THE ALBERTA ENERGY REGULATOR

PROCEEDING ID NO. 430

IN THE MATTER OF the Responsible Energy Development Act, SA 2012, c R-17.3 and the Regulations and Rules made thereunder;

AND IN THE MATTER OF an Application to Amend Commercial Scheme Approval No. 11475 for the Kirby In Situ Oil Sands Project, KN08 and KN09 Development (Application No. 1936092)

AER PROCEEDING

VOLUME 2

Calgary, Alberta

February 7, 2024

Dicta Court Reporting Inc. 403-531-0590

1	TABLE OF CONTENTS	
2		
3	Description	Page
4		
5	February 7, 2024 Morning Session	196
6	DEVIN OLLENBERGER, THOMAS BOONE, LENNON ROCHE,	198
7	MARC SCRIMSHAW , Previously Affirmed.	
8	GERARD IANNATTONE, JASON LAVIGNE, SCOTT SVERDAHL,	
9	DALE WALTERS, XIANG WANG, PETER THOMSEN, SCOTT	
10	BARLAND, Previously Sworn	
11	M. Riley Cross-examines the Canadian Natural	198
12	Resources Limited Witness Panel	
13	Mr. McLeod Cross-examines the Canadian Natural	267
14	Resources Limited Witness Panel	
15		
16	February 7, 2024 Afternoon Session	277
17	DEVIN OLLENBERGER, THOMAS BOONE, LENNON ROCHE,	278
18	MARC SCRIMSHAW, Previously Affirmed.	
19	GERARD IANNATTONE, JASON LAVIGNE, SCOTT SVERDAHL,	
20	DALE WALTERS, XIANG WANG, PETER THOMSEN, SCOTT	
21	BARLAND, Previously Sworn	
22	A. McLeod Cross-examines the Canadian Natural	
23	Resources Limited Witness Panel	
24	Alberta Energy Regulator Legal Counsel Questions	304
25	the Canadian Natural Resources Limited Witness	
26	Panel	

1	The Alberta Energy Regulator Panel Questions the	387
2	Canadian Natural Resources Limited Witness Panel	
3	J. Jamieson Re-examines the Canadian Natural	405
4	Resources Limited Witness Panel	
5	Certificate of Transcript	417
6		
7		
8	UNDERTAKINGS	
9	Description	Page
10		
11	UNDERTAKING 1 - For Canadian Natural Resources	297
12	Limited to check and assess whether or not their	
13	interest in the gas in the Kirby Upper Mannville	
14	II pool is on its reserve reports and, if so,	
15	advise the methodology it used for determining	
16	the present value (Fulfilled on Page 405)	
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		

195

Г

1	Proceedings taken at Govier H	Hall, Calgary, Alberta
2		
3	February 7, 2024	Morning Session
4		
5	Cindy Chiasson	Panel Chair
6	Brian Zaitlin	Panel Member
7	Meg Barker	Panel Member
8		
9	William McClary	AER Legal Counsel
10	Shannon Peddlesden	AER Legal Counsel
11	Andrew Lung	AER Staff
12	Denise Parsons	AER Staff
13	Anastasia Stanislavski	AER Staff
14	Fahad Hamdan	AER Staff
15	Maryam Rahimabadi	AER Staff
16	Susan Harbidge	AER Staff
17	Maksim Xhaferllari	AER Staff
18	Felix Chiang	AER Staff
19	Scott Botterill	AER Staff
20	Baohong Yang	AER Staff
21	Elwyn Galloway	AER Staff
22		
23	J.P. Jamieson	For Canadian Natural
24		Resources Limited
25		
26		

1 M. Riley For ISH Energy Ltd. A. McLeod 2 For ISH Energy Ltd. 3 Official Court Reporter 4 S. Murphy, CSR(A) 5 S. Burns, CSR(A), RPR, CRR Official Court Reporter 6 7 (PROCEEDINGS COMMENCED AT 9:00 AM) Good morning, and welcome 8 COMMISSIONER CHIASSON: 9 back to Day 2 of this proceeding. So before we start, 10 a couple of reminders: One, just to remind everyone in 11 the room that the hearing is being video cast on the 12 internet. So anyone in the hearing room may show up on the video cast, so if you have any concerns, please 13 14 approach Mr. Lung, Mr. McClary, or Ms. Peddlesden. The second thing that I want to remind -- and I 15 want to remind everyone who is using a mic in here, the 16 17 Panel -- we found yesterday over the course of the day that we were having challenges with hearing, so --18 hearing people. So as I mentioned yesterday, the mics 19 20 are very moveable, very adjustable. It seems to work 21 best if you can get the mic close in to you. I also 22 encourage people to use their loud projection voices. My kids are used to me referring to it as my "mom 23 24 voice", but I know not everyone here is a mom, so --25 but I encourage you to project as well. It just makes 26 it a little easier for us because we have discovered

the speakers in the room here are not oriented towards 1 2 the Hearing Panel, oddly enough, so just that reminder. 3 So other than that today -- and I've got it 4 right -- it came to me during the night -- I wanted to acknowledge that we have Anastasia Stanislavski from 5 6 hearing services here. I apologize. I had a brain 7 blip last -- yesterday in relation to doing that; 8 otherwise, we have got largely the same folks. 9 And are there any matters before we proceed? No. 10 Okay. Otherwise, we are back to cross-examination of 11 Canadian Natural's panel by ISH. So, Ms. Riley, we are 12 over to you, and right now we're currently scheduled for a break about 10:30, but you let us know when -- if 13 14 that -- that -- as you go along if that fits 15 conveniently with where you are at, please. DEVIN OLLENBERGER, THOMAS BOONE, LENNON ROCHE, 16 17 MARC SCRIMSHAW, Previously Affirmed. GERARD IANNATTONE, JASON LAVIGNE, SCOTT SVERDAHL, 18 DALE WALTERS, XIANG WANG, PETER THOMSEN, SCOTT BARLAND, 19 20 Previously Sworn 21 M. Riley Cross-examines the Canadian Natural Resources 22 Limited Witness Panel M. RILEY: Good morning, Panel. 23 I'm 24 going to try and move this microphone for a moment and 25 see how things work out for us. 26 COMMISSIONER CHIASSON: Thank you. We appreciate --

1 we appreciate the efforts. 2 M. RILEY: Let's see. Okay. I think 3 this works. 4 COMMISSIONER CHIASSON: You're sounding good so far. 5 M. RILEY: Excellent. Good morning. We 6 will then proceed with our cross-examination of the 7 CNRL panel, and I would like to begin with a reference, please, to Exhibit 50.02, PDF page 33, paragraph 113. 8 9 Yesterday, when we started, I mentioned to 10 Mr. Iannattone that there was references to several 11 industry examples which CNRL rejected. Mr. Iannattone 12 could not remember which of these examples I was talking about, so I promised to come back today with a 13 14 reference for him, and specifically, then, it is this 15 reference that we see in paragraph 113. MS. RILEY: And the question that I have 16 Ο 17 is: If you reject the examples provided by Aardwolf and you offer none of your own, how do you know that 18 19 what you're proposing is safe? 20 G. IANNATTONE: Commissioner Chiasson, we'd Α 21 just like to conference on this one for a minute, 22 please. COMMISSIONER CHIASSON: 23 Okay. Go ahead. 24 G. IANNATTONE: Could I request a Α 25 clarification on the question. Is it regarding -- what 26 exactly is it regarding? Is it regarding safety or

1		steam breakthroughs, or could you please clarify.
2	Q	M. RILEY: It is, in fact, both.
3	A	So it's regarding safety?
4	Q	Safety and steam breakthrough.
5	A	So steam breakthrough through the caprock and steam
б		release on surface?
7	Q	My apologies. Could you repeat that?
8	A	Sorry. What's your definition of "safety"?
9	Q	I think in the broadest sense possible, the impact on
10		GOB, any risk to the environment, people, property.
11	A	Thank you.
12	A	P. THOMSEN: Good morning. I think
13		there I think there could be a misunderstanding as
14		far as Ms. Riley's comment about rejection of the
15		examples. I would like to start with speaking to the
16		Cenovus/Wabiskaw pressure example, and CNRL does not
17		reject this. I think there are important learnings
18		from this finding.
19		So in December 2012, Cenovus was drilling a strat
20		well for the purpose of recovering a McMurray
21		post-steam core. This well is 103/11-15 76-6 W-4.
22		When this well was being drilled, it encountered
23		elevated pressures in the Wabiskaw D bitumen saturated
24		sands, and a pressure of 6,500 kPa was subsequently
25		recorded, and this was unexpected. And Cenovus has
26		investigated this. They have submitted several
1		

Dicta Court Reporting Inc. 403-531-0590 applications on this topic. Their findings were that
 this is due to overburdened heat losses from the
 underlying steam chamber, and there was an undrained
 thermal expansion of this bitumen in the Wabiskaw D.

