²)	Cummulative Oil Production (Mm ³)*	AVG Porosity	AVG Oil Saturation	AVG Net Pay (m)	POIP (Mm³)	Recovery*	Ultimate Recovery w/o Wedge Well [™] technology	Ultimate Recovery w/ Wedge Well [™] technology
Α	616,615	2,164	0.35	0.79	26	2,965	73.0%	~ 75-80%	~ 80-85%
A02	490,777	344	0.34	0.84	26	401	85.9%	~ 80-85%	N/A
B01	594,325	2,992	0.34	0.85	28	4,083	73.3%	~ 75-80%	~ 80-85%
B02	323,240	2,030	0.33	0.84	30	2,453	82.7%	~ 75-80%	~ 80-85%
B02C (down spaced)	298,590	788	0.35	0.83	22	1,712	46.0%	~ 80-85%	N/A
B03	640,532	3,210	0.33	0.84	32	5,223	61.5%	~ 75-80%	~ 80-85%
B04	640,780	3,440	0.33	0.82	35	5,701	60.3%	~ 75-80%	~ 80-85%
B05	727,639	2,389	0.33	0.82	36	6,509	36.7%	~ 75-80%	~ 80-85%
B06	644,480	1,868	0.32	0.81	28	4,241	44.0%	~ 75-80%	~ 80-85%
B07	653,601	2,587	0.32	0.82	35	5,728	45.2%	~ 80-85%	N/A
B08 Pad (down spaced)	567,185	946	0.36	0.87	27	4,365	21.7%	~ 80-85%	N/A
B09 Pad (down spaced)	560,421	276	0.32	0.85	36	5,012	5.5%	~ 80-85%	N/A
B11 Pad (down spaced)	603,377	1,578	0.34	0.84	32	4,786	33.0%	~ 80-85%	N/A

% recovery = cum. production / SOIP

Ultimate Recovery % = ultimate cum. production / SOIP

*As of March 31, 2015

Note: Resource estimates in this table are based on Cenovus volumetric calculations, and are not in accordance with National Instrument 51-101 guidelines. They are provided solely for the purpose of complying with Alberta regulatory requirements.

SOIP and RF per pad

*Note: Down spaced pads are not planned to incorporate Wedge Well*TM *technology*

SAGDable Oil in Place (SOIP) and % Recovery									
Pad	Pad Area (m ²)	Cummulative Oil Production (Mm ³)*	AVG Porosity	AVG Oil Saturation	AVG Net Pay (m)	SOIP (Mm³)	Recovery*	Ultimate Recovery w/o Wedge Well [™] technology	Ultimate Recovery w/ Wedge Well [™] technology
Α	616,615	2,164	0.34	0.79	31	3,979	54.4%	~ 52-56%	~ 56-60%
A02	490,777	344	0.34	0.84	29	475	72.4%	~ 59-63%	N/A
B01	594,325	2,992	0.34	0.85	35	5,377	55.6%	~ 53-57%	~ 57-61%
B02	323,240	2,030	0.33	0.84	35	3,089	65.7%	~ 56-60%	~ 60-64%
B02C (down spaced)	298,590	788	0.35	0.83	29	2,243	35.1%	~ 53-57%	N/A
B03	640,532	3,210	0.33	0.84	42	7,015	45.8%	~ 52-56%	~ 56-60%
B04	640,780	3,440	0.33	0.82	42	7,079	48.6%	~ 56-60%	~ 60-64%
B05	727,639	2,389	0.33	0.82	43	8,161	29.3%	~ 56-60%	~ 60-64%
B06	644,480	1,868	0.32	0.81	35	5,584	33.4%	~ 53-57%	~ 57-61%
B07	653,601	2,587	0.32	0.82	41	6,960	37.2%	~ 58-62%	N/A
B08 Pad (down spaced)	567,185	946	0.33	0.75	36	4,659	20.3%	~ 66-70%	N/A
B09 Pad (down spaced)	560,421	276	0.32	0.83	43	6,203	4.4%	~ 57-61%	N/A
B11 Pad (down spaced)	603,377	1,578	0.33	0.80	38	5,998	26.3%	~ 56-60%	N/A

% recovery = cum. production / SOIP

Ultimate Recovery % = ultimate cum. production / SOIP

*As of March 31, 2015

Note: Resource estimates in this table are based on Cenovus volumetric calculations, and are not in accordance with National Instrument 51-101 guidelines. They are provided solely for the purpose of complying with Alberta regulatory requirements.

Christina Lake Cumulative % Recovery Based on CVE SAGDable OOIP (SOIP)

Note: For A02 pad, recovery based on 100m spacing drainage box

Christina Lake Cumulative % Recovery Based on CVE SAGDable OOIP (POIP)

Note: For A02 pad, recovery based on 100m spacing drainage box

Varying reservoir quality pad patterns

Two example well pairs provided in Subsection 3.1.1 – 7b) illustrate:

- B05-6: High reservoir quality
- B02-1: Medium reservoir quality
- Expect the same ultimate recovery longterm

Cumulative % recovery B02-1 & B05-6

селоуиз

B05-6 well pair

Well pair drilled but not producing Well pair currently on production Wedge Well[™] technology currently on production Well, expecting to use Wedge Well[™]

селоуиз

B02-1 well pair

© 2015 Cenovus Energy Inc. June 24, 2015

Well pair drilled but not producing

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

B02-1 iSOR in 2014

Why is B02P01 iSOR so high in 2014?

- Declining production rates has been declining since 2010
- Has produced over 2,700,000 bbl of oil
- Recovery rates of 76%
- Decline further accelerated by the B02W03 and B02W06 start ups
- Continue to maintain steam rates for BO2 pad pressure support and blowdown trial baseline.
- B02 Pad is operated on a pad level not overly concerned with an individual well having a high iSOR on this pad

74

B02-1 well pair – observation well 103/05-15

GP-5 (B0201 MID) 103051507606W400

Five year outlook – pad abandonments

 There are no anticipated pad abandonments for any of the Christina Lake wells in the next five years.

Wellhead steam quality

- Steam quality will be impacted by pipeline size and distance
- Current steam quality injected into all pads is calculated to be greater than 95%
- Currently steam head pressure is operated at 8.5 MPag with a corresponding steam temperature of 300°C
- Steam quality is not expected to impact well performance at this time

Subsection 3.1.1 – 7e) Injected fluids

Co-injection and blowdown trials

A01 pad methane co-injection

- Methane co-injection until October 2014
 - Natural gas was co-injected with steam into A01-1 to 3 and A01-5 & 6
 - The composition of this gas is ~99% pure methane as it is delivered to the wells from our main gas pipeline
 - Due to facility restriction on handling produced gas:
 - gas injection was intermittently shut off for extended periods
 - while co-injecting, gas injection rates were lower than the maximum approved rates
 - typical injection rates were 25 e3m3/d natural gas, 1,000 m3/d steam for the entire pad

A01 pad methane co-injection

- Methane co-injection experience (2007 2014)
 - Co-injection of methane with steam in SAGD has been demonstrated in the field to improve SOR
 - High percentage of injected methane appears to get produced preventing excessive accumulation in the steam chamber
 - Good understanding of how gas behaves in reservoir
 - o allow for increased understanding of drainage from I.H.S
- Pad partial/full blowdown as of November 2014
 - Steam shut-in and chamber pressure being increased through methane injection in order to mitigate bottom water influx

A01 partial/full-blowdown on A01 pad

- Pad partial/full blowdown as of November 2014
 - November 2014: steam ramp down began on the entire pad
 - February 2015: full steam shut-in to all wells on the pad. Pressure maintenance continued through natural gas injection.
 - current chamber average operating pressure ~ 2100 kPa_q
 - so far no negative impact has been observed with the pad operations as a result of full methane injection. It's too early to comment on the trial performance
 - average concentration for Nov 2014 March 2015
 - average methane injection rate 16 e3m3/d
 - CSOR has been maintained at 2.53 from November 2014 to March 2015 following a steady increase prior to steam ramp down

A01 pad general co-injection/blowdown performance

A01 pad phases of operation

Period	RF (%)	RF (%)	CSOR
	(SOIP)	(POIP)	(v/v)
Dec '05 – Dec '06 (co-injection: 12 months)	20.7 – 29.4 (0.73%/mo)	27.8 – 39.5 (0.98%/mo)	2.47 – 2.37
Dec '06 – Dec '07 (SAGD: 12 months)	29.4 – 34.2 (0.40%/mo)	39.5 – 45.9 (0.53%/mo)	2.37 – 2.36
Dec '07 – Oct '14 (intermittent/limited co- injection: 82 months)	34.2 – 54.0 (0.24%/mo)	45.9 – 72.5 (0.32%/mo)	2.36 – 2.53
Nov '14– Mar '15 (ramp/blowdown: 5 months)	54.0 — 54.4 (0.08%/mo)	72.5 – 73.0 (0.1%/mo)	2.53 – 2.53

B01/B02 pad rampdown/blowdown pilot

Conduct a temporary wind-down test on B01 and B02 pads

- timeframe: 6 months 1 year
- well pairs: B02-1 to B02-4 ; B01-1 to B01-4
- steam will be brought back on after test is complete

B01-1 to B01-4: Blowdown test (6 month test)

- shut-in steam on all four wells
 - using gas cap (top down blowdown) to maintain pressure
- current păd RF: 73% POIP

B02-1 to B02-4: Steam ramp-down test (1 year test)

- cut steam by 25% every 3 months (75%, 50%, 25%, 0%)
- current pad RF: 83% POIP

Planned start date: June 2015

- currently re-pressuring gas cap to ~2500 kPag in order to be in balance with bottom water
- steady SAGD operations to be continued until the wind-down test is started in mid-June 2015

B01/B02 pad rampdown/blowdown pilot location

 $\ensuremath{\textcircled{O}}$ 2015 Cenovus Energy Inc. June 24, 2015

B01/B02 pad rampdown/blowdown test setup

Subsection 3.1.1 – 7e) Injected fluids

A02-2 SAP project

What is SAP?

