Gas Reserves Data Sheet | DATE YR/MO/DAY SUBMITTED | | | GAS | VOLUMES AT 101 | 1.325 kPa AND 15°C | |--|-------------------------------|--|---------------------|--|--| | FIELD | | POOL | | | | | ZONE | | 1002 | | | | | TOP OF PAY K.B. | | S.L. POC | OL
AN
RMATION | | TYPE OF RESERVE ☐ ASSOCIATED ☐ NONASSOCIATED | | (LOCATION) | | S.L. TOR | PTH | 0.L. = | SOLUTION | | AVERAGE SOURCE | | | | PROVEN | PROBABLE | | OROSITY | | G/W, metres SL | | | | | CUTOFFS POROSITY SOURCE | G/O, metres SL | | | | | | PERMEABILITY mD | | AREA, hectares | | | | | GAS SATURATION (Sg) = 1 - (S _W + S _O) S _W SOURCE | | h, metres | . 3 | | | | | | ROCK VOLUME, 10 ⁴ | m | | | | | S | Ø, fraction | | | | | S ₀ source | ITIO | GAS SAT, fraction | | | | | INITIAL | SONE | P _i , k Pa
T, K | | | | | RESERVOIR PRESSURE, P; RESERVOIR TEMPERATURE SOURCE SOURCE | JAL (| Z | | | | | | ESTIMATE - INITIAL CONDITIONS | RESERVOIR CONST | TANT, | | | | | | IGIP, 10 ⁶ m ³ | | | | | | | RECOVERY FACTOR fraction | R, | | | | Z Pr A SOURCE | RESERVE | PRODUCIBLE, 10 ⁶ m ³ | | | | | Tr | RES | SURFACE LOSS FAC | CTOR, | | | | GAS ANALYSIS P _c , kPa Tc, K | | MARKETABLE, 10 ⁶ m | 1 ³ | | | | | | INITIAL ESTABLISHE | ED MARKETA | ABLE, 10 ⁶ m ³ | | | RELATIVE SOURCE DENSITY | | MARKETABLE GAS PRODUCED, 10 ⁶ m ³ | | | | | | | REMAINING ESTABLISHED MARKETABLE, 10 ⁶ m ³ | | | | | RESERVOIR (m³/m³)= Ø x Sg x Pi x 288.15 x 1 CONSTANT 101.325 T Z | | REMAINING ESTABL
CONTRACT, 10 ⁶ m ³ | LISHED MAR | KETABLE UNDER | | | RECOVERY SOURCE | | EFFECTIVE DATE, Y | /R/MO/DAY | | | | FACTOR | | | − O STOIF | P, 10 ³ m ³ | | | SURFACE LOSS SOURCE | | | GOR, | m ³ /m ³ | | | FACTOR | | | GIP, 1 | | | | RAW GAS COMPOSITION IN MOLE FRACTIONS | | | RECC
fractio | VERY FACTOR,
on | | | N_2 CO_2 H_2S H_2 H_e C_1 C_2 C_3 | | iC ₄ nC ₄ | | OUCIBLE, 10 ⁶ m ³ | | | | | | fractio | | | | C ₅ C ₆ C ₇ + SOURCE | | | | KETABLE, 10 ⁶ m ³ | | | | | | PROD | ETABLE GAS
OUCED, 10 ⁶ m ³ | | | GROSS HEATING VALUE OF MARKETABLE GAS, MJ/m³ | | | MARK | NINING ESTABLISHED
ETABLE, 10 ⁶ m ³ | | | SOURCE | | | | CTIVE DATE
O/DAY | | | STOIP, $10^3 \text{m}^3 = 10 \text{AhØ} (1-\text{Sw}) \frac{1}{\text{Boj}}$ | | | | | | | GOR SOURCE | | | | STOIP = STOCK TANK | KOIL IN PLACE | | 1/B _{oi} SOURCE | | | | | LVED GAS-OIL RATIO | | ADDITIONAL COMMENTS | | | | | |