So with respect to what are the learnings for CNRL 5 6 and for the KN08 and KN09, overburdened heat losses 7 will inevitably occur. They are -- they occur with all SAGD projects, and it occurs through conduction. 8 9 Conduction is a slow process. It has a temperature diffusion coefficient on the order of E minus 6 to 10 11 E minus 7 metres squared per second. And just for interest, that is about 6 to 7 orders of magnitude 12 13 slower than, let's say, pressure diffusion in the 14 McMurray bottom water.

15 The Cenovus example had 6 metres of muddy facies 16 in between the top of the steam chamber and the 17 Wabiskaw D bitumen saturated sands. In -- in KN08 and 18 KN09, we have perhaps 10 to 12 metres, so there is 19 going to be less heating or much slower heating of the 20 Wabiskaw D bitumen saturated sands.

I'd like to quote Cenovus Application Number 1766940, and on page 5 of that application, Cenovus has written: (as read)

Note that Cenovus expects no vertical gravity
drainage in the Wabiskaw member due to
laminations that occur throughout the zone.

1 So Canadian Natural appreciates this example being 2 brought forward. It effectively shows hydraulic 3 isolation of the confinement strata portion in the 4 upper McMurray -- in the muddy facies in the upper McMurray, and, in effect, this confinement strata has 5 6 been pressure tested, and there was a large pressure 7 difference between the Wabiskaw D bitumen saturated sands and the underlying steam chamber, and this would 8 be several thousand of kPa of differential pressure. 9 10 Yeah. So that's all we have to say on the -- or that's 11 the update as far as the Cenovus example. 12 I'd like to hand it over now to either 13 Mr. Sverdahl or Mr. Lavigne to talk to the -- the 14 Surmont example and the findings from them. 15 J. LAVIGNE: In the Surmont example, Α referenced in the Aardwolf report, it was mentioned 16 17 that it appeared that steam had gotten through a 1-metre thick mudstone, and -- and the term 18 "breakthrough" was applied to that example. 19 However, 20 in the D 54 of that example, it could be seen that the 21 mudstone in question appeared to actually be a 1-metre 22 thick class. There were small breccia pieces at the base and at the top of that class. And so in that one 23 24 well -- could we bring this up? 25 Α S. SVERDAHL: Exhibit 50-003, page 71, 26 please.

1 A

MR. LAVIGNE: Thank you.

2 So in this example -- so in this example it 3 appears like steam has broken through this seemingly continuous mudstone. As you can see in the RST log in 4 5 the upper right, when, in fact, looking at the core 6 photo in the centre, you can see small mudstone chips 7 at both the top and the base of -- of this 1-metre 8 thick mudstone. And the more reasonable geological 9 interpretation is that this is a single mudstone clast 10 that -- this is on the order of a metre thick, and it 11 forms a part of a breccia. And so when you look at the 12 log in the lower left, you can see the small deflection 13 as the gamma tool responds to this, but this particular 14 example would not have lateral extent, and that is why steam moved around this particular clast as opposed to 15 16 breaking through it vertically.

17 So this is not -- this is not applicable to the 18 analysis of, say, a regional mudstone of 1-metre 19 thickness. This is a small clast that over time steam 20 is able to move around. And -- sorry. And this is 21 within the McMurray formation, within the reservoir 22 component.

A T. BOONE: Could I add a comment? So,
you know, I'm going to say that there isn't anything
particularly special about the problem here. I mean
there's shales and mudstones that are capping

1

essentially what is a steam flood zone.

2 And steam flooding has been going on for 70 or 3 80 years now. It's -- most of it was done in California before it moved up here, and now we -- and 4 SAGD is what I would say is a mature process here now. 5 6 So, I mean, we're all informed by 80 years of 7 experience where there have been some cases of steam 8 breaking through the caprock or the confining strata, but they're relatively few and particularly when you're 9 10 at -- at the low -- the pressures that SAGD is normally 11 operated here.

12 So the fact that there's no examples of steam 13 breakthrough that -- that we can cite here that are 14 specifically -- says, Oh, you don't have -- you have steam breaking through the type of caprock that we 15 exactly have here, is just a statement that the 16 17 industry has determined how to work -- how to, you know, design these projects and implement them so that 18 19 you don't have breakthrough.

20QMS. RILEY:Would you agree that part of21the reason we don't see these exact examples is because22there is adequate monitoring?

A T. BOONE: No, I wouldn't agree with
that. There -- you know, in general SAGD projects
initially were heavily monitored and, you know, what's
happened is more recently there's less monitoring, but

that's because it's becoming a -- a mature process.
And as an example of that, the D 54s don't require
companies to report their observation well data
anymore. So apparently the AER believes that -- that
the process has matured as well, and it's not as
important as it was in the past to share that
monitoring data.

8 Q And then a further follow-up question regarding the 9 Cenovus example: I believe the terminology used was 10 that there are learnings for CNRL, and I was just 11 wondering how you incorporate those learnings into your 12 monitoring conditions.

13 P. THOMSEN: And the learning that I Α Okav. 14 was referring to was the learning as far as showing a pressure difference between the bitumen saturated 15 Wabiskaw D sands and the underlying steam chamber, and 16 17 so that learning is that there is hydraulic isolation, and it is required in order to have this pressure 18 So as far as learnings on surveillance are 19 buildup. 20 monitoring, I'm not aware of a -- of a relevant finding for that. 21

Q I will then move on, and I would request that we go to Exhibit 50.003, Tab 19, at page 64. I would request CNRL's panel to look at this map, and then if we could go to the next page at Tab 20, this is apparently the gas structural cross-section that informs this map; is

1		that correct?
2	A	S. SVERDAHL: That is correct.
3	Q	This map does not look the same as other maps of the
4		gas structural cross-section; is that correct?
5	A	The difference in this map is the mapping that was
6		provided in our submission was was just for the
7		Kirby Mannville II pool.
8	Q	So, to be clear, this section here, this is the new
9		the new portion of the map?
10	A	Yes. We added that portion.
11	Q	When did you obtain these logs in Tab 20?
12	A	Just give me a moment.
13		I just have information on the AA/11-2 well that
14		was drilled in 2008 and the one you see 4-12 well was
15		in 2018. The remaining well, I do not know exactly the
16		rig release date at this moment, but I can check on
17		that.
18	Q	I would appreciate it if you would tell us what that
19		date was. And even if you can't give us an exact date,
20		I would be interested to know whether it was before or
21		after the application was filed?
22	A	Most likely before the application.
23	Q	Can we accept that it was before the application unless
24		you advise us otherwise through the course of this
25		proceeding?
26	A	Yes.

1		COMMISSIONER CHIASSON: Do you want an undertaking on
2		that, Ms. Riley?
3		M. RILEY: If the understanding is that
4		it was before the application was filed and we
5		understand that if we don't hear anything by the end of
6		the day, then I do not need an undertaking. If CNRL
7		would rather give an undertaking, then I I will take
8		one.
9		COMMISSIONER CHIASSON: Perhaps we'll make a note of
10		that, Mr. McClary, and we'll circle back by end of day,
11		just to check in on that.
12		M. RILEY: Thank you.
13		COMMISSIONER CHIASSON: Thank you.
14	Q	M. RILEY: If the data was available
15		before you filed the application, why did you not map
16		that section?
17	А	S. SVERDAHL: To be clear, as stated, we
18		provided our mapping on the Kirby Upper Mannville II
19		pool.
20	Q	Thank you.
21		I would then like to go to Exhibit 01.01. It's
22		PDF page 18. It is Figure 18. And what this is is a
23		map of the Kirby north approved and proposed McMurray
24		formation drainage boxes; correct?
25	А	Correct.
26	Q	We note that the KN24 and 25 drainage boxes is not
1		

1		depicted on this map. Is that because it's not a
2		McMurray formation map or drainage box?
3	A	Those drainage boxes are Wabiskaw D.
4	Q	Can we then go to Exhibit 20 at 02, page 92. Do you
5		agree that the orange on this map is the Wabiskaw D
6		bitumen?
7	A	That is a map of the SAGD pay for the Wabiskaw D.
8	Q	And do you note that here we don't see the KN24 and 25
9		drainage boxes?
10	A	They are not on this map.
11	Q	Do you also agree that this map purports to show both
12		drainage boxes, approved and proposed?
13	A	It shows the approved McMurray drainage boxes.
14	Q	I'll ask you to have a look at your legend here. It
15		only says "drainage boxes (approved)".
16	A	I am clarifying that it is only the McMurray drainage
17		boxes that are approved.
18	Q	Very well.
19		Is it possible for you to indicate and I will
20		have to give you the mouse where the KN24 and KN25
21		drainage boxes are?
22	A	Roughly in this area here.
23	Q	So adjacent to KN09 and KN08?
24	A	Correct.
25	Q	Do you know when the KN24 and KN25 drainage boxes were
26		approved?