- Solvent-aided process is a technological enhancement applied to our SAGD operations that helps us maximize the amount of oil recovered. Small amounts of solvent such as light alkanes (e.g. butane) or natural gas liquids are co-injected with steam to enhance the oil recovery process and improve associated project economics.
- Solvents primarily decrease SOR, thereby reducing the water usage. Reduction in water usage means lower CAPEX and OPEX required to process the water.
- Reduced water usage leads to fewer GHG emissions, and smaller footprint
- Solvents accelerate the oil production rate and reduce the steam usage, leading to a lower SOR, increased revenue and increased reserves. A02-2 SAP at CL : 30% SOR reduction and 20% increase in production
- Co-injection of light alkanes along with steam allows for wider well spacing, which leads to smaller footprint, lower capital cost and higher revenue

© 2015 Cenovus Energy Inc. June 24, 2015

© 2015 Cenovus Energy Inc. June 24, 2015

Current A02-2 pilot

- Currently in low pressure ESP phase
- Injector BHP avg 2325 kPa
- Recycled butane injection only, no makeup butane at this time
- Will transfer butane injection over to A02-1
- Received blowdown approval on A02-2

A02-2 production

Pre and post A02-2 well: oil production

Pre and post SAP A02-2 well: CSOR and ISOR

93

A02-2 Conclusions

- We believe SAP has resulted in lower than usual SOR
- We believe SAP has resulted in faster steam chamber lateral growth that could affect future well spacing
- Current butane recovery is 65% and will increase during blowdown (we do not believe that we have lost much butane to thief zones)
- We believe that SAP has not resulted in dramatically higher rates due to geology and well profile

Subsection 3.1.1 – 7e) Injected fluids

Surfactant steam Process (SSP) pilot

SSP pilot description

Surfactant steam process (SSP)

Co-inject surfactant at <0.30 wt% of steam rate

село

© 2015 Cenovus Energy Inc. June 24, 2015

SSP well operation overview

- July 2013 First Steam
- August 2013 Conversion to gas lift
- November 2013 HP ESP (4000 kPa BHP)
- January 2014 Surfactant-steam co-injection begins

```
Surfactant-1 \rightarrow B11-10
Surfactant-2 \rightarrow B11-11
```

- June 2014 Present LP ESP (2800 kPa BHP)
- Results are promising, however steam chambers have communicated with neighboring wells and the overlaying gas cap, therefore more results are required
- Plan to continue the pilot to the end of 2015

Subsection 3.1.1 – 7e) Injected fluids

B01-7 condenSAP

CondenSAP pilot

CondenSAP

Using condensate mix as solvent

B01-7 CondenSAP

- Well pair currently operating on ESP
- Solvent injection: December 2012 to December 2013
- Currently bringing pressure in balance with gas cap

	Result	Comments
Cum. wt% solvent injected	5%	Solvent injection limited by vapour handling capacity and treating upsets in central processing facility (CPF).
Cum. solvent recovery (%)	15%	Solvent production limited by losses to top gas zone.

B01-07 production/steam

Condensate injection from 12-06-2012 to 12-08-2013

CondenSAP conclusions

- Relatively poor geology and facility issues have not allowed steady operation nor steady injection of condensate
- Pressure readings suggest that we have connected to the neighbouring gas cap
 - This would explain the low solvent recovery
- We do not have conclusive results from this pilot and it may have to be repeated

Subsection 3.1.1 – 7e) Injected fluids

B05-8 rise rate control test

Rise rate pilot

- Location of rise rate pilot was moved to B05-8
- Modifications to the design were required in
 order to make the compressor system operational
- Intent of pilot was to inject air and steam during the chamber rise phase:

- monitor if/how the shape of the chamber differs from regular SAGD as it grows vertically
- monitor changes in the rate of steam rise
- B05-8 steam chamber has connected to gas cap under regular SAGD ops
 - rise rate control opportunity missed on B05-8
 - no plan to progress pilot in 2015
 - continue to evaluate future locations for the rise rate pilot

Subsection 3.1.1 – 7f) 2014 key learnings

Operating SAGD with top gas, bottom water

Operations at Christina Lake

Thief zones:

- B01 to B11 pad are operating under a gas cap
- A01, B01 to B09 and B11 Pads have areas where Regional Bottom Water (BW) present with no shale break separating oil and BW

Well performance of these two situations will be discussed:

- gas cap communication only
- bottom water and gas cap communication

High pressure operations

For high pressure operations, the SAGD chamber has to be isolated from other zones

> no gas cap or bottom water contact

Gas cap at Christina Lake

селоуиз

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

107

B03-6: Gas Cap Communication

B03-6 Performance

Bottom Water Pressure Influence

2002-2006: Historical disposal into the local bottom water aquifer caused an increase to bottom water pressure

• moved disposal to remote location (15-35-076-06W4, 28 km from CPF) and saw immediate and significant drop in aquifer pressure

2010-2014: Regional activity from neighboring operators caused an increase to bottom water pressure

- reversed 1F5/3-16-076-06W4 local disposal well to a water production well
- developing an integrated strategy with regional partners to manage bottom water pressure

109

B06 Pad – Bottom water with no isolation

• <u>Blue</u> = bottom water

cenovus

- <u>Grey/Black/Orange</u> = mud barrier (isolates oil & water zones)
- Anywhere with blue and no grey: Oil in direct contact with water

© 2015 Cenovus Energy Inc. June 24, 2015

B06 pad: operating with bottom water

I deally, we would like to operate in perfect pressure balance with the bottom water

June 24, 2015

сепои

111

B06 pad produced water to steam ratio (PWSR)

© 2015 Cenovus Energy Inc. June 24, 2015

Subsection 3.1.1 – 7f) 2014 key learnings

Patented Wedge Well[™] technology

Patented Wedge Well[™] technology locations

B02 PAD:

BO4 PAD: B04W01 B04W02 B04W03 **B04W04 B04W05 B04W06** B04W07

Well pair drilled but not producing

Well pair currently on production

Wedge Well[™] technology currently on production

Well, expecting to use Wedge Well™ technology, drilled but not producing

114

Wedge Well[™] Placement

- Wedge Wells[™] are typically landed at the same height as neighbouring producer wells
- Where the opportunity exists to lower the Wedge Wells[™] relative to parent producers, they may be lowered by up to 2m
 - Variations greater than 2m are typically avoided, due to the operational impacts on parent pairs

A01 pad neighboring wells and patented Wedge Well[™] technology performance

B01 pad neighboring wells and patented Wedge Well[™] technology performance

сег

 B01W04,W05,W06 are located on the south side of B01 Pad

*Well using Wedge Well[™] technology

B02 pad neighboring wells and patented Wedge Well[™] technology performance

B03 pad neighboring wells and patented Wedge Well[™] technology performance

B03W01 is not operational

*Well using Wedge Well™ technology

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

119

B04 pad neighboring wells and patented Wedge Well[™] technology performance

сел

B04W01 & 02 have not been started up

*Well using Wedge Well[™] technology

Subsection 3.1.1 – 7f) 2014 key learnings

Wabiskaw Zone at Christina Lake

Zone Of interest: Wabiskaw

Over-pressured Wabiskaw first identified in April 2013 while attempting to drill a steam chamber core (107/06-15-76-6W4/00).

Conductive heating of bitumen in low-perm Wabiskaw from underlying steam chamber created an increase in reservoir pressure from ~2000 kPa to ~6500 kPa.

1AA061507606W400 CENOVUS FCCL LTD. CVE FCCL LEISMER 6-15-76-6 A1977300 Datum=573.3 Ground=570.3 TWP: 76 N - Range: 6 W - Sec. 15 Comp Date=1997-03-27 Correlation EACLES Depth Resistivity Porosity Calculated TVD AHT90(ILD) So(N/A) 0. aasticu 008 000 API ohm a AHT30(ILM) PHID(DPSS Core_So MD/ ohm.n 0000.600 unitless 0 CALKN/A SFLU SoMS(N/A) ohm.m 20000 PEF(N/A SwA(N/A) GRNorm(N/A VehicN/A Core_Por re So Curv(N/A ŵv 1SAND Water Cas FACIES FACIES Clearwater Fm Caprock WABISKAW 325 **High Pressure** $\frac{1}{2}$ Wabiskaw $\frac{1}{2}$ ~ 6 m Mud 🕇 SAGD PAY SAGD Pay SHBreak B Water Zone

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Wabiskaw observation wells in pressured area

сепочиѕ

Data Ranges over Jan 2014-April 2015 period

© 2015 Cenovus Energy Inc. June 24, 2015

Wabiskaw production: 107/06-15-76-6W4

Note: the well was shut-in on Oct. 29, 2014 to recomplete the well and install a single-well battery facility.

Wabiskaw pressure and flow rates

Note: the well was shut-in on Oct. 29, 2014 to recomplete the well and install a single-well battery facility.

