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Physics of leakage problem 

The physical configuration and the variables used in the analysis are shown in Figure 1. Consider a reservoir and one 

aquifer above it: the target reservoir to be tested for appropriateness for storage/disposal (through injection of 

aqueous fluid), and the upper monitoring aquifer where pressure is to be monitored. A single-phase 1-D radial flow 

system is considered in two formations (reservoir and aquifer), which are separated by an impermeable aquitard. 

Figure 1:Schematic view of the reservoir-leak-aquifer system 

The leakage occurs in the vertical direction through a single leakage pathway of radius r l and permeability kl. The 

leakage pathway is at a distance R from the injection well and distance λ from the monitoring well. Knowing that the 

reservoir and aquifer are very large, the time to the end of the infinite-acting flow period is very long. However, if 

any of the formations are limited by a boundary (e.g., a sealing fault), one can use the image (superposition) method 

to account for the effect of such boundary on the leakage rate using an infinite-acting solution. The reservoir and the 

aquifer are also considered isotropic and homogeneous with known and constant properties (e.g., permeability, 

porosity, thickness, and compressibility). The injection fluid is injected at a constant rate q and considered to have 

identical properties as the reservoir and aquifer brine. Also, the aquifer is not in communication with a second 

aquifer. 



Analytical model 

To obtain the pressure variation and leakage rate, we decompose the system into four (components) and then 

combine the results. The starting point is the pressure variation in the monitoring aquifer in response to an unknown 

and time-dependent leakage rate (ql) which is the solution to the pressure diffusivity equation centered at the 

leakage pathway (component A). Based on Darcy’s equation, the leakage rate is a function of the pressure difference 

between the reservoir and the aquifer at the location of the leak (component C). To obtain the pressure at the 

location of the leak in the reservoir, the superposition principle can be used (component B, which is not replicated 

here for sake of brevity but may be found in the referenced Ph. D. Dissertation). The pressure response to injection 

can be obtained by solving the diffusivity equation centered at the injection well under a constant rate boundary 

condition (component B-1). Pressure response to leakage is obtained by solving the diffusivity equation considering 

the leakage path as the center (component B- 2). Superposition of the two solutions evaluated at the location of the 

monitoring well provides an equation for the pressure variation at the monitoring well location in the reservoir. 

Combination of such equation with pressure variation in the top aquifer gives an equation for the time-varying 

leakage rate. 

Here the differential equations governing the problem A and C, and also the final asymptotic solution (late time 

solution) for the combined problems are presented. Please refer to the cited reference for the details of the 

governing equations for each problem individually and also the related solutions. 

Definition of Dimensionless Parameters 

To present results in dimensionless form, the following dimensionless parameters are defined: 
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Nomenclature section provides a complete list of variable names and definitions. 

Component A: Equation governing pressure change in the top aquifer 

The diffusivity equation for the aquifer is solved for the pressure (P) at the monitoring aquifer in response to the 

unknown leakage rate 
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Initial & boundary conditions: 

𝑃𝑎(𝑟, 𝑡) = 𝑃𝑎𝑖   @ 𝑡 = 0 

𝑃𝑎(𝑟, 𝑡) = 𝑃𝑎𝑖   @ 𝑟 → ∞ 
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Component C: Rate of leakage 

Based on Darcy’s equation, the rate of leakage is given by: 

𝑞𝑙 =
𝑘𝑙𝐴𝑙

𝜇𝐵

𝑃𝑎(𝑟𝑙 , 𝑡) − 𝑃𝑟(𝑟𝑙 , 𝑡) + 𝜌𝑔ℎ

ℎ𝑙

Re-writing in dimensionless form based on dimensionless variables defined above gives: 
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is called the leakage coefficient. 

Asymptotic solution 

A late-time asymptotic solution for pressure change at the monitoring well and corresponding leakage rate can be 

summarized as follow: 
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After calculation of ql as a function of time, the radius of leakage penetration radius in the top aquifer can be 

calculated as follow: 

𝑷𝒆𝒏𝒆𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝑹𝒂𝒅𝒊𝒖𝒔 = √
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It should be noted that time zero in the above formulations is the moment at which the pressure change in the 

monitoring well is greater than zero. In other words, time zero for the monitoring well corresponds to a time greater 

than zero for injection well. Therefore, for all the time before that specific moment, any value less than zero is 

defaulted to zero value for both pressure and leakage rate. 

Nomenclature: 

A cross sectional area, m2 

B formation volume factor, vol. @ Res. cond./ vol. @ St. cond. 

r radius 

R distance from injection well to leakage, m 

λ distance from monitoring well to leakage, m  

L distance from monitoring well to injection well, m 

k formation permeability, m2 

h formation thickness, m 

P pressure, Pa 

q Injection rate, m3/s 

t time, s 

η 
formation diffusivity coefficient = 

permeability / (porosity × fluid viscosity × total compressibility) , m2/s 

μ Fluid viscosity, Pa.s 

T formation transmissivity = permeability × thickness, m3 

γ Euler constant = 0.5772 

ξ(3) Riemann zeta function = 1.2020 

α leakage coefficient, dimensionless 

ϕ porosity, fraction 



ρ density, kg/m3 

g gravity acceleration = 9.8 m2/s 

Subscripts: 

D Dimensionless 

i initial 

l leakage

a aquifer

r reservoir

w well

t total

Plots in the body of this document were calculated using the following assumptions: 

Property Unit Value 

Leakage Properties 

Permeability md 50000 

Permeability m2 5.00E-11 

Radius m 0.1 

Leakage Interval m 24 

Aquifer 

Compressibility 1/Pa 1.00E-09 

Viscosity Pa.s 5.00E-04 

Porosity fraction 0.1 

Permeability md 1300 

Permeability m2 1.30E-12 

Thickness m 10 

Reservoir 



Compressibility 1/Pa 1.00E-09 

Viscosity Pa.s 5.00E-04 

Porosity fraction 0.1 

Permeability md 5000 

Permeability m2 5.00E-12 

Thickness m 30 

Distance 

Injection to Leak - R m 1 

Leak to Monitor - λ m 200 

Injection to Monitor - L m 201 

Injection Well 

Qinj m3/day 400 

Qinj m3/s 4.63E-03 

Well Radius m 0.1 

Constant Parameters 

Difiusivity of Monitoring Aquifer 1/s 26 

Difiusivity of Storage Aquifer 1/s 100 

Pressure Multiplier Pa 2.46E+03 

Dimensionless Parameters 

RD 10 

LambdaD 2000 

LD 2010 



rlD 1 

TD 0.086666667 

EthaD 0.26 

Alpha 6.94444E-05 

Kappa1 2296.932515 

Kappa2 0.2894889 

Kappa 2295.692877 

Constant Parameters 

Euler 0.577215665 

Riemann 1.202056903 
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