1	A	I will have to confer with my regulatory correspondent
2		here.
3		Subject to check, we believe the those boxes
4		were approved in 2014.
5	Q	The date we have is March 21, 2022.
6	A	The 2022 approval was just for the surface pads.
7	Q	Okay. The point being that at the time this map was
8		filed, KN24 and KN25 was approved?
9	А	Correct.
10	Q	I will then ask to go onto Exhibit 01.01 at page 35.
11		This is the SAGD pay isopach. We know from CNRL's
12		evidence that there is Wabiskaw D bitumen. I assume
13		it's not mapped here because it does not meet the
14		cutoff?
15	А	This is a McMurray map, and it wasn't on this map
16		because it wasn't part of the drainage boxes that we
17		were proposing to develop.
18	Q	If we then go to Exhibit 20.2 at Tab 4, page 92 again.
19		Where you've indicated that KN24 and KN25 is, do you
20		agree that operations there will result in additional
21		heat in that vicinity?
22	А	In which vicinity?
23	Q	Just north of KN09.
24	А	Over time there would likely be some conductive heating
25		in that small portion of the northern northeastern
26		portion of the KN09 drainage box into the Wabiskaw D

1 conductive heating. I will move on, and, as promised, I still have one or 2 0 3 two questions on GCMS, and I am back to the statement that was made yesterday that if oil concentrations were 4 5 not able to equilibrate over geological time, that 6 steam will be able to migrate through these lower 7 permability -- permeability zones. I hope you caught that. 8 That was quite painful. 9 Α S. BARLAND: Yes, I did. 10 Can you describe for me what the mechanism of 0 11 hydrocarbon degradation over 40 million years is 12 compared to the process of fluid movement over 25 years 13 of SAGD? 14 Α So over geologic time, the oil would have -- originally 15 the McMurray was completely water wet, and then it would have been slightly buried and -- and the 16 sediments would have been charged from lower zones off 17 to the west that would have moved updip into the 18 19 McMurray formation, so generally charges from the top And as it's charging, all -- because the 20 down. 21 McMurray wasn't buried deep enough to kill the bacteria 22 or to sterilize the reservoir, those bacteria, both anaerobic and aerobic, are still there and would have 23 24 used that incoming hydrocarbon, the oil to live. So 25 they're basically breaking bonds to get their food,

breaking carbon -- carbon bonds.

26

1	Q	And how does that compare to the fluid movement over
2		25 years of SAGD development?
3	А	Over geologic time it would have been a slower process.
4		I believe during SAGD we would still expect to see the
5		same barriers or or baffles as described by the
6		concentration profiles, but the fluid below or the
7		fluid that the steam actually interacts with would have
8		changed from a solid to more of a liquid, and we would
9		produce that.
10	Q	Isn't SAGD a process that is driven by delta P as
11		opposed to concentration gradients?
12	A	SAGD is more of a gravity process. It's not really
13		driven by delta P.
14	Q	Can you tell me, based on GCMS data, if we have these
15		two very distinct processes, how can you conclude that
16		SAGD will not do what geological time has not done?
17	А	We're using the barriers or baffles identified by GCMS
18		as a proxy for what the SAGD process will do. We've
19		got several industry partners as well as analogs that
20		I've been involved with, and the observation well data
21		in Jackfish would would corroborate that evidence.
22	Q	I am then finally moving on from GCMS, and I am moving
23		on to FMI. I would like us to go to Exhibit 01.01 on
24		page 13. 13 sorry one, three.
25		This is a table of CNRL's consultation with ISH,
26		and we've heard some evidence about the steps that CNRL

211

has taken to consult. I would like us to look at that 1 2 very first table and pretty much the second sentence: 3 (as read) Canadian Natural will not provide the 4 requested microresistivity logs, or image 5 6 logs, as the core photos provided in Canadian 7 Natural's view is sufficient to provide a comprehensive geological interpretation of 8 9 the McMurray reservoir and overlaying 10 confinement strata intervals. So CNRL is telling ISH, You can't get the image logs 11 because the core is enough to inform a comprehensive 12 13 geological interpretation. 14 My first question is: Does that mean that CNRL did not consider the FMI information at its disposal to 15 determine whether there were fractures or not? 16 17 Α G. IANNATTONE: I would say that at this point 18 in time, this was the -- I quess this was recorded in I do believe that we're making 19 the application. 20 reference to preapplication, and I would say that Canadian Natural would view the core information as the 21 22 primary measured data and the FMI information as more 23 interpretive -- interpretive and more secondary, and so 24 we were trying -- I believe at the time we were trying 25 to aid ISH to seeing the conclusions that -- that we 26 see in -- that we see that there is no issues found in

1		the core, which is the hardcore pardon the pun
2		primary data.
3	Q	The request, however, was for image logs, and the
4		response is, You don't need image logs because you can
5		do a comprehensive geological interpretation without
6		them. Do you agree that that is what that says?
7	A	That's what that says, yes.
8	Q	My next follow-up question is: At what stage does CNRL
9		obtain its FMI data? Broadly speaking I don't need
10		a specific example when do we get FMI data?
11	A	S. SVERDAHL: We run FMI logs as part of
12		drilling strat wells.
13	Q	What we can take from that is that I see there's
14	A	Just one moment, please.
15		Just to just to supplement that last statement,
16		we we also core a significant amount of our strat
17		wells and use the FMI logs to conform confirm what
18		we're seeing on that core data. We don't run core on
19		every log or every strat well, but it's another tool,
20		the FMI log, to confirm our our integrated approach
21		of interpreting what we're observing in the subsurface.
22	Q	The only point I was trying to get at is we obtain FMI
23		data at the time of drilling. It doesn't happen after
24		that?
25	A	The logs are run as part of the drilling of the well.
26	Q	So it is safe to say that all of the FMI data that CNRL
I		

1		has it had at its disposal, and one would believe in a
2		usable format at the time this application was filed,
3		other than, of course, the new wells that was drilled
4		in between?
5	A	G. IANNATTONE: That's correct.
6	Q	I would then like to go to Exhibit 50.003, Tab 10,
7		page 55. And I would like us to look at this header.
8		I don't know if you will be able to see it. Perhaps we
9		can make it bigger. I promise that wasn't I.
10		Do you agree that this is a Schlumberger log or
11		report?
12	A	S. SVERDAHL: That log was run by
13		Schlumberger. That is correct.
14	Q	If we can then just go to the inscription on this log.
15		Do you agree that it was not ISH who identified that
16		fracture. It was, in fact, the interpretation of
17		Schlumberger?
18	A	Yes.
19	Q	I would then like to go to Exhibit 15.01, paragraph 113.
20		MR. LUNG: Sorry, Ms. Riley. What page
21		number?
22		M. RILEY: Sorry. I just realized I did
23		not tell you. Let me see if I can find 113 for you.
24		It is page page 27.
25	A	G. IANNATTONE: Ms. Riley, if you allow me, I
26		would like to go back to the previous question and

provide an additional response.

1

2 Q I will be hard-pressed to refuse you. Please do.3 A Oh, okay. Thank you.

4 I just wanted to bring up that in Draft Yeah. Directive 23. I think it was that -- I don't have the 5 6 exact section. I think it's 4.2, but in there it 7 states that the applicant must make reasonable efforts to -- to address stakeholder concerns, and I guess what 8 9 I would say is in providing the core data Canadian 10 Natural thought they were making a reasonable effort. 11 It does not state in Directive 23 that all the data 12 that you have in your possession, either confidential 13 or non-confidential, needs to be supplied. Thank you. 14 If we can then return back to 15.01, and we're looking 0 15 at paragraph 113. Here CNRL tells us that they were 14 fractures identified on image logs and various 16 17 formations in which they saw them. My question on that Are there any consequences for -- for these -- for 18 is: these fractures that exist, for instance, in the 19 Clearwater B and in the Wab B? 20

A S. SVERDAHL: We would conclude this is a
minor amount of fracturing, and there would be no
significant consequences of these fractures being
present.

25 Q So what we see here is fractures above and below the 26 confinement strata but not in the confinement strata; is that correct?

2 A Correct.

1

3 Q Could you explain the geological process that would 4 result in fractures above and below but not in the 5 confinement strata?