Existing observation wells within operating area

Subsection 3.1.1 – 7g) Information requests

Well trajectory guidelines

List of re-drills/re-entry wells in 2014-2015

The list of re-drill/re-entry wells in 2014-2015 is summarized in table below:

UWI	WELLNAME	RE-DRILL/RE-ENTRY REASON
104/15-12-076- 06W4/00	CVE FCCL B10P01 LEISMER 15-12-76-6	Successfully drilled to a FTD of 1945m MD, unfortunately the BHA and drill string became stuck while back reaming at 1432m MD. After many days of attempting to retrieve the equipment, the internal components of the MWD tool were salvaged while the BHA and remainder of the drill string were left down hole. The well was side tracked at 761m MD.
104/15-12-076- 06W4/02	CVE FCCL B10P01 LEISMER 15-12-76-6 S01	

Summary of well spacing in existing & future pads

The well spacing in existing pads is summarized in table below:

SAGD pad	Inter well pair spacing
	[m]
A01	110
A02	100
B01	100
B02	100
B03	100
B04	100
B05	100
B06	100
B07	100
B08	70
B11	67
B09	64

Future Pad Spacing

 All pads drilled in 2015/2016 will have inter well spacing of 65m - 70m

129

Criteria to determine standoff from bottom water

Cenovus optimizes the well position from the base of the reservoir and bottom water

To maximize resource recovery and operational efficiency

Wells are targeted to land at ~50% oil saturation

- Excluding other factors such as potential barriers
- Planned trajectories are ~2m higher than this due to the drilling error that is consistently observed

Subsection 3.1.1 – 7g) Information requests

B02-2 bottom water influx

May 13, 2014 Application 1773237

B02-2 bottom water influx

- Bottom water influx into B02 pad due to regionally elevated bottom water pressure
- Risk of flooding B01, B02 chambers, similar to challenges on A01 pad
- Large developed steam chamber; therefore, re-pressurization with steam would not be efficient
- Ability to inject natural gas into the gas cap to support chamber pressures and bring us in balance with bottom water pressure

B02-2 chamber cooling

6-15 Natural gas injection

© 2015 Cenovus Energy Inc. June 24, 2015

134

B01/B02 BHP

Well name	Current IBHP*
B01-1	2516 kPa
B01-2	2494 kPa
B01-3	2495 kPa
B01-4	2490 kPa
B01-5	2504 kPa
B01-6	2518 kPa
B02-1	2557 kPa
B02-2	Bubble tube inoperable
B02-3	2652 kPa
B02-4	2507 Кра
B02-5	2566 kPa

BO1 BHT

- Bottomhole temperatures continue to rise with pressure
- No sign of bottom water cooling on any producing well

BO2 BHT

- Bottomhole temperature continue to rise with pressure.
- B02-2 had shown performance degradation due to bottom water influx – successfully reversed with repressurization operations

Chlorides

 All chlorides trending down with chamber repressurization

Path forward

- Bottom water has been mitigated
- Applied to AER to switch to air injection
- Once 2,500 kPag (corrected to account for bottom water piezometer stand-off) is reached, transition to rampdown/blowdown phase on B02-1 through B02-4, and B01-1 through B01-4
- Targeting Mid-June 2015 to begin blowdown trial
 - inject methane or air into section 15 gas cap to support pressure

B02-2 chamber temperature recovery

Subsection 3.1.1 – 7h) Pad production plots

Pad production plots

Requirements under subsection 3.1.1 7h) are located in Appendix 4

Subsection 3.1.1 – 8) Future plans

Kevin Beary Reservoir Engineer

Resource recovery strategy

Well/pad placement:

- 2015/2016 well pairs will be drilled as per the existing (or future) applications and approvals
- Well spacing/trajectories planned to be submitted for approval up to one year prior to construction/drilling

No changes in the overall resource recovery strategy (operating pressure, composition of injected fluid)

Any deviations will be applied for as future amendments

144
Filed applications

Category	Application	Date filed
3	Phase H and eastern expansion	March, 2013
1	Emulsion circulation during unscheduled plant shutdown	April, 2014
2	B01/B02 rampdown/blowdown pilot	April, 2014
1	Phase D aerial cooler equipment change	June, 2014
2	Casing gas re-injection B03-7	March, 2014
2	Air co-injection trial B05-8	July, 2014
2	L pad trajectory amendment	June, 2014
2	Producer well length extension (B10-1 to B10-5)	May, 2014
2	A01 permanent blowdown	August, 2014
2	A02-2 SAP methane injection to demonstrate butane recovery	August, 2014
2	B13 well length extension	December, 2014
cenovus		© 2015 Cenovus Energy Inc. 145

June 24, 2015

Filed applications

Category	Application	Date filed
1	Ph CDE oil debottleneck	Feb, 2015
1	Multi directional wells SAGD enhanced lengths	March, 2015
2	Non-condensable gas ventilation well (B08 or H01)	March, 2015
2	L09, J05, L07 well length extension	March, 2015

Potential future applications

Category	Application	Planned filing date
2	Sustaining pad trajectory amendment	Q3 2015
2	B03/B04/B07 co-injection/blowdown	Q3 2015
3	Development area expansion	Q4 2015

Drilling plans - 2015

Pad	Pad type	Well count	Timing
J03	Production	11 well pairs	Q1 2015
L03	Production	7 well pairs and 2 wells*	Q1 2015
L05	Production	7 well pairs and 2 wells*	Q2 2015
B13	Production	12 well Pairs	Q2 2015
J01	Production	11 well pairs	Q2 2015
L09	Production	11 well Pairs	Q3 2015
MW1	Brackish source	3 wells	Q1 2015
MW4	Brackish source	3 wells	Q2 2015

*Wells using Wedge Well[™] technology

SAGD drilling plans 2015

cenovus

Drilling plans - 2016

Pad	Pad type	Well count	Timing
J07	Production	12 well pairs	Q1 2016
B07	Production	8 wells*	Q1 2016
JO9	Production	12 well pairs	Q1 2016
H09	Production	11 well pairs and 1 well*	Q1 2015
JO5	Production	10 well pairs and 1 well*	Q2 2016
H07	Production	12 well pairs	Q2 2016
B12	Production	11 well pairs	Q4 2016
RD2	Disposal	3 wells	Q2 2016

*Wells using Wedge Well[™] technology

SAGD drilling plans 2016

cenovus

Source and disposal drilling plans

© 2015 Cenovus Energy Inc. June 24, 2015

Future strat well drilling plans 2016

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Steam strategy 2015

- Phase CDE second stage OTSG adding 6,695 m³/d incremental capacity, bringing total capacity to 46,218 m³/d
- One additional pad planned to start up with Phase CDE second stage OTSG: B07B (11 Well Pairs)
- The following pads are planned to start up for sustaining production: B05 Wedge Well[™] technology, F01
 - total of 12 well pairs and nine wells using Wedge Well[™] technology
- Blowdown operations:
 - planned to continue at A01 pad
 - pilot test planned to commence at B01-1 to B01-4 and B02-1 to B02-4
- No steam shortages expected on existing pads

Steam strategy 2016

- Phase F OTSG adding 14,453 m³/d incremental capacity, bringing total capacity to 60,672 m³/d
- Two additional pads planned to start up with Phase F OTSG: H01, H03
 - total of 24 well pairs
- The following pads are planned to start up for sustaining production: B10, J03, L03, J01, B06 Wedge Well[™] technology
 - total of 39 well pairs and nine wells using Wedge Well[™] technology
- Rampdown/blowdown operations:
 - plan to continue at A01 pad
 - plan to continue at B01-1 to B01-4 and B02-1 to B02-4
 - plan to commence on B03, B04, B07 pad
- No steam shortages expected on existing pads

Appendix 1 Subsection 3.1.1 – 2)

Heave data

July 2, 2008 to October 23, 2014 (~76 months)

May 18, 2012 to October 23, 2014 (~29 months)

May 13, 2013 to October 23, 2014 (~17 months)

April 14, 2014 to October 23, 2014 (~6 months)

Cumulative vertical deformation: Phase C/D/E

May 18, 2012 to October 23, 2014: Photo 1 May 13, 2013 to October 23, 2014: Photo 2 April 14, 2014 to October 23, 2014: Photo 3

Geomechanical and surface heave (Coherent Targets)

селоуиз

Geomechanical and surface heave (Coherent Targets)

сел

Cumulative vertical deformation: Phase A

July 2, 2008 to October 23, 2014 (~76 months)

- Little to no deformation on CR 8 & 23
- 7 Corner Reflectors removed due to expanding infrastructure

150

0

+150

Cumulative vertical deformation: Phase B

July 2, 2008 to October 23, 2014 (~76 months)

Cumulative vertical deformation: Phase C/D

May 18, 2012 to October 23, 2014

сел

Measured CRs

© 2015 Cenovus Energy Inc. June 24, 2015 16 6_

Cumulative vertical deformation: Phase E

April 14, 2014 to October 23, 2014 (~6 months)

~25mm

25mm ~

Appendix 2 Subsection 3.1.1 – 5d)

