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Appendix a

Study on Effectiveness of Observation Wells in Detecting Loss of Containment

Amir Ghaderi., PhD., Enhance Energy Inc.
Physics of leakage problem

The physical configuration and the variables used in the analysis are shown in Figure 1. Consider a reservoir and one
aquifer above it: the target reservoir to be tested for appropriateness for storage/disposal (through injection of
aqueous fluid), and the upper monitoring aquifer where pressure is to be monitored. A single-phase 1-D radial flow
system is considered in two formations (reservoir and aquifer), which are separated by an impermeable aquitard.

Injection Well
s,
Monitoring Well

Reservoir

Figure 1:Schematic view of the reservoir-leak-aquifer system

The leakage occurs in the vertical direction through a single leakage pathway of radius r; and permeability k. The
leakage pathway is at a distance R from the injection well and distance A from the monitoring well. Knowing that the
reservoir and aquifer are very large, the time to the end of the infinite-acting flow period is very long. However, if
any of the formations are limited by a boundary (e.g., a sealing fault), one can use the image (superposition) method
to account for the effect of such boundary on the leakage rate using an infinite-acting solution. The reservoir and the
aquifer are also considered isotropic and homogeneous with known and constant properties (e.g., permeability,
porosity, thickness, and compressibility). The injection fluid is injected at a constant rate g and considered to have
identical properties as the reservoir and aquifer brine. Also, the aquifer is not in communication with a second
aquifer.



Analytical model

To obtain the pressure variation and leakage rate, we decompose the system into four (components) and then
combine the results. The starting point is the pressure variation in the monitoring aquifer in response to an unknown
and time-dependent leakage rate (qj) which is the solution to the pressure diffusivity equation centered at the
leakage pathway (component A). Based on Darcy’s equation, the leakage rate is a function of the pressure difference
between the reservoir and the aquifer at the location of the leak (component C). To obtain the pressure at the
location of the leak in the reservoir, the superposition principle can be used (component B, which is not replicated
here for sake of brevity but may be found in the referenced Ph. D. Dissertation). The pressure response to injection
can be obtained by solving the diffusivity equation centered at the injection well under a constant rate boundary
condition (component B-1). Pressure response to leakage is obtained by solving the diffusivity equation considering
the leakage path as the center (component B- 2). Superposition of the two solutions evaluated at the location of the
monitoring well provides an equation for the pressure variation at the monitoring well location in the reservoir.
Combination of such equation with pressure variation in the top aquifer gives an equation for the time-varying
leakage rate.

Here the differential equations governing the problem A and C, and also the final asymptotic solution (late time
solution) for the combined problems are presented. Please refer to the cited reference for the details of the
governing equations for each problem individually and also the related solutions.

Definition of Dimensionless Parameters

To present results in dimensionless form, the following dimensionless parameters are defined:
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Nomenclature section provides a complete list of variable names and definitions.
Component A: Equation governing pressure change in the top aquifer

The diffusivity equation for the aquifer is solved for the pressure (P) at the monitoring aquifer in response to the
unknown leakage rate
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Initial & boundary conditions:

Py(r,t) = Py @t=0
Py(r,t) = Py; @r — oo
=Tt erey
where:
kq
= Hact

Component C: Rate of leakage
Based on Darcy’s equation, the rate of leakage is given by:
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Re-writing in dimensionless form based on dimensionless variables defined above gives:
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where:

ik,
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is called the leakage coefficient.

Asymptotic solution

A late-time asymptotic solution for pressure change at the monitoring well and corresponding leakage rate can be
summarized as follow:
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After calculation of g as a function of time, the radius of leakage penetration radius in the top aquifer can be
calculated as follow:

Penetration Radius = a

+n

a

It should be noted that time zero in the above formulations is the moment at which the pressure change in the
monitoring well is greater than zero. In other words, time zero for the monitoring well corresponds to a time greater
than zero for injection well. Therefore, for all the time before that specific moment, any value less than zero is
defaulted to zero value for both pressure and leakage rate.

Nomenclature:

A cross sectional area, m?

formation volume factor, vol. @ Res. cond./ vol. @ St. cond.

r radius
R distance from injection well to leakage, m
A distance from monitoring well to leakage, m
L distance from monitoring well to injection well, m
k formation permeability, m?
h formation thickness, m
P pressure, Pa
q Injection rate, m3/s
t time, s
formation diffusivity coefficient =
! permeability / (porosity x fluid viscosity x total compressibility), m?/s
u Fluid viscosity, Pa.s
T formation transmissivity = permeability x thickness, m?
y Euler constant = 0.5772
&(3) Riemann zeta function = 1.2020
a leakage coefficient, dimensionless

¢ porosity, fraction



Jo) density, kg/m?

g gravity acceleration = 9.8 m?/s
Subscripts:

D Dimensionless

i initial

/ leakage

a aquifer

r reservoir

w well

t total

Plots in the body of this document were calculated using the following assumptions:

Property Unit Value
Leakage Properties
Permeability md 50000
Permeability m?2 5.00E-11
Radius m 0.1
Leakage Interval m 24
Aquifer
Compressibility 1/Pa 1.00E-09
Viscosity Pa.s 5.00E-04
Porosity fraction 0.1
Permeability md 1300
Permeability m?2 1.30E-12
Thickness m 10
Reservoir




Compressibility 1/Pa 1.00E-09
Viscosity Pa.s 5.00E-04
Porosity fraction 0.1
Permeability md 5000
Permeability m?2 5.00E-12
Thickness m 30
I I
Injection to Leak - R m 1
Leak to Monitor - A m 200
Injection to Monitor - L m 201
Injection Well
Qinj m3/day 400
Qinj m3/s 4.63E-03
Well Radius m 0.1

Constant Parameters

Difiusivity of Monitoring Aquifer 1/s 26
Difiusivity of Storage Aquifer 1/s 100
Pressure Multiplier Pa 2.46E+03

Dimensionless Parameters

LambdaD 2000

LD 2010




riD 1

D 0.086666667
EthaD 0.26
Alpha 6.94444E-05
Kappal 2296.932515
Kappa2 0.2894889
Kappa 2295.692877
Riemann 1.202056903
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