6 Α J. LAVIGNE: First of all, it's worth 7 pointing out, as we discussed, the differences between fractures identified in core and fractures identified 8 9 in image logs. Image logs are run over the entire 10 interval. The coring is -- is done over the reservoir 11 units in the confinement strata. We don't core the 12 entire well in -- in all of the holes. And so we do an 13 analysis of fractures in those units. There are 14 fractures to be known in all of the regional shales above. The point being made is that it's of -- they're 15 very minor, and in other places, especially in areas to 16 17 the east where there's a significant amount of salt dissolution, there can be quite extensive faults and 18 fractures in some of those overlying units that in the 19 20 Kirby north area would -- would form part of the caprock interval. 21

There are also fractures observed in the Paleozoic in the underlying limestones. Those fractures are typically very ol and mostly healed. So we don't actually feel that -- we don't actually feel that those -- those lower fractures or the overlying ones

216

are -- it's -- it's not surprising that we see a very 1 2 low density of fractures in the overlying caprock 3 shales or in the underlying Paleozoic the deposits 4 within the McMurray and Wabiskaw that form both the reservoirs and the confinement strata were not 5 6 fractured in -- in the same way. 7 That was very interesting, but my question was: 0 What the geologic process would be that would lead to this? 8 9 Α The shales have a different rheology and -- and rock 10 strength than the -- than the bitumen sandstones, and 11 so they're -- they're more prone to fracturing. But 12 the point is that two fractures within a very large 13 thick caprock section is -- is not a significant amount 14 of fracturing. I would then like to move on to Exhibit 15.01, 15 0 I would like for us to zoom in on the first 16 page 195. 17 2 metres of -- of that image. Are we at maximum 18 resolution? Perhaps a little bit smaller so we can see the first 2 metres, please. Like that is good. 19 20 My question is: Can you tell me from this image 21 whether there is a fracture or a bed in the top of this 22 image, and as a part of that answer, could another 23 interpreter or the AER make any determination from this 24 image? 25 Α X. WANG: Actually, this looks like a --26 looks like static. The one way the interpreter

1		interpret the image, we usually can play the contrast
2		of the colour wrap. We can go to dynamic, and then we
3		can play with. For this particular image, I will say
4		you may not see the details, but one interpreter
5		actually doing the work, we can see more than that.
6	Q	Certainly, sir. You've essentially answered two of my
7		follow-up questions and that was that we use this image
8		to do our interpretation and that you use a dynamically
9		normalized image in your interpretation, and I assume
10		the answer to that was yes?
11	A	Well, that's just the routine for every interpreter.
12		We both see the dynamic and the static, and we play
13		with with the contrast of the resistivity, so we can
14		see more than that.
15	Q	So given that CNRL did not use this image for its
16		interpretation, is it fair to say that there is further
17		detail that does not form part of this application?
18	A	No. I will say no. Because once you got the DLIS this
19		file, you got to the software. You can play with it.
20		This just a one displacement.
21	Q	So so from your evidence, I take it that you need
22		the DLIS file to actually do this interpretation?
23	A	Yes.
24	A	S. SVERDAHL: I would add that we were not
25		requested for the digital data.
26	Q	You, in fact, were, but we will get to that.
I		

If we could then go to Exhibit 50.003, Tab 18. 1 2 I'm going to ask you to expand the It's page 63. 3 image, focus on the middle of the page until we can see any of the two bars as the only image on the screen. 4 5 If you can keep going, that's good; if you can't keep 6 qoing, that's also good. Excellent. 7 First question: Can you read the depth for me? The depth on this image is -- is blurry; however, you 8 Α 9 can, if you zoom back out and reference it to the log on the left of this image, get a good indication where 10 11 this is. 12 Is this what the image looked like when you did your 0 13 interpretations? 14 Α X. WANG: Actually, this is just a Tiff or JPEG file of a screenshot --15 A what file? 16 THE COURT REPORTER: A JPEG or Tiff file of the --17 Α X. WANG: of the actual image. Some -- sometimes the resolution 18 19 is worse than you actually looking at the screen, when 20 you do the interpretation. That's where the comment, 21 right? This is just a displacement of one of the 22 pictures -- image. So if this was all that you 23 Ο M. RILEY: 24 got, would you be able to do a good job of interpreting 25 this? 26 Α This is a misunderstanding. We do not interpret the

1		image log on the page's sides 'cause this shrinked
2		several thousand metre hundred metres into one page.
3		We we do not do that.
4	Q	So to expect someone else to try and interpret this and
5		given only this would be unfair?
б	А	I don't think any interpreter, professional
7		interpreter, will interpret it from the page size.
8	Q	So from the information that CNRL put on the record,
9		neither ISH or the AER could actually use these images
10		to do an interpretation?
11	A	Well, the
12	A	S. SVERDAHL: This slide was created in the
13		reply submission to tell the story that we've drilled a
14		well through an area of expected differential
15		compaction. It wasn't meant as a figure to interpret
16		from.
17	Q	If we could then move on to Exhibit 15.01, Tab 25.
18		It's page 340. My apologies. It's obviously not
19		page 340. Let's have a look. It is, in fact,
20		page 339.
21		M. RILEY: Could we increase the image?
22		I would like the yellow block to be in the centre of
23		the screen and as large as you can make it.
24	Q	M. RILEY: I would like to draw your
25		attention to this feature here and this feature here.
26		What are the sigmoidal features that I've indicated?

1 Α X. WANG: Okay. That's -- we call it 2 diagonal -- two marks. So usually you can see on the 3 image log at least two sets that come from the side 4 to -- so within each set you can see that they're 5 roughly parallel. They're straight lines. And when 6 they intersect, you don't see the curvature of the 7 fracture -- see. So you can see multiple -- actually, if you follow the trend and you can see the multiple 8 9 part of that. That's guite common, and -- oh, what happened? Okay. So you can see actually -- when you 10 11 see this kind of features, you need to stand back to 12 zoom out and not just the 1 metre or half metre. 13 You -- you can see the trend start from up right corner 14 here. You can go from here, and there are some -- some 15 trend here, and for the other set, you can see the marks -- the two marks go through there, and it goes 16 17 through there. They result from the hole spiral. So it's two marks. It's kind of artifacts we see quite 18 19 common on the image log. 20 May I have the mouse back? Because I think we are 0 21 misunderstanding each other about which area I'm 22 referring to. I am specifically talking about this 23 mark here and this mark here. It's -- is it your 24 interpretation that these are two logs? Yeah. As I said, if you trace that, you can see 25 Α 26 clearly the trend go over there and that there is a

1		parallel mark just nearby what you point out. So
2		that's not fracture. That's just a diagonal two marks.
3	Q	Is it possible that these are not two marks, but that
4		is where the image log is stretched or there was a
5		failure of speed correction?
6	A	No. I think that's that's a common features on the
7		image log 'cause we're not interpreted that as picture,
8		and you're not you're not going to cherry-picking,
9		say, I want to this mark and this mark.
10	Q	Then, still on the same image, can you see the white
11		feature? Let me just find it on the screen. Yeah.
12		Can you see the white feature?
13	A	I can see it. That's also common. For most two marks,
14		they are conductive. On the image log, they're dark
15		straight marks. But sometimes you also see the
16		resistive, which is a white, is also common. So the
17		white is the dark mark is because the the more
18		relatively more conduct mark with the smear by the
19		tool, and the resistivity mark is usually just a
20		partial. It's not really continues like the dark mark.
21		But that caused by the two scratch from more resistive
22		layer, and they move on. So we see that.
23	Q	I assume that that will be your same answer for the
24		white mark here and the white mark here?
25	A	Where?
26	Q	So it is the the last one I pointed to you was here.