Piezometer data

Piezometer summary

	Year	Cemented							330.0	Gas	
UWI	Landed	or Hanging	TVD	Piezometer Location	Pad				337.3	Gas	
			254.5	Water	1AA/13-11-76-6W4/00	1AA/13-11-76-6W4/00			350.0	SAGD	
1AA/6-35-75-6W4/00			204.0	Valei					357.0	SAGD	
	2011	Cemented	306.5	Water	Clearwater		2010	Cemented	379.0	SAGD	B05 Pad
			263.0	Water					332.0	Gas	
100/7-36-75-6W4/00	2011	Cemented	315.0	Water	Clearwater				342.0	SAGD	
	2013	Hanging	419.0	Water	McMurray BW	100/15-11-76-6W4/00			348.0	Gas	
100/10-34-75-6W4/00	2008	Hanging	321.0	Water	Clearwater		2005	Competed	314.0	Water	BOE Dod
			264.0	Water			2003	Cemented	222.5	Gas	BUJ Pau
100/12-18-76-5W4/00			300.0	Water	Clearwater				348.0	SACD	
	2010	Cemented	412.0	Water	McMurray BW	102/6-12-76-6W4/00			366.0	Gas	
			342.5	Gas	,	102/012/00/04/00			378.0	SAGD	
			366.0	Gas			2005	Cemented	395.0	SAGD	B06 Pad
144/6-2-76-6W4/00			202.5	546D			2000	ochichica	331.5	Gas	500144
10,02,000,00			302.5	SAGD					349.5	Gas	
			390.0	SAGD		100/13-12-76-6W4/00			360.0	SAGD	
	2002	Cemented	401.5	vvater	C06 Pad		2008	Cemented	380.0	SAGD	B03 Pad
102/3-8-76-6W4/00	2005	Hanging	418.5	Water	McMurray BW				335.0	Gas	
100/07-10-76-6W4/00			350.5	SAGD					346.0	Gas	
,	2011	Cemented	398.0	Water	C02 Pad	1AA/5-13-76-6W4/00			358.0	SAGD	
100/14-10-76-6W4/00	2011	Cemented	393.5	Water	C01 Pad				368.0	SAGD	
			287.0	Water			1998	Cemented	383.0	SAGD	B07 Pad
102/8-11-070-06004/00	2012	Cemented	338.0	Gas	B03 Pad				333.8	Gas	
			340.0	Gas					343.5	Gas	
100/12-11-76-6\\///00			345.0	Gas		100/9-13-76-6W4/00			375.0	SAGD	
100/12-11-70-0004/00			362.0	SAGD					398.0	SAGD	
	2008	Cemented	385.0	SAGD	B05 Pad		2005	Cemented	407.0	Water	B10 Pad

Piezometer summary

				-							
			323.5	Gas					325.0	Gas	
			345.0	Gas					334.0	Gas	
100/1-14-76-6W4/00			355.0	SAGD		100/8-15-76-6W4/00			342.5	Gas	
			372.0	SAGD					356.0	SAGD	
	2008	Cemented	402.0	Water	B04 Pad		2004	Cemented	374.5	SAGD	C03 Pad
102/5-14-76-6W4/00			345.0	SAGD			2001		330.0	Gas	
	2010	Cemented	393.0	Water	B11 Pad				347.0	SAGD	
100/9-14-76-6W4/00	2012	Cemented	279.2	Water	Clearwater	144/15 15 76 614/00			259.0	SAGD	
			322.0	Gas		IAA/13-13-70-0004/00			350.0	SAGD	
			332.0	Gas					370.0	SAGD	
102/11-14-76-6W4/00			344.5	Gas			2002	Cemented	403.0	Water	D01 Pad
			362.0	SAGD		1AA/15-02-076-06W4	2013	Cemented	395.0	Water	
	2005	Cemented	385.0	SAGD	B11 Pad	100/00 15 076 6044			275.0	Water	
			226.2	Water		100/09-15-070-0004	2013	Cemented	280.0	Water	
112/2-15-76-6W4/00			280.2	Water		100/10-03-76-06W4	2011	Hanging	300.0	Water	Broken
	2012	Cemented	348.3	Gas	B01 Pad				331.5	Wabiskaw	
			342.5	Gas					333.5	Wabiskaw	
102/3-15-76-6W4/00			354.8	SAGD					335.5	Wabiskaw	
	2011	Cemented	366.0	SAGD	B01 Pad	108/06-15-76-06W4	2013	Cemented	337.0	Wabiskaw	Wabiskaw
100/4-15-76-6W4/00			351.5	SAGD					237.0	Water	
	2011	Cemented	363.5	SAGD	B01 Pad	1AB/14-14-76-6W4	2014	Cemented	286.0	Water	Wabiskaw
			323.0	Gas	-				336.5	Wabiskaw	
100/5 15 76 6344/00			340.5	Gas					239.0	Water	
100/3-13-70-0004/00			365.0	SAGD		1AB/13-13-76-6W4	2014	Cemented	290.0	Water	
	2004	Cemented	396.0	Water	B01/B02 Pad	2.12, 22 23 70 0004			395.0	Water	
	2004	comenteu	000.0		001/002 Fau				000.0	wate/	

Piezometer summary

			244.0	Water	
1AB/01-10-76-6W4	2014	Cemented	296.0	Water	
			402.0	Water	
			259.0	Water	
1AA/12-03-76-6W4	2014	Cemented	307.0	Water	
			422.0	Water	
			265.0	Water	
140/01/02/75 5044			379.0	Water	
IAB/01-02-70-0VV4			434.0	SAGD	
	2014	Cemented	448.0	Water	
140/15 14 76 6144			225.0	Water	
IAB/13-14-70-0004	2014	Cemented	284.0	Water	No SCADA
140/11 14 76 6144			221.0	Water	
IAB/11-14-70-0VV4	2014	Cemented	277.0	Water	
			255.0	Water	
1AC/06-02-76-6W4	2014	Cemented	363.0	Water	
			410.0	Water	
140/02 14 75 5344			230.0	Water	
IAB/03-14-70-0004	2014	Cemented	285.0	Water	
100/11-15-76-6W4	2014	Hanging	335.0	Wabiskaw	Wabiskaw
			225.0	Water	
			270.0	Gas	
			340.0	Water	
1AB/13-14-76-6W4/0	2015	Cemented	390.0	Water	L02
102/03-14-76-6W4/0	2012	Hanging	283.0	Water	
			290.0	Water	
1AC/16-11-76-6W4/0	2014	Cemented	331.5	Water	
			246.0	Water	
1AB/16-03-76-6W4/0	2014	Cemented	299.0	Water	
1AB/03-02-76-6W4/0	2014	Cemented	322.0	Water	

AA/06-35-075-06W4/0

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

00/07-36-075-06W4/0

00/10-34-075-06W4/0

00/12-18-076-05W4/0

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

AA/06-02-076-06W4/0

 $\ensuremath{\textcircled{O}}$ 2015 Cenovus Energy Inc. June 24, 2015

02/03-08-076-06W4/0

00/07-10-076-06W4/0

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

00/14-10-076-06W4/0

© 2015 Cenovus Energy Inc. June 24, 2015

02/08-11-076-06W4/0

00/12-11-076-06W4/0

AA/13-11-076-06W4/0

00/15-11-076-06W4M

© 2015 Cenovus Energy Inc. June 24, 2015

02/06-12-076-06W4/0

00/13-12-076-06W4/0

AA/05-13-076-06W4/0

00/09-13-076-06W4/0

© 2015 Cenovus Energy Inc. June 24, 2015

00/01-14-076-06W4/0

© 2015 Cenovus Energy Inc. June 24, 2015

02/05-14-076-06W4/0

00/09-14-076-06W4/0

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

190

02/11-14-076-06W4/0

© 2015 Cenovus Energy Inc. June 24, 2015

12/02-15-076-06W4/0

02/03-15-076-06W4/0

© 2015 Cenovus Energy Inc. June 24, 2015

00/04-15-076-06W4/0

00/05-15-076-06W4M

00/08-15-076-06W4/0

197

AA/15-02-076-06W4/0

© 2015 Cenovus Energy Inc. June 24, 2015

00/09-15-076-06W4/0

08/06-15-076-06W4/0

AB/14-14-076-06W4/0

AB/13-13-076-06W4/0

AB/01-10-076-06W4/0

AA/12-03-076-06W4/0

AB/01-02-076-06W4/0

AB/11-14-076-06W4/0

AC/06-02-076-06W4/0

AB/03-14-076-06W4/0

© 2015 Cenovus Energy Inc. June 24, 2015

00/11-15-076-06W4/0

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

© 2015 Cenovus Energy Inc. June 24, 2015
Appendix 3 Subsection 3.1.1 – 5d)