1 Α Okay. And the other one I was pointing at you is here. 2 0 3 Okay. I -- so on the image log like that, we only can Α 4 see it's more resistive. But when we line up with gamma ray and density and we know is that cemented or 5 6 not. So that went quite easy, actually, when we 7 interpret it. That concludes my questions on FMI. 8 0 9 I wanted to add that this --Α S. SVERDAHL: 10 this example is within the Wabiskaw B and not the 11 confinement strata. 12 Noted. 0 13 If we can then go to Exhibit 15.01, PDF page 28, 14 paragraph 108. It does not look like 15.01 is 15 I apologize. 16 paragraph 108 on page 28. Let me find you the right page reference. 17 I was -- it's page 26. 18 Ah, I see. In this paragraph, CNRL says that it has reviewed 19 all of its core and all of its image logs data and it 20 21 has not identified any fractures within the confinement 22 strata units. The question is: Did you look at 23 information that you did not file? 24 Yes. Α 25 I can provide you with references if I need to, but 0 26 since the application was filed, 27 new wells were

drilled; is that correct? We can look at them. 1 The 2 one is Exhibit 01.01 at page 28. 3 There were 11 wells since the application of the Α 4 I believe -- actually, I do have to check. hearing. But there -- there were definitely wells that were 5 6 drilled from the application to the hearing submission. 7 We have it as 16 wells drilled in this -- in this 0 exhibit and then a further 11 drilled in another 8 9 exhibit. The point is at least 27 -- can you still 10 hear me? 11 Yeah. Α The point is at least 27 wells were drilled in the 12 0 13 meantime. You had, in other words, 27 opportunities to 14 do a DFIT if you wanted to but elected not to? We'll just take a huddle here. 15 G. IANNATTONE: Α P. THOMSEN: 16 I understand the question to Α 17 be with all the wells that we've drilled since filing 18 the application, why did we not conduct a DFIT. So the -- the value with conducting DFITs is to 19 20 determine principal in situ stress, and that can be 21 used for either leveraging some geomechanical effects 22 for a resource recovery process and/or for caprock 23 integrity or -- or confinement strata integrity. In 24 the absence of significant structural features, we 25 expect the horizontal stresses within a stratigraphic 26 unit to be quite consistent. There are four reasons

> Dicta Court Reporting Inc. 403-531-0590

that I presented on yesterday as far as why the stress 1 2 characterization is adequate for the proposed 3 operations, the first being in situ stresses tend to be 4 regionally consistent; the second one being the 5 reasonably present mud-prone strata such as the 6 regional B1 sequence have similar elastic properties, and this is a driver of horizontal stresses; the third 7 one being for the Kirby north field data of starting up 8 9 146 horizontal wells, we don't see variable or low 10 fracture pressures; and the fourth one being that I'd 11 previously mentioned we don't have significant 12 structural features such as a karst.

13 Additional DFITs do increase costs, depending on 14 if it was using an existing cased well or a new wellbore. Could be between 375 to -- \$375,000 to 15 \$1,075,000. And with what has been requested is a 16 17 temporary MOP or the purpose of starting up circulation; this is for a short duration and a small 18 volume, and it doesn't warrant the additional DFIT data 19 20 acquisition. And there's also a concept of 21 proportionality, and the resource or the cost of 22 additional safeguards should not be disproportionate to the risk reduction achieved. 23 And, with this, it's unlikely to change our 24 requested MOPs, and that is why we did not conduct

25 requested MOPs, and that is why we did not co 26 additional DFIT.

1	Q	I just want to make sure that I understood you
2		correctly. You said that there were no significant
3		geological features at KN08 and KN09 that would
4		indicate that another DFIT is necessary?
5	A	Correct.
б	Q	I would then like to refer you to Exhibit 01.01 on
7		page 55. This is the area where CNRL maps that the
8		mid-B1 mudstone is absent, and that is right right
9		at KN09. Do you think that is significant?
10	A	No, I do not believe that is significant.
11	Q	And then if you can
12	A	It is the
13	Q	Sorry.
14	A	And the reason for that is the the DFIT that's been
15		used to characterize the minimum stress in in the Bl
16		really tested the regional B1 sequence. And so it's
17		the it's the mud-prone nature of the regional B1
18		sequence that's the key, and it isn't specifically the
19		'X' centimetres or or metre of a mid-B1 mudstone
20		that's that's key. So the the important reason
21		is what was tested was the regional B1 sequence.
22		And so in the in the well that has been
23		discussed, CNRL Canadian Natural presented on
24		yesterday that did not have a a mid-B1 mudstone, it
25		was replaced by a quite a muddy tidal channel
26	Q	I apologize, but I cannot hear you.

1	A	Was it just the last sentence or
2	Q	If you could roll back about two sentences, that would
3		be good.
4	A	So the the stress characterization is for the
5		regional B1 sequence, and in the well that Canadian
6		Natural presented on yesterday, subject to check, I
7		think it's 1-3 yeah, it's the 1-3 example where the
8		mid-B1 mudstone was not present. It was replaced by
9		quite a muddy tidal channel facies. And so, overall,
10		the regional B1 sequence in that well has quite a a
11		high mud content.
12	Q	If we go to the next page, that is page 56, and that is
13		where CNRL maps that the A2 mudstone is absent, and I
14		assume that is also irrelevant?
15	A	J. LAVIGNE: Where as discussed
16		yesterday, where the A2 mudstone has been removed,
17		other confinement strata still exist in that location,
18		including the Wabiskaw B 'D' pardon me the
19		Wabiskaw D non-reservoir, the the basal upper
20		Wabiskaw D heterolithic unit, and the Wabiskaw C. So
21		the concept of confinement strata is that even if
22		individual units have been removed, they work together
23		in tandem to provide confinement.
24	Q	And so my follow-up question to that will then be is:
25		If we have different strata in different sections,
26		would they operate differently under stress?

1 Α P. THOMSEN: What I've been -- what I was 2 trying to communicate earlier with a response is that the regional B1 sequence is -- is present over all of 3 4 the KN08 and KN09 drainage boxes, and it is dominated -- or it -- it has a high mud content. 5 And 6 so we expect the -- the minimum stress within the 7 regional B1 sequence to be representative over the entire KN08 and KN09 drainage boxes. 8 9 Q That is, except for that one well where we don't have 10 the mid-B1? 11 The one well -- 1-3, without a -- the mid -- mid-B1 Α 12 mudstone, has still the lower B1 and the upper B1, and 13 these are mud-prone strata. And, overall, the -- the 14 minimum stress gradient for that regional B1 sequence 15 is representative. If we can then go to Exhibit 15.1, page 29, 16 Ο 17 paragraph 122. Sorry. Just on page 29. It's just --18 it's gone over the page. If we could scroll down to 19 page 29. 20 There, pretty much second line from the top, we -21 (as read) CNRL says: 22 The KN09 and KN09 drainage boxes are directly adjacent to the KN06 and are considered to be 23 24 in the same depositional and structural 25 setting with each other. 26 And then Canadian Natural goes on to conclude that:

1 (as read) 2 Because these drainage boxes are geologically 3 equivalent, the same monitoring that was allowed for at KN06 should be applied in KN08 4 and KN09. 5 6 Is that correct? 7 Yes, that's correct. Α D. OLLENBERGER: If we then go to Exhibit 20.2, page 59. There's -- in 8 0 9 the preamble, we see that ISH says that: (as read) 10 ISH is of the view that KN06 is not 11 geologically equivalent to KN08 and KN09. 12 And we see CNRL's response that it disagrees with ISH and reiterates that KN08 and KN09 is similar to KN06; 13 14 is that correct? 15 J. LAVIGNE: Broadly speaking, the Α 16 stratigraphy between the two adjacent pads is the same. 17 Both have post-B2 incision reservoirs. They're overlaid by the regional lower and upper B1 sequence, 18 19 separated by the mid-B1 mudstone. Both are overlain by 20 the regional A2 sequence. 21 As stated in our direct evidence yesterday, over 22 the KN08 and 9 boxes, Wabiskaw D incision has removed We've provided maps that we just 23 the upper parts. 24 looked at that showed where the A2 regional mudstone 25 had been removed. The Wabiskaw D incision does not cut 26 down through the lower B1 sequence, and the mid-B1

mudstone is present over the majority of the KN08/9 1 pads with the exception of the 100/1-3 wells that we 2 3 have discussed in some detail. And where the 4 Wabiskaw -- so it is geologically equivalent. In fact, in the KN06 proceedings, we discussed how the A2 5 6 mudstone had been removed in one well over that pad, 7 and the KN08 and 9 drainage boxes are immediately to the west where the Wabiskaw D incision is deeper. 8 So 9 geologically they are the same. The difference is the 10 amount of incision at Wabiskaw D level. 11 If we can then go to Exhibit 50.002 at page 8, 0 12 paragraph 21 -- sorry -- page 8, paragraph 21.

230

13 There in the first line we see Canadian Natural 14 recognizes that there are differences in the geological 15 strata present in KN08 and KN09 compared to KN06 and 16 that those differences are relevant to this proceeding. 17 Could you explain this paragraph?

18 A I believe my previous answer did explain that. The
19 difference is the magnitude of Wabiskaw D incision over
20 the KN08 and 9 drainage boxes as opposed to the KN06
21 box. They are not different. They just differ in
22 magnitude.

Q So it is your evidence that despite these strata differing in magnitude, their stress response will be exactly the same?

26 A P. THOMSEN: The -- the stresses within the

regional B1 sequence where it is present will be the same. And if I could add to that, the higher mud content of a strata, it leads to a higher Poisson's ratio, which leads to more vertical stress transfer from the vertical stress to horizontal stresses. And there are also some components of the -- the stiffness as well.

So the difference in elastic properties between 8 9 mud and sand ends up with there being a reliable stress 10 contrast between the underlying McMurray post-B2 11 reservoir sand and the muddy -- the mud-prone strata. 12 And we -- we focused on the regional B1 sequence for a 13 number of things on the geomechanics evaluations, but 14 really high mud content strata are going to have higher horizontal stresses. And Canadian Natural is -- is 15 highly confident that we have a stress contrast between 16 17 the post-B2 reservoir sand and the regional B1 sequence 18 of -- or at least 005 kPa per metre. Our characterization points to a stress contrast, the 19 20 minimum stress gradients of 1.5 kPa per metre. 21 If we go to Exhibit 20.02 at page 12. My apologies. 0 Ι 22 am struggling with the reference, so I'm going to move 23 Then I'll come back to this very shortly. on. 24 If we can go to Exhibit 43.02 at page 5. So it is 25 43.02 at page 5. Pardon me. I'm scrolling. 26 The second paragraph from the top. You mention

1

2

3

4

5

6

1 the Wabiskaw D facies, and you include them in your 2 confinement strata for KN08 and KN09. The question is: 3 Why did you not include them in your confinement strata 4 in the KN06 hearing?

As we mentioned, the magnitude 5 J. LAVIGNE: Α 6 of the Wabiskaw D incision is -- is greater over KN08 7 And when assessing confinement strata or and KN09. geological positioning, it's important to look beyond 8 9 the boxes. And so we look at the units in a more 10 regional sense, and we have looked beyond the KN08 and 11 9 boxes.

12 The reason why these two units were not introduced 13 in the KN06 proceedings is that they didn't occur in 14 the thicknesses and mappability that they do over the That's directly a function of the 15 KN08 and 9 boxes. magnitude of the Wabiskaw D incision. So over the KN06 16 17 box in one well in the northwest corner, the -- the magnitude of the Wabiskaw D incision was very small. 18 And so it -- it -- those units weren't differentiated 19 20 and broken out.

Also over the majority of the KN06 box, the A2 mudstone was present, and -- and as we demonstrated in those proceedings, the mid-B1 mudstone was also present. And as we had two regional mudstones, we didn't feel the need to discuss a very thin deposit over KN06 and considering that part of our confinement

and

But as those units are thicker over the KN08 1 strata. 2 and 9 drainage boxes, we -- we feel -- and as 3 demonstrated yesterday, over the KN08 and 9 drainage boxes, those two units hold back gas caps, and so they 4 are very relevant in the discussion of confinement 5 6 strata there. 7 If we can then move on to Exhibit 15.01, page 10, 0 8 paragraph 31. 9 More or less in the middle of the paragraph, 10 you -- you mention that the original gas over bitumen 11 decision, or the GOB decision, concluded that 12 Wabiskaw C could not act as a local seal; is that 13 correct? 14 Α That -- that was the board's conclusion. I might add at the time of the original GOB decisions there were 15 very few wells that penetrated into the Wabiskaw C. 16 17 And because of the lack of information, the variable amounts of bioturbation, and the presence -- the 18 presence of calcites, the -- the board at the time 19 decided to rule that the Wabiskaw C was not considered 20 21 a -- a regional barrier. 22 Since that time, we've acquired a lot more well 23 information, and we have observed gas caps trapped 24 beneath it, and so we feel that it does have -- it does 25 have some regional -- at least over the scale of the --26 of the drainage boxes in guestion, the Wab C does

> Dicta Court Reporting Inc. 403-531-0590

1		appear to have some capacity for sealing.
2	Q	And that is what you say in paragraph 93 on page 22 of
3		this same exhibit?
4	A	I I'd have to see it. I'm not sure.
5	Q	I'm sure we're going to show it to you in a moment. If
6		we could just scroll down to paragraph 93, please.
7		That is your conclusion that that here, the
8		Wabiskaw C does act as a barrier or a local seal?
9	A	I would say the gas caps observed off pad are the
10		strongest evidence that it's a seal.
11	Q	The properties of the Wabiskaw C here, is it different
12		from the properties that the AER considered when they
13		issued the GOB order?
14	A	I think we have more extensive data in the Wabiskaw C
15		now than they did. The unit is the same.
16	Q	Has CNRL approached the AER with this data and
17		suggested that the GOB order should be reviewed and
18		varied as the Wabiskaw C apparently acts as a seal?
19	A	May we just have a moment, please.
20		No. We have not approached the AER with that.
21		M. RILEY: I see it is now 22 minutes
22		past 10. The next section that I need to go into will
23		take longer than eight minutes. Might I request that
24		we take the break now and then perhaps return a bit
25		earlier.
26		COMMISSIONER CHIASSON: Thank you. We can do that.

1 So let us break now, and we will return at, let's say, 2 20 to 11, so 10:40, and we'll proceed from there. 3 Thank you. 4 (ADJOURNMENT) 5 COMMISSIONER CHIASSON: So before you start again, 6 Ms. Riley, I'll just let you know -- Mr. Lung advised 7 me this morning that it's advisable that we go no later than 12:15 because of room arrangements that we have 8 for lunch on terms of when we need to be out of that 9 10 So just in terms of giving you a -- giving you room. 11 a -- giving you a time window. 12 M. RILEY: Thank you. And we will do our 13 best. 14 My apologies. I just have to scroll in my notes to where I left off. 15 16 COMMISSIONER CHIASSON: We'll just -- we are just 17 waiting for Ms. Peddlesden. Oh, okay. 18 All right. Please proceed, Ms. Riley. 19 M. RILEY: If we could bring up 20 Exhibit 15.01, Tab 8, at page 194. And if we could 21 scroll down to where the Wabiskaw B1 is identified, the 22 mudstone specifically. Right there. Thank you. 23 Ο M. RILEY: My first question is on this 24 exhibit. How do I see the mid-B1 you're -- if your 25 identifying line wasn't there, how do I see it? 26 Α J. LAVIGNE: I'm sorry. Could you

> Dicta Court Reporting Inc. 403-531-0590

1		please which well is this? Sorry.
2	Q	If you could just scroll up. I believe it is
3	A	Yeah.
4	Q	the 5-34, but
5	A	Okay. When we identify units, we use a stratigraphic
б		datum which restores units to the horizontal. As
7		restores them to the way that they were deposited
8		horizontally. And so we use regional markers in
9		offsetting wells, and we correlate we correlate that
10		way. So it's finding it's finding the level the
11		horizontal in this well that's the same as in other
12		wells.
13	Q	So if I were to look at this log, I wouldn't be able to
14		see the B1 mudstone from just this log?
15	A	I think you'd have I think you'd you wouldn't
16		want to look at wells in isolation. I think you would
17		want to look at them next to adjacent wells to make the
18		correlation.
19	Q	And what do we do when there are no closely adjacent
20		wells?
21	A	I would suggest that over the boxes there there are
22		close spacing of wells.
23	Q	If we could then go to Exhibit 15.1, Tab 8, on
24		page 196. If we could just scroll down to the B1
25		again.
26		So if neither of these wells show specifically

that there is a mid-B1 mudstone, how do we -- what do we do?

3 We -- we integrate with other wells. No one well is Α 4 used in isolation. This correlates to other wells, 5 other wells that have core, and so we -- we never just 6 use one well. We always correlate to other wells. 7 So if we go to the next one on page 200 of the same 0 exhibit, we can scroll down again, and we see again, 8 9 really, if it was not for your line, there's no 10 difference between just at the top and just at the 11 bottom of the line. That was the case in the previous 12 three that I've showed you, so I struggle to see if we 13 are correlating wells.

14 A I don't struggle to see that. Again, we correlate 15 it -- so in this particular well, you can see the A2 16 mudstone, which is a regional unit which gives us a 17 paleohorizontal quite close to the interval that we're 18 trying to understand, and so we can datum down from 19 that to see where the mid-B1 mudstone should look.

We -- as we've mentioned, the lower B1 regional sequence and the upper B1 regional sequence are very heterolithic, and they -- they have differences in sandstones and mudstones, which affects the gamma ray signature. And there is also thin-bed effects where the gamma tool has a certain resolution, and it has difficulty identifying thin-bed effects.