RST & observation temperature data

Thermocouples in observation wells

Well UWI	Top T/C Depth (MD)	Bottom T/C Depth (MD)	# Points	Well Observed	Observed Well Section	Needs Work	Instrumentation TVD of SAGD Producer (mKb)	Instrumentation TVD of SAGD Injector (mKb)	Lateral Offset to SAGD Producer (m)	Lateral Offset to SAGD Injector (m)
104/03-16-076-06W4	319	390	32	A022	Heel	Ν	389	384	4	4
102/05-15-076-06W4	334	406	36	B013	Heel	N	380	374	15	15
102/06-15-076-06W4	340	390	26	B013	Toe	N	385	381	3	3
104/06-15-076-6W4	344	394	26	B014	Middle	Ν	378	372	0	0
103/05-15-076-6W4	323	385	32	B021	Mid	N	377	371	39	39
102/12-15-076-6W4	344	406	32	B022	Heel	N	382	377	2	2
100/11-15-076-6W4	350	400	26	B024	Тое	Ν	381	376	5	5
102/10-11-076-6W4	346	396	27	B032	Heel	Ν	387	383	0	0
100/16-11-076-6W4	347	407	30	B033	Toe	N	389	384	0	0
100/13-12-076-6W4	344	406	30	B035	Тое	N	391	386	0	0
100/09-11-076-6W4	350	408	31	B036	Heel	N	390	385	0	0
100/01-14-076-6W4	341	387	24	B041	Heel	N	382	379	0	0
100/02-14-076-6W4	340	394	28	B042	Тое	Y	384	379	0	0
102/07-14-076-6W4	337	391	28	B045	Heel	N	385	380	0	0
102/03-14-076-6W4	336	390	28	B046	Тое	N	386	381	0	0
100/15-11-076-6W4	338	390	27	B052	Heel	N	385	380	44	44
102/15-11-076-6W4	335	403	34	B053	Mid	N	384	378	0	0
100/11-11-076-6W4	335	391	29	B056	Toe	Y	389	385	0	0
100/14-11-076-6W4	340	394	28	B058	Heel	N	384	379	0	0
100/05-13-076-6W4	321.5	394	30	B072	Тое	N	388	384	0	0
100/06-13-076-6W4	342	396	27	B076	Toe	Y	395	390	0	0
102/03-15-076-6W4	293	351	30	B017	Тое	N	377	372	0	0
103/03-15-076-6W4	337	395	30	B017	Toe	N	377	372	20	20
104/03-15-076-6W4	337	395	30	B017	Toe	N	377	372	50	50
100/04-15-076-6W4	333	363	30	B017	Heel	N	377	372	0	0
102/04-15-076-6W4	334	394	30	B017	Heel	N	377	372	30	30
103/04-15-076-6W4	335	395	30	B017	Heel	N	377	372	50	50
104/04-15-076-6W4	336	396	30	B017	Heel	N	377	372	70	70

Thermocouples in observation wells

Well UWI	Top T/C Depth (MD)	Bottom T/C Depth (MD)	# Points	Well Observed	Observed Needs Instrumentation Ins wed Well Work TVD of SAGD T Section Work Producer (mKb) In		Instrumentation TVD of SAGD Injector (mKb)	Lateral Offset to SAGD Producer (m)	Lateral Offset to SAGD Injector (m)	
100/12-15-076-6W4	329	385	29	B026	Heel	N	380	375	6	6
1AA/15-15-076-6W4	329	385	23	B027	Тое	N	380	375	1	1
100/13-15-076-6W4	327	385	24	B029	Heel	N	374	368	6	6
1AA/13-11-076-6W4	330	394	32	B058	Mid	Y	380	375	33	33
102/14-11-076-6W4	340	398	30	B058	Heel	N	384	379	20	20
103/06-12-76-6W4	349	407	28	B062	Тое	Y	391	386	0	0
102/06-12-76-6W4	345	407	27	B064	Mid	N	391	386	15	15
102/05-12-76-6W4	348	402	24	B066	Тое	Y	395	390	0	0
100/11-12-76-6W4	345	403	30	B067	Heel	N	397	392	0	0
102/11-14-76-6W4	344	392	40	B11-7	Mid	Y	377	372	18	18
102/05-14-76-6W4	334	386	27	B11-5	Mid	Y	377	372	17	17
100/05-14-76-6W4	329	390	27	B11-4	Mid	N	375	369	18	18
103/05-14-76-6W4	332	390	25	B11-3	Mid	N	375	370	14	14
100/01-15-76-6W4	325	387	32	B08-4	Heel	Y	375	370	0	0
102/01-15-76-6W4	323	385	32	B08-3	Mid	N	378	372	20	20
100/13-11-76-6W4	344	394	26	B08-7	Mid	N	379	374	0	0
108/12-11-76-6W4	332	390	30	B08-10	Тое	N	382	376	0	0
102/11-14-76-6W4	260	305	20	B11-11	Mid	Y	378	373	18	18
100/12-13-76-6W4	350	400	25	F01-9	Mid	Y	394	385	14	14
100/14-13-76-6W4	340	394	27	F01-7 F01-8	Heel	N	391	384	43	43
100/11-13-76-6W4	350	400	25	F01-4 F01-5	Heel	N	384	388	35	35
108/06-13-76-6W4	340	393	28	F01-1 F01-2	Mid	Y	390	385	40	40
102/15-12-76-6W4	270	310	26	B06	Build	N	333	328	5	5
102/15-12-76-6W4	313	390	14	B09-6	Mid		392	387	12	12
102/01-13-76-6W4	340	390	25	B09-1	Heel	Y	390	385	20	20
100/02-13-76-6W4	340	395	28	B09-4 B09-5	Heel	Y	387	382	32	32
102/02-13-76-6W4	350	400	26	B09-6 B09-7	Build	Y	373	368	30	30
100/07-13-76-6W4	350	395	24	B09-10	Build	N	380	375	16	16
100/02-16-076-06W4	400	330	30	A02-4	Heel	N	387	382	17	17
100/01-16-076-06W4	395	325	30	A02-4	Тое	N	385	380	10	10

RST logs A022 pad

TO-33 (A022_HEEL) 104031607606W400

RST logs B01 pad

OB-5 (B0103 HEEL) 102051507606W400

селоуиз

OB-4 (B0103 TOE) 102061507606W400

Г	Correlation	FACIE	Depth		Resistivity	RST_SO		RST_SG		Temperature				
Е	GR		<md< td=""><td></td><td>AHT90</td><td></td><td colspan="2">SO_2013</td><td></td><td colspan="2">SG_2013</td><td colspan="2">T_Mar14</td><td></td></md<>		AHT90		SO_2013			SG_2013		T_Mar14		
) GAPI150			0.2	OHMM 2000	0	V/V	1	0	V/V	1	ο ι	JNKNOWN	300
Е			TVDSS>		AHT60		SO_2012			SG_2012			T_Jan12	
				0.2	OHMM 2000	0	V/V	1	0	V/V	1	ο ι	JNKNOWN	300
н					Oil		SO_2011			SG_2011			T_Jan11	
					On I	0	unitless	1	0	unitless	1	ο ι	JNKNOWN	300
н					[Oil]		SO_2014			SG_2014			T_Feb10	
							V/V	1	0		1	0 L	JNKNOWN	300
I							RST_SO			RST_SG				

OB-6 (B0104 MID 104061507606W400)

селоуиз

OB-11 (B017 Heel) 100041507606W400

OB-12 (B017 Heel) 102041507606W400

селоуиз

OB-13 (B017 Heel) 103041507606W400

селоуиз

OB-14 (B017 Heel) 104041507606W400

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015 _____

OB-15 (B017 Heel) 102031507606W400

селоүиş

OB-16 (B017 Heel) 103031507606W400

селоуиз

OB-17 (B017 TOE) 104031507606W400

RST logs B02 pad

(Btw half B021-11) 100051507606W400

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

234

GP-5 (B0201 MID) 103051507606W400

OB-3 (B0202 HEEL) 102121507606W400

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

OB-2 (B0204 TOE) 100111507606W400

селоуиз

B027T (B0207 TOE) 110151507606W400

RST Logs B03Pad

B32H (B0302 HEEL) 102101107606W400

селоуиз

B33T (B033 TOE) 100161107606W400

B35T (B035 TOE) 100131207606W400

селоуиз

B36H (B036 HEEL) 100091107606W400

селоуиз

RST logs B04 pad

B41H (B041 HEEL) 100011407606W400

B42T (B042 TOE) 100021407606W400

селоуиз
B45H (B045 HEEL) 102071407606W400

селоуиз

No themo data or RST after 2012

B46T (B0406 TOE) 102031407606W400

RST logs B05 pad

B52H (B052 HEEL) 100151107606W400

селоуиз

B53M (B053 MIDDLE) 102151107606W400

селоуиз

B56T (B056 TOE) 100111107606W400

B58H(1) (B058 HEEL) 100141107606W400

B58H(2) (B058 HEEL) 102141107606W400

селоуиз

RST logs B06 pad

B62T (B062 TOE) 103061207606W400

селоуиз

B064 (B064 Middle) 102061207606W400

селоуиз

B66T (B06_6 Toe) 102051207606W400

селоуиз

B67H (B06_7 Heel) 100111207606W400

селоуиз

RST logs B07 pad

B72T (B07_2 Toe) 100051307606W400

B76T (B07_6 Toe) 100061307606W400

селоуиз

RST logs B08 pad

B0810T (B0810 TOE) 108121107606W400

селоуиз

B083M (B0803 MID) 102011507606W400

селоуиз

B084H (B0804 HEEL) 100011507606W400

селоуиз

B087M (B0807 MID) 100131107606W400

селоуиз

RST logs B11 pad

B11_04 MID 100051407606W400

селоуиз

B11_11 MID 102111407606W400

B11_03 MID 103051407606W400

селоуиз

Appendix 4 Subsection 3.1.1 – 5d)

Injection pressures

A01 Pad

A02 Pad

B01 Pad

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

BO2 Pad

© 2015 Cenovus Energy Inc. June 24, 2015

B02C Pad

селоуиз

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

B03 Pad

© 2015 Cenovus Energy Inc. June 24, 2015

B04 Pad

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

B05 Pad

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

B06 Pad

селоуиз

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

B07 Pad

© 2015 Cenovus Energy Inc. June 24, 2015
B08 Pad

© 2015 Cenovus Energy Inc. June 24, 2015

B09 Pad

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 24, 2015

B11 Pad

Appendix 5 Subsection 3.1.1 – 7h) Pad production data

Christina Lake A Pad Performance

селоуиз

Christina Lake A02 Pad Performance

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Christina Lake B01 Pad Performance

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Christina Lake B02 Pad Performance

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Christina Lake B03 Pad Performance

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Christina Lake B04 Pad Performance

селоуиз

Christina Lake B05 Pad Performance

селоуиз

Christina Lake B06 Pad Performance

селоуиз

Christina Lake B07 Pad Performance

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Christina Lake B02C Pad Performance

селоуиз

Christina Lake B08 Pad Performance

селоуиз

Christina Lake B09 Pad Performance

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Christina Lake B11 Pad Performance

селоуиз

© 2015 Cenovus Energy Inc. June 24, 2015

Cenovus Christina Lake In-situ Oil Sands Scheme 8591 2014 Update

Surface June 25, 2015

Oil & gas and financial information

Oil & gas information

The estimates of reserves and contingent resources were prepared effective December 31, 2014 and the estimates of bitumen initially-in-place were prepared effective December 31, 2012. All estimates were prepared by independent qualified reserves evaluators, based on definitions contained in the Canadian Oil and Gas Evaluation Handbook and in accordance with National Instrument 51-101. Additional information with respect to the significant factors relevant to the resources estimates, the specific contingencies which prevent the classification of the contingent resources as reserves, pricing and additional reserves and other oil and gas information, including the material risks and uncertainties associated with reserves and resources estimates, is contained in our AIF and Form 40-F for the year ended December 31, 2014, available on SEDAR at www.sedar.com, EDGAR at www.sec.gov and on our website at cenovus.com.

There is no certainty that it will be commercially viable to produce any portion of the contingent resources. There is no certainty that any portion of the prospective resources will be discovered. If discovered, there is no certainty that it will be commercially viable to produce any portion of those resources. Actual resources may be greater than or less than the estimates provided.

Total bitumen initially-in-place (BIIP) estimates, and all subcategories thereof, including the definitions associated with the categories and estimates, are disclosed and discussed in our July 24, 2013 news release, available on SEDAR at sedar.com and at cenovus.com. BIIP estimates include unrecoverable volumes and are not an estimate of the volume of the substances that will ultimately be recovered. Cumulative production, reserves and contingent resources are disclosed on a before royalties basis. All estimates are best estimate, billion barrels (Bbbls). *Total BIIP* (143 Bbbls); *discovered BIIP* (143 Bbbls); *discovered BIIP* (143 Bbbls); *discovered BIIP* (50 Bbbls); prospective resources (8.5 Bbbls); *unrecoverable portion of discovered BIIP* (42 Bbbls). Any contingent resources as at December 31, 2012 that are sub-economic or that are classified as being subject to technology under development have been grouped into the unrecoverable portion of discovered BIIP. Petroleum initially-in-place (PIIP) estimates for Pelican Lake are effective December 31, 2012 and were prepared by McDaniel. All estimates are best estimate discovered PIIP volumes as follows: *Mobile Wabiskaw* total PIIP (2.11 Bbbls); cumulative production (0.11 Bbbls); reserves (0.25 Bbbls); unrecoverable protocored 0.03 Bbbls); unrecoverable discovered PIIP (1.72 Bbbls); undiscovered PIIP (1.62 Bbbls); unrecoverable protocion (0.11 Bbbls); unrecoverable discovered PIIP (1.28 Bbbls); contingent resources (0.25 Bbbls); unrecoverable discovered PIIP (1.26 Bbbls); contingent resources (0.25 Bbbls); contingent resources (0.25 Bbbls); unrecoverable discovered PIIP (1.26 Bbbls); unrecoverable discovered PIIP (1.33 Bbbls); contingent resources (0 Bbbls); unrecoverable discovered PIIP (0 Bbbls). *Immobile Wabiskaw* total PIIP (1.33 Bbbls); discovered PIIP (1.33 Bbbls); uncenter of 0.05 Bbbls); uncenter of

Certain natural gas volumes have been converted to barrels of oil equivalent (BOE) on the basis of one barrel (bbl) to six thousand cubic feet (Mcf). BOE may be misleading, particularly if used in isolation. A conversion ratio of one bbl to six Mcf is based on an energy equivalency conversion method primarily applicable at the burner tip and does not represent value equivalency at the well head.

Non-GAAP measures

Certain financial measures in this document do not have a standardized meaning as prescribed by IFRS such as, Operating Cash Flow, Cash Flow, Operating Earnings, Free Cash Flow, Debt, Net Debt, Capitalization and Adjusted Earnings before Interest, Taxes, Depreciation and Amortization ("Adjusted EBITDA") and therefore are considered non-GAAP measures. These measures may not be comparable to similar measures presented by other issuers. These measures have been described and presented in order to provide shareholders and potential investors with additional measures for analyzing our ability to generate funds to finance our operations and information regarding our liquidity. This additional information should not be considered in isolation or as a substitute for measures prepared in accordance with IFRS. Readers are encouraged to review our most recent Management's Discussion and Analysis, available at cenovus.com for a full discussion of the use of each measure.

[™] denotes a trademark of Cenovus Energy Inc. © 2015 Cenovus Energy Inc.

Advisory

This document contains forward-looking information prepared and submitted pursuant to Alberta regulatory requirements and is not intended to be relied upon for the purpose of making investment decisions, including without limitation, to purchase, hold or sell any securities of Cenovus Energy Inc. Certain resources estimates contained herein are not reported in accordance with National Instrument 51-101 and are provided solely for the purpose of complying with Alberta regulatory requirements.

Additional information regarding Cenovus Energy Inc. is available at <u>cenovus.com</u>

Strong integrated portfolio

TSX, NYSE | CVE

Enterprise value	C\$25 billion
Shares outstanding	829 MM
2015F production	
Oil & NGLs	204 Mbbls/d
Natural gas	438 MMcf/d
2014 proved & probable reserves	3.9 BBOE
Bitumen	
Economic contingent resources*	9.3 Bbbls
Discovered bitumen initially in place*	93 Bbbls
Lease rights**	1.5 MM net acres
P&NG rights	5.6 MM net acres
Refining capacity	230 Mbbls/d net

Values are approximate. Forecast production based on midpoints of January 28, 2015 guidance. Cenovus land at December 31, 2014. *See advisory. **Includes an additional 0.5 million net acres of exclusive lease rights to lease on our behalf and our assignee's behalf.

Area Map

селоуиз

Subsection 3.1.2 – 1) Facilities

Ben Lee Process Engineer

Facility summary

Inter Pipeline Polaris operational

- New diluent pipeline for shipments to both Foster Creek (FC) and Christina Lake (CL)
- Began accepting deliveries at CL in October
- More stable supply and quality
- Will eventually support the entire facility in five years

Phase A/B turnaround completed

- Took place from May 3 to May 19 including ramp down/up
- Focus on OTSGs, Process area, and Flare Header
- Managed to offload emulsion into CDE facility to reduce impact to production
 - Only lost ~25,000 bbls due to TA

селоуиз

Detailed plot plan – Phase C/D/E

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2-1a) June 25, 2015

Detailed plot plan – Phase A/B and C/D/E water treatment

© 2015 Cenovus Energy Inc. Section 3.1.2-1a) June 25, 2015

Process schematic – Phase A/B

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2-1b) June 25, 2015

Process schematic – Phase C/D/E

© 2015 Cenovus Energy Inc. Subsection 3.1.2-1b) June 25, 2015

Process schematic – Phase C/D/E

селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2-1b) June 25, 2015

Phase C/D/E

Process schematic – Phase C/D/E

© 2015 Cenovus Energy Inc. Subsection 3.1.2-1b) June 25, 2015

Facility modifications

No major modifications made to Phase A/B/C/D/E

- Blowdown boiler addition expected in 2015
- CL1F expansion expected in 2016

Subsection 3.1.2 – 2) Facility performance

Ben Lee Process Engineer

Plant performance

Exceeded design performance:

- Steam plant has achieved higher rates than nameplate design (106%, 42,000 t/d vs nameplate 39,523 t/d)
- Water treatment (de-oiling) has achieved higher rates than nameplate design through each individual train

(104%, 51,032 t/d vs nameplate 49,146 t/d)

 Oil treating has achieved higher rates than nameplate design (115%, 159,540 bbls/d vs 138,800 bbls/d)

Issues:

Emulsion chemical treating program required optimization

Plant performance

Treating success

- Slop generation was one of major plant concerns in previous years, compounded by increased production
- Changes to chemical injection program in March 2014 improved oil treating performance while significantly reducing slop generated
- Slop handling is now completely internalized within the facility, with little to no offsite management

Bitumen treatment

Process

- Capacity of 138,800 bbls/d
- Have consistently achieved rates of 138,800 bopd (high of 159,540 bbls or 115% of design achieved)
- Have reduced issues with treating and water quality due to:
 - Optimized chemical treating
 - Improving operating procedures
 - Modifications to control logic
- Completed trial to examine maximum throughput capabilities of CDE process trains and determine what are constraints
- Implemented new diluent injection logic to more accurately control density throughout process trains

Water treatment

De-oiling

- Capacity of 49,146 t/d of water
- Flowed up to 51,032 t/d of water
- Issues in de-oiling are:
 - Water cooling at high flow rates
 - Fouling of heat exchangers
 - Deoiling efficiency at higher throughputs

Water treatment

- Blowdown recycle into the produced water treatment trains and BFW tank with no adverse impacts up to 54% of total blowdown volumes produced
- No major issues to report

Steam generation

Steam generation via 15 OTSGs

- Design capacity of 39,523 m³/d CWE dry steam
- Have achieved rates in excess of 42,000 m³/d CWE dry steam
- Typical operation: 82% quality
 - Tested operation of four OTSGs at 85% quality while maintaining blowdown recycle
 - Observed accelerated fouling rate compared to baseline OTSGs operating at 82%
 - Rigorous monitoring program including NDT, DT, and continuous boiler performance monitoring in place

*Note – Plot represents monthly power imports. No operating power generation facilities at Christina Lake

Gas usage

Gas flared

Greenhouse gas emissions

Greenhouse gas emissions are reported to AER on yearly basis for review

- Q1 2015 total total direct emissions by gas type
 - CO₂ 458,443 tonnes CO₂e
 - $CH_4 450$ tonnes CO_2e
 - N₂O 727 tonnes CO₂e
- 2014 total direct emissions by gas type
 - CO₂ –1,824,438 tonnes CO₂e
 - CH₄ 3,805 tonnes CO₂e
 - N₂O 2,903 tonnes CO₂e

*Note – Only the 2014 GHGs have been verified and submitted, the 2015 numbers are still preliminary.