1

1 So, again, that's why we -- we use an integrated 2 approach of other -- other offsetting wells so that we 3 can identify where in a particular well this -- this particular horizon is. 4 5 So in this case you saw the A2 and then extrapolated 0 6 from there where the B1 is? 7 In this particular case, yes. Α Now, in areas of the north -- the north edge of 8 9 the KN08 box and over the KN09 box, the A2 mudstone is 10 not present, and so in that case we would go up to, 11 say, the top of the Wabiskaw, and we would work our way 12 down to -- to find this particular level. 13 If we go to Exhibit 15.01, where I believe we already 0 14 are at, page 18, paragraph 68. There the last sentence 15 on the page, the mid-B1 mudstone is highly correlatable 16 in wireline logs. From what we've just seen, that doesn't seem so easy, as you suggest? 17 Well, I think that we have a lot of experience over the 18 Α I might point out that the 19 entire Kirby north area. 20 mid-B1 mudstone is a regional unit that's correlatable 21 over hundreds of square kilometres. So I think that 22 having seen this in several hundred wells, we have a pretty good idea as to where to look, even though there 23 24 are some differences in the lithologies expressed in 25 the underlying lower B1 regional sequence, the 26 overlying upper B1 regional sequence, those differences

238

Dicta Court Reporting Inc. 403-531-0590

1		can cause some difficulties in in understand
2		interpreting that, but, again, we don't look at any
3		single well in in isolation. We apply it over a
4		broad area.
5	Q	Is that what you were getting at in para in
6		Exhibit 50.02, page 14, paragraph 43?
7	A	Yes. What we were saying in that paragraph was that
8		just making gamma ray API cutoffs is not sufficient
9		for for identifying that feature, and that's
10		that's substantiated by seeing the mid-B1 mudstone in
11		cores where that log signature is also does not, for
12		example, hit 105 API cutoff.
13	Q	So you didn't really see it in in the logs. You saw
14		it in the cores?
15	A	No. We don't use either in isolation. We use both.
16		We use cores so just and touching on something
17		that we discussed earlier, every well we drill has an
18		image log. A subset of those wells are additionally
19		cored, and so and all wells have gamma the basic
20		suite of gamma resistivity logs, and so we use both.
21		Some wells have all three of those; some wells don't,
22		and so by leveraging what we've seen in other wells,
23		then we can make a coherent story.
24	Q	Good. Let's go to Exhibit 050.003, Tab 6, page 51.
25		Much smaller, please.
26		So here we have I'm going to call them

1		"tables", for lack of a better word, and am I correct
2		when I say could you just scroll down a bit,
3		please that this second image, or table, is an
4		interpretation of the first?
5	A	Yeah. Could could we please reduce just a little
6		bit more, please, so we can see the full context of the
7		figure? Thank you. That's that's enough.
8		So in the in the up yeah. So this is a
9		seismic image that has wells projected upon it that
10		is that is out of view in the upper right, and the
11		interpretations on seismic are substantiated with the
12		well logs as well, and so, yes, in the centre is an
13		interpretation of the seismic, but you'll notice it's
14		also driven by the well logs.
15	Q	And I understand that it is difficult to see, but this
16		interpretation includes the log and the seismic from
17		the 10103 well?
18	A	Yes.
19	Q	So if we look at the second is it a figure, or is it
20		a table? I'm not sure. I'm going to call it "figure".
21		If we look at the second figure, this green is where
22		you say it's the mid-B1 mud well, the B1 region, and
23		then the dashed line is the mid-B1 mudstone?
24	A	Yes, that's correct.
25	Q	So if this includes the 1-3 where we now know that
26		there is no mid-B1, where does this line break up to
		-

1		show that?
2	А	There's a the dashed line there, if you can zoom in,
3		I see the well there. There's a core there's a
4		fining upward sequence around the middle of the
5		diagram.
6	Q	Would it help you to have the mouse?
7	А	Oh, sure. This is the $100/1-3$ well right here, and so
8		there's a fining upward sequence at the in the
9		upper B1 that we've been discussing.
10	Q	But the dashed line that shows the mid-B1 mudstone
11		doesn't break off there?
12	А	Yeah. The dashed line is is a correlation through
13		the section. As we've discussed, there there's a
14		very small hole in the mid-B1 there as we discussed in
15		the well yesterday.
16	Q	ISH's evidence will be that the mid-B1 cannot be seen
17		on the seismic and on the logs. If that is correct, do
18		you agree that the dashed line is an arbitrary line
19		with no support from any specific data?
20	A	Oh, it's supported by the well data. For example, if
21		you look to the well two wells to the left, you can
22		see a very strong break between the lower B1 sequence
23		and the upper-B1 sequence. And so because the mid-B1
24		mudstone doesn't have a direct seismic indicator, it's
25		obviously extrapolated through here, and it's
26		extrapolated through regions where we don't have well

1 control as well.

2 S. SVERDAHL: I would like to add as well --Α 3 if I could just grab the mouse, Mr. Lavigne -- that B1 mudstone is not a resolvable reflector by the seismic 4 5 here, but we can infer areas where it is not present, 6 such as where I'm pointing here. This is where the 7 Wabiskaw D channel system cuts down, and we can project this interpretation of the mid-B1 against this 8 reflector here and make conclusions as to where the 9 10 mid-B1 mudstone is not present. 11 If we could then go to Exhibit 050.003 -- we're already 0 12 there -- and if we can go to page 20. You can just 13 stop it right there. 14 This is from Dr. Boone's report, and there under 15 the "lack of continuity of a mudstone", he agrees that "mudstones are commonly discontinuous". What is 16 17 Dr. Boone's response to that? T. BOONE: You know, that's just a 18 Α general statement that any facies can be discontinuous. 19 We have had various discussions -- or we heard, at 20 0 21 least, various discussions between VMI and V shale. V shale is a very particular number based on a gamma 22 ray cutoff in your interpretive logs; is that correct? 23 24 J. LAVIGNE: V shale is not --Α 25 Α S. BARLAND: Sorry. So V shale or volume 26 of shale is not always based on gamma rays. Sometimes

1 it's based on density neutron log separation as well. 2 So we can have high radioactivity sands that actually 3 look muddy on just purely the gamma ray logs. So quite often it's based on gamma ray, but not always. 4 5 My follow-up question was: As we understand it, 0 6 there's various formulas that you can use to calculate 7 V shale. Which one did you use? We would have used a combination of both because in the 8 Α 9 general Kirby north area, sometimes there will be hot 10 sands associated with the reservoir too. So it would 11 have been based on the petrophysicist's -- after a 12 petrophysicist's analysis. 13 Moving on from that --0 14 Α Sorry. Just -- just to be clear, the hot -- hot sands are radioactive sands, so they have heavier minerals 15 that contain natural radioactivity like a shale would. 16 17 CNRL's evidence is that gas comes from -- evolves from 0 the bitumen phase. If gas evolution began slowly at 18 19 the top, why does the presence of a gradient through 20 the McMurray down to the Wabiskaw convince you that there is isolation? 21 22 G. IANNATTONE: Please repeat the question. Α Thanks. 23 24 Certainly. CNRL's evidence is that gas evolves from 0 25 the bitumen phase. If gas evolution began slowly at 26 the top, why does the presence of a gradient through

1		the McMurray down to the Wabiskaw convince you that
2		there is isolation? Sorry. I think those two should
3		probably be turned around. The point is if there's a
4		gradient, if there's a pressure difference between the
5		zones and gas evolution begins at the top by slow
б		degradation, why is the gradient evidence of isolation?
7	А	T. BOONE: I'm sorry. Are you referring
8		to GCMS gradient? I mean, what
9	Q	No. I'm referring to pressure.
10	A	G. IANNATTONE: We'll take a huddle here.
11	А	T. BOONE: Sorry. Are you referring to
12		the figure that I had in my report with the pressure
13		gradient?
14	Q	Yes.
15	А	And so maybe we should bring that up, please, if we
16		can.
17	Q	Can you put your hands on it?
18	А	And I can find that if you'd like.
19	А	P. THOMSEN: It's I think it's 50.003.
20		Exhibit 50.003
21	А	T. BOONE: I know it's the first report,
22		but I can find that. It's Exhibit 15.01, and I believe
23		it's PDF page 60.
24	А	G. IANNATTONE: Okay. Please repeat the
25		question one more time.
26	Q	CNRL's evidence is that gas evolves from the bitumen

1		phase. If gas evolution begins slowly at the top, why
2		does the presence of a gradient convince you that there
3		is isolation?
4	А	Just to be clear, which bitumen phase are you referring
5		to, the bitumen in the Wabiskaw B or the McMurray
б		bitumen or the Wabiskaw B bitumen?
7	Q	Is your suggestion that gas evolves differently in the
8		different zones? So in 'B', gas will evolve from
9		bitumen, but in 'D' it won't?
10	А	No. I just I'm assuming you're talking about the
11		bitumen in the Wabiskaw B. I just wanted confirmation
12		of that.
13	Q	The question relates to a gradient through the zones.
14	А	T. BOONE: Maybe I will try and explain
15		this chart here. So there's there is down in the
16		McMurray, there's a pressure gradient, and that's the
17		water gradient. And what normally if you're looking
18		for discontinuity between zones, meaning over geologic
19		time there's a pressure separation you plot the
20		two gradients and then between the zones, and you
21		see if they overlap. And so if all the points fell on
22		that that hydraulic gradient there, that would at
23		least say that there at somewhere and it may be
24		well off structure, not immediately there, that they're
25		connected. Okay. So maybe they've got bottom water
26		somewhere that connects these zones, but maybe they're

Г

connected through the column there as well.