Subsection 3.1.2 – 3) Measurement and reporting (MARP)

Colin Read Production Engineer

Measurement, Accounting & Reporting Plan (MARP) (Directive 042)

Water imbalance exceedance

- Correction factors were applied to disposal volumes reported by the MARP meters as a result of inconsistencies between installed orifice plates, data sheets, and DCS calibration factors for the months of January to November, 2014.
- A letter of self disclosure for the water imbalance was submitted to AER on February 13, 2015.

2014 MARP SIRs addressed:

- 2014 SIRS addressed. Majority of SIRs and responses addressed metering discrepancies between the MARP document and schematic.
- Future phase meters clearly labeled for 2015 submission
- Updated tank lists and process schematics to reflect current information

селоуиз

Simplified MARP schematic

Injection volumes

Steam injection

- Steam to wells measured by nozzles or V-cone (>95% quality)
- Prorate well steam to plant steam (metered by flow nozzle off steam seps, checked by BFW- BD)

Production and injection volumes

Measured plant bitumen

- Blend (API 12.3) and bitumen inventory and trucking
- Incorporated diluent loss/bitumen gain in to production calculation
- Estimate by well tests (2 phase test separators with BSW%)
 - 8-12 wells per separator (maximum 12 wells per separator)
 - ~10 hour cycles + purges
 - 1 hour of testing for every 20 hours of well operations, or about 4 x 10 hour tests per month

Gas production

- Plant measurement by balance
- Measuring well GOR based off well test and prorate to plant measurement
- Co-injected gas monitored and reported on a well basis

Overall water balance closure monitored on a monthly basis (< 5%) Oil proration

- Typically 10%
- Some months have higher proration error due to facility turnaround, process upsets, BSW meter drift, and phase ramp up

Water proration

- Typically < 10%
- Some months have higher proration error due to facility turnaround, process upsets
 Gas proration
- Variable and sometimes greater than 50%
- Variable due to:
 - Proration based from individual well tests (not facility GOR)

Steam proration

- Typically < 8%
- Some higher proration error occurred after start-up/commissioning and during plant upsets

селоуиз

MARP – New measurement technology

Cenovus continually focuses on evaluating new meter technologies

Water cut meters:

- Completed initial investigation and presented first results of water cut analysis by Delta C capacitance probe in the field. Further testing in store
- Investigating Weatherford's Red Eye as alternative to AGAR Corporation
- Investigating water cut via density differential by coriolis meter using known density curves at T & P for water and bitumen

Subsection 3.1.2 – 4) Water production (injection and uses)

Ben Lee Process Engineer

Fresh wells:

- •Two Quaternary wells (Empress Formation) at 09-17-076-06W4M
- •ESRD Licensed for up to 5,000 m3/day
- $\cdot TDS = 500-600 \text{ mg/L}$

Brackish water source wells:

Historical

•10-34A 1F1/13-35-075-06W4/00 TDS= 7,400 mg/L •10-34B 1F1/13-34-075-06W4/00 TDS= 7,200 mg/L •10-34C 1F1/15-27-075-06W4/00 TDS= 7,200 mg/L •10-3A 1F1/16-03-076-06W4/00 TDS = 4,600 mg/LTDS= 5,700 mg/L •10-3B 1F1/02-03-076-06W4/00 •10-27A 100/04-35-075-06W4/00 TDS= 11,600 mg/L •10-27B 100/13-27-075-06W4/00 TDS= 8,700 mg/L •10-27C 100/02-27-075-06W4/00 TDS= 12,100 mg/L

Disposal reversal well

•3-16 1F5/03-16-076-06W4/00 TDS = 2,300 mg/L

·2013

сепои

•CW4-A 1F1/01-35-075-06W4 TDS= 13,400 mg/L •CW4-B 1F1/06-01-076-06W4 TDS = 9,400 mg/L

•New in 2014 (MW 1 wells-not used until Phase F startup)

•1F1/07-18-076-05W4 Not sampled yet-expected TDS=>12,000mg/L •1F1/09-07-076-05W4 Not sampled yet-expected TDS=>12,000mg/L •1F1/03-07-076-05W4 Not sampled yet-expected TDS=>12,000mg/L

Fresh and brackish sources

Fresh water use

Uses:

- Includes camp and domestic use, utilities, seal flushes, etc. All attempts are made to minimize fresh water usage.
- Was used for make-up water for steam during commissioning and start up

селоуиз

Fresh water intensity

Brackish water use

• Make-up water for steam generation

Uses:

сепо

• Softened water used for slurry make-up, seal flushes etc.

Brackish water intensity

• Make-up water for steam generation

Uses:

сел

• Softened water used for slurry make-up, seal flushes etc.

Produced water volumes

3-16 well reversal

селоуиз

 $\ensuremath{\mathbb{C}}$ 2015 Cenovus Energy Inc. June 25, 2015

Steam volumes

Water recycle ratio

© 2015 Cenovus Energy Inc. June 25, 2015

Directive 081 disposal limit

Produced water to steam ratio

Blowdown recycle

Cener Vus NOTE: BD Recycle volumes very dependent of PW: Steam ratio

Water disposal operations

Continue to inject into McMurray water sands at 15-35 Approval No. 9712 and 10627 (Class 1b Disposal)

Nine disposal wells (all Class 1b)

- Three disposal wells located near the facility (3-16-1, 4-16, and 7-16 now abandoned);
- One well located near the facility (3-16-2) has been converted for disposal reversal
- Six disposal wells in service located at 15-35

15-35 disposal is main disposal location with local wells used as back-up

McMurray water disposal wells

селоуиз

Total disposal volumes (PW, RW, BD)

Notes: All disposal stream always attempted to be minimized. Specifically, blowdown recycle, regeneration optimization, and minimizing brackish makeup requirements to ensure the maximum amount of produced water can be used.

селоуиз

Disposal well head pressures

© 2015 Cenovus Energy Inc. June 25, 2015

Disposal injection volume

селоуиз

© 2015 Cenovus Energy Inc. June 25, 2015

53

Water disposal operations

Water disposal operations cont'd

селоуиз
Waste disposal volumes

Reduced slop oil volume due to treating improvements with chemical optimization.

	2014	2013	2012
Slop Oil / Production Fluids (m ³)	82,241	157,155	74,262
Drilling Waste (m ³)	56,260	37,086	27,796
Lime Sludge (m ³)	15,279	23,759	10,437
Contaminated Soils (m ³)	187	310	1,511
Spent Scavenger (m ³)	5,346	2,975	1,932
Total	159,313	221,285	115,938

Waste disposal sites 2014

Facility	Total (m ³)
Absolute Env. Class la Disposal Well	1,063
Cancen New Sarepta Disposal Well	4,417
Newalta Elk Point	31,861
Newalta Hughendon	729
R.B.W. Edmonton	999
Tervita Bonnyville Landfill	986
Tervita Janvier Landfill	59,445
Tervita Lindbergh Cavern	67,350
Tervita Mitsue	274
Tervita Unity, SK Cavern	311
TOTAL (m ³)	167,434

Cenovus Christina Lake trucks all disposal waste to licensed third party facilities

© 2015 Cenovus Energy Inc. Subsection 3.1.2-4i) June 25, 2015

Subsection 3.1.2 – 5) Sulphur production

Ben Lee Process Engineer

село

Scavenger recovery details

селоүцş

© 2015 Cenovus Energy Inc. Subsection 3.1.2-5a)i) June 25, 2015

Scavenger uptime details

© 2015 Cenovus Energy Inc. Subsection 3.1.2-5a)ii) June 25, 2015

Sulphur recovery operation

Preventative measures

- Chemical injection continues to be operated in counter current configuration
- Each train is on a 6-12 month PM to be cleaned (contactor, internal distributor, outlet separator demister inspected)
- Cleaning frequency determined based on process monitoring (pressure drop, spent chemical quality, gas temperature)

SO₂ emissions

Селоуиз

© 2015 Cenovus Energy Inc. Subsection 3.1.2-5c) June 25, 2015

Ambient air quality monitoring

Passive exposure monitoring

As per the Approval (Table 3.3), prior to commencing operation of Phase E, Christina Lake was required to maintain a network of four passive monitoring exposure stations to obtain monthly static exposures of H2S and SO2. After Phase E commenced operation, i.e., in June 2013, 12 passive monitoring exposure stations must be maintained.

Passive exposure monitoring was conducted for SO2 and H2S at the AESRD approved passive monitoring locations from January through December, 2014.

The passive monitoring results in 2014 did not identify any significant air quality issues related to Plant operations.

Continuous air quality monitoring

CLSF is required in the Approval (Table 3.3) to maintain one continuous ambient air monitoring station 12 months per year to measure ambient levels of SO₂, H₂S, and NO₂ concentrations in addition to wind speed and wind direction.

In 2014, continuous air quality monitoring was conducted from Jan 1 to December 31 by Maxxam Analytics. The continuous ambient air monitoring station is located approximately at 03-16-076-06-W4M. This location is the same as the passive monitoring station C10. Parameters measured were SO₂, H₂S, NO₂, wind speed and direction.

There were no operational issues relating to the ambient air monitoring equipment during the monitoring period.

The continuous ambient air quality monitoring in 2014 did not identify any significant air quality issues related to Plant operations.

No criteria exceedances were noted in either monitoring program

Ambient monitoring trailer for 2014 monthly summary results

	Parameter	Maximum Reading for 2014 (ppbv)	Date of Maximum Reading in 2014	Limit (ppbv)
SO ₂	1 hr average	20	June 30	172
	24 hr average	3.3	Jan. 15, Oct. 2	48
H ₂ S	1 hr average	3	Oct. 22, Dec. 11	10
	24 hr average	1.4	Dec. 11	3
NO ₂	1 hr average	58	Dec. 3	159

- As was noted for the period 2010 to 2013, in 2014, there were no ambient NO_X, SO₂ or H₂S readings above the Alberta Ambient Air Quality Objective (AAAQO).
- Maximum 1 hour and 24 hour average values for SO₂, H₂S, and NO₂ for 2014 are listed above.

Subsection 3.1.2 – 7) Environmental issues

Michelle Camilleri Sr. Environmental Advisor

2014 Compliance issues and amendments

Approval number	Amendments	Compliance issues
EPEA Approval 00048522-00-05	"Plant" definition amended to include TWP 75	No
EPEA Approval 00298224-00-00	No	No
Water Act Approval 00265924-00-01	No	No
Water Act License 00267617-00-02	No	No
Water Act License 00285141-00-01	No	No
Water Act License 00082524-00-06	Amended to include additional water source uses	No
Water Act License 00343057-00-00	No	No
Water Act License 00293633-00-00	No	No

Monitoring programs

Monitoring program	Progress and results
Air quality monitoring	Air emissions increased in 2014. This was a direct result of Phase E operating at full capacity for the full calendar year.
Groundwater monitoring	No material changes in 2014
Thermal metal mobilization monitoring	Well chemistry showed the influence of cement infiltration, wells were cleaned out Q3 2014. No chemical or temperature impacts related to thermal effects were detected in 2014.
Soil monitoring program	Soil Monitoring Program Proposal authorized April 23, 2014 and second monitoring event completed.
Wildlife and caribou mitigation and monitoring programs	AGP Monitoring, Winter Track and Remote Cameras, Amphibian and Breeding Bird Community Response to Development monitoring completed in 2014. Three Year comprehensive report due May 15 th , 2015.
Wetland monitoring program	No material changes in 2014

Monitoring programs continued

Monitoring program	Progress and results
Reclamation monitoring Ppogram	Deferred until December 31, 2016. No permanent reclamation has occurred to date, however Cenovus continues to evaluate opportunities for permanent reclamation at the Project, including well pads.
Wetland reclamation trial program	Deferred until a candidate site becomes available
Project level conservation, reclamation and closure plan	Deferred until December 31, 2016

Environmental initiatives

The regional multi-stakeholder forums that Cenovus was involved with in 2014 include:

- Cumulative Effects Management Association (CEMA) Land Working Group
- Canadian Oil Sands Innovation Alliance (COSIA): Linear Deactivation Program (LiDEA)
- Joint Canada-Alberta Oil Sands Monitoring (JOSM)
 - Wood Buffalo Environmental Association (WBEA)
 - Alberta Biodiversity Monitoring Institute (ABMI)
 - Regional Aquatics Monitoring Program (RAMP)
- Industrial Footprint Reduction Options Group (iFROG)

Subsection 3.1.2 – 8) Statement of compliance

Chris Grant Specialist (Regulatory Audit & Compliance)

2014 Compliance status

Maintain and track compliance

- Incident Management System (IMS)
- Centrac Database for commitment management
- Internal Regulatory Compliance Audit Team
- Dedicated onsite Environmental Monitoring and Stewardship Advisors
- Routine inspections and audits
- Raise awareness through training
- Establish consistent management processes

Cenovus FCCL Ltd. believes existing CLTP operations are in compliance with AER approvals and regulatory requirements.

Subsection 3.1.2 - 9) Statement of non-compliance. Chris Grant Specialist (Regulatory audit & compliance село

2014 Non-compliances – AER/AESRD

Date	Non compliance/self-disclosure	Follow-up	
2014-04-03	Notice of Low Risk Noncompliance - Commencement of Drilling without Notice @ 10/4-2-76-6W4 W0461895	Compliance achieved on May 1, 2014	
2014-04-01	Unsatisfactory Low Risk Drilling Operations @ 9-11-76-6W4 - Notification of Commencement of Drilling (Spud) - Cenovus FCCL did not notify the appropriate Field Center within 12 hours of the commencement of the drilling of a well.	1-76-6W4 - - Cenovus FCCL did ours of the Compliance achieved on April 11, 2014	
2014-03-15	Drilling Mud Releases to Surface during Utility Corridor Directional Drilling Project (SE-17-076-06W4M)	Clean-up complete	
2014-01-10	Unsatisfactory Low Risk Drilling Operations @ 9-3-76-6W4 - At the time of the inspection, the shop certifications for the spool in use were not pressure tested in accordance with Appendix 5 of Directive 36.	Compliance achieved on February 3, 2014	
2014-01-10	2.5m ³ spill of floc water (01-11-076-06W4)	Clean-up Complete	
2014-01-08	Trespass of the 1AA/12-13-76-5W4 well whereby the well was drilled 1.1m beyond the allowable 15m overhole.	Compliance achieved on 30-Jan-2014	
2014-01-07	Release of 3m ³ of strip water at strip water site (NE-06-076-06-W4M)	Clean-up Complete	

2014 Non-compliances – AER/AESRD Con't

Date	Non-compliance/self-disclosure	Follow-up
2014-12-22	Site entry to conduct hill cut without AER Approval (2- 25-76-6W4)	Compliance achieved
2014-11-13	5.3 m ³ of Propylene Glycol Spill	Clean-up complete
2014-11-08	1.5m ³ of clay material placed off disposition (07-17-076- 06 W4M)	Clean-up complete
2014-09-11	Packer Testing @ 102/7-16-76-6W4 W0249293 - Failure to complete necessary reporting of required packer testing by September 1 of each year	Compliance achieved on December 11, 2014
2014-07-03	Trespass @ 6-2-76-6W4 0450645	Compliance achieved on December 23, 2014
2014-06-8	Fresh water release from hydrotest of pipeline	Clean-Up complete
2014-04-27	Sedimentation released off disposition (06-15-076- 06W4M)	Clean-up complete
2014-04-06	Surface water and sedimentation released off disposition (SE-14-076-06W4M)	Clean-up complete

Subsection 3.1.2 – 9) Future plans

Major activities and target dates

Phase	Reç	gulatory		Production capa (bbl/d)	acity
	Filing	Approval	First steam	Incremental	Total
А	Q1 1998	Q1 2000	Q2 2002	10,000	10,000
В	Q2 2005	Q4 2005	Q2 2008	8,800	18,800
С	Q3 2007	Q2 2008	Q2 2011	40,000	58,800
D	Q3 2007	Q2 2008	Q2 2012	40,000	98,800
E	Q3 2009	Q2 2011	Q3 2013	40,000	138,800
F	Q3 2009	Q2 2011	2016	40,000	178,800
G	Q3 2009	Q2 2011		40,000	218,800
FG Amendment	Q4 2012	Q4 2012		20,000	238,800
CDE 2 nd Stage OTSG	Q4 2012	Q3 2013	2015	21,200	260,000
Н	Q1 2013	2015		50,000	310,000

Filed applications

Category	Application	Date filed
3	Phase H and eastern expansion	March, 2013
1	Emulsion circulation during unscheduled plant shutdown	April, 2014
2	B01/B02 rampdown/blowdown pilot	April, 2014
1	Phase D aerial cooler equipment change	June, 2014
2	Casing gas re-injection B03-7	March, 2014
2	Air co-injection trial B05-8	July, 2014
2	L pad trajectory amendment	June, 2014
2	Producer well length extension (B10-1 to B10-5)	May, 2014
2	A01 permanent blowdown	August, 2014
2	A02-2 SAP methane injection to demonstrate butane recovery	August, 2014
2	B13 well length extension	December, 2014

Filed applications

Category	Application	Date filed
1	Phase CDE oil debottleneck	Feb, 2015
1	Multi directional wells SAGD enhanced lengths	March, 2015
2	Non-condensable gas ventilation well (B08 or H01)	March, 2015
2	L09, J07, L07 well length extension	March, 2015

Potential future applications

Category	Application	Planned filing date
2	Sustaining pad trajectory amendment	Q3 2015
2	B03/B04 methane co-injection	Q3 2015
3	Development area expansion	Q4 2015

Changes to plant design or water treatment strategy

Current plans are consistent with existing approvals

Any future changes will be communicated via notifications or amendments as required

Phases F and G amendment incorporates "cogeneration" into the CLTP

Power generated will supply onsite operations

The following applications will have the potential to improve CLTP current water metrics

- CDE 2nd Stage OTSGs project
- Phase H project application