But in this case if you plot that gradient and the pressures between the two zones don't fall on the same line, that's evidence that they're discontinuous and that there's a pressure break or barrier between them.

6 Now, if you start to -- if you have gas on top of 7 bitumen and you start to produce that gas, gas will evolve out of that bitumen -- and you're right. 8 It 9 will start at the top of the bitumen, and the pressure 10 will work its way down through that bitumen, and the 11 gas will evolve out of it and move upwards into the So I'm -- I'm -- it's a bit of a disconnect 12 qas. 13 between your question there -- I realize that -- but 14 I'm -- I'm struggling to understand it, to be honest. 15 Thank you. You've been very helpful. 0 No.

16 If we can then go on to Exhibit 15.01, PDF 17 page 16, paragraph 2.

18 So here we see CNRL says that the isopach of the 19 confinement strata is 3.8 metres to 14.3 metres. Do 20 you agree?

21 A Yes.

1

2

3

4

5

Q And then if we go to page 61 of this same exhibit under the geology, the second line from the bottom of the first paragraph, we see Dr. Boone saying that the isopach is 2.46 to 14.32 metres; is that correct? A J. LAVIGNE: That's what it shows.

1 And then if we go to Exhibit 50.03 on page 9. 0 This is 2 from Dr. Boone's second report. And if we look there 3 in the geography and the stratigraphy -- I'd hope you 4 can see it, but there's a total confinement strata thickness of 13 to 30 metres. And then comes my 5 6 question this morning when we spoke about the muddy 7 'D', you mentioned that there's 10 to 12 metres of muddy 'D' over these -- over these strata. 8 So I -- I 9 struggle if the total isopach, which is now 'B', 'C', 10 and 'D', is 2, how did we get to 10 to 12 metres of 11 muddy 'D'? 12 G. IANNATTONE: We'll just huddle here for a Α minute. 13 14 Α T. BOONE: Let me just explain my part of 15 it there. The 13 to 30 metres -- so, you know, as a reservoir engineer, I was focused on the total 16 17 thickness, not just the confinement strata that are listed in the table, which are -- are sort of zones 18 within the total package of the confinement strata. 19 And so that confinement strata does contain zones that 20 21 have lower mud contents that -- that are not barriers 22 per se that were included in the table that was 23 provided by CNRL. But as a reservoir engineer, it's 24 important because steam has to work its way through 25 that, and all that rock has to be heated, and it's also 26 a barrier to conduction between the Wabiskaw B and the

SAGD zone. So the total thickness is important.

1

2 And so I asked the -- the geoscientists at CNRL to 3 provide me the total thickness from the top of the post-B2 reservoir to the base of the Wabiskaw B, and 4 that's what those numbers are. And that would include 5 6 sections of that confinement strata that wouldn't be 7 barriers to steam. But in order for steam to get 8 through them, they would have to be heated as -- you 9 know, by the steam as it migrates through, which all 10 takes time. Okay.

11 The -- the other number may be -- and I -- and 12 I -- maybe that came from an earlier table, those 13 little numbers; they're just -- there's a minor 14 difference between the -- the final confinement strata 15 thickness numbers that the geologists have been 16 reporting, and I -- I apologize for that.

17 A G. IANNATTONE: Ms. Riley, can you repeat the18 second part of the question?

19 My question -- there was only, in fact, one part -- or 0 20 there was three references and then one question. This 21 morning we spoke about the muddy Wabiskaw D, and you 22 mentioned that it is 10 to 12 metres thick over KN08 23 If we look at those references, then we have and KN09. 24 a total confinement strata that is at times less than 25 that -- significantly less than that.

26 A P. THOMSEN: This morning I mentioned the

10 to 12 metres, and that was in the context of the 1 2 Cenovus example of undrained thermal expansion and a 3 pressure increase in the Wab D -- the Wab delta sand. 4 And the 10 to 12 metre that I was referencing is referring to distance -- or thickness from the top of 5 6 the post-B2 reservoir to the base of the Wab D delta 7 And there are a number of other items being sand. referenced here, and those would include confinement 8 9 strata above the Wab D delta sand. 10 0 If we could then move on to Exhibit 01.01 at page 67. 11 This is a stratigraphic cross-section through the 12 DFIT wells, and these are the DFITs that CNRL relies 13 on; is that correct? 14 Α That is correct. 15 If we then go and look at Exhibit 15.01, Tab 5, 0 16 page 108 -- sorry -- page 108. This is the stratigraphy of KN08 and KN09. 17 And I appreciate that this will be difficult. 18 If we could perhaps go back to the DFIT of the -- or the DFIT 19 20 stratigraphy, page 67, 01.01. If we look at this 21 stratigraphy, do you agree that there is an A2 22 mudstone? 23 J. LAVIGNE: Yes. The A2 mudstone is Α 24 present in those wells. 25 And then if we flip back to the 15.01 and we look, then 0 26 the A2 is not present through the full stratigraphy; is

1		that correct?
2	A	The A2 has been removed in the second well from the
3		left by Wabiskaw D incision. That's correct.
4	Q	If we flip back to the 01.01, could you compare the
5		Wabiskaw B shape that we see there with the one on
6		15.01? Are they the same?
7	A	I'm I'm sorry. Did you say the 'B'?
8	Q	'B', yes.
9	A	The 'B'.
10	Q	So look at the Wabiskaw B here, and then compare it to
11		the Wabiskaw 'B' that we see in the stratigraphy for
12		KN08 and KN09. Perhaps it will be I'll leave it to
13		CNRL's panel to tell you how to flip so that they can
14		see.
15	A	The in this particular cross-section, the Wabiskaw B
16		is not present in the well on the far right from the
17		Jackfish area. Now, if we toggle back to the previous
18		figure, the Wabiskaw B is present in orange that covers
19		the entire section.
20	Q	So these two are not alike or the same?
21	А	These are these are different cross-sections from
22		different areas. So the the Wabiskaw B is not
23		identical over the entire basin. It's it's
24		locally in this section, it's continuous. And in
25		the other in the previous well log section that we
26		were looking at, it is continuous over the local Kirby

north area in the three wells on the left; and the 1 2 other well, it's beyond the depositional limit of the 3 Wabiskaw B, where it's encased in the regional Wabiskaw 4 shale. Then for my last geology question, if we can -- well, 5 0 6 I -- do we have the transcript on the record I think is 7 I would like to go to page 56 of the the question? 8 transcript, line 16 to 18. 9 It's page 56. We don't have a 56. 10 I'm going to try and ask you the question, and if 11 you disagree with my quote, then please tell me, and we 12 will do more work to try and find the reference. 13 You've said that: (as read) 14 An analysis of overlying confinement strata is critical. 15 I'm sorry. Are you referring to a specific quote in 16 Α 17 this? I'm just scanning it and trying to see that. Line 16. 16 going on 17. 18 0 19 Yes, I would agree with that statement. Α 20 My question is: Especially in KN09 there is a very 0 21 significant portion that does not have any well 22 control. If this is so critical, why did you not drill more wells? 23 24 S. SVERDAHL: Right now we are at AER Α requirements for well density for KN09. 25 We will 26 consider drilling more wells to evaluate the reservoir

1 at a later time. What -- we are at current delineation 2 requirements. 3 Very well. Even though we don't have that big zone in 0 4 the middle, we -- we just don't know anything? 5 Α G. IANNATTONE: Excuse me. Could you pull up 6 an exhibit that shows this big zone in the middle where 7 we don't know anything, please? Can we go to Exhibit 01.01, page 56. If we could then 8 0 9 please just enlarge the image. 10 Do you agree that we see a well to the left side 11 of the KN09 box? 12 Can I have the mouse? Then I can perhaps show. 13 So we see a well here, and then we see no wells until here. 14 I'd like to correct that. 15 S. SVERDAHL: Α There is one well in 12-2, which is under the 'N'. 16 17 What do you estimate the distance is between those 0 18 wells? About 3, 400 metres between those wells, including the 19 Α 20 well I pointed out under the 'N'. Yeah. My apologies. About 600 metres or so. 21 22 Very well. 0 23 Moving on, then, to the next section of my 24 questions. If we go look at Exhibit 50.002, page 6, 25 paragraph 14. The second-to-last line says: (as read) 26 Canadian Natural is concerned about the

1 declining pressure. Is that correct? 2 This is in the 10-1 well. 3 G. IANNATTONE: That's correct. Α 4 If we can then go to Exhibit 32.02 at page 34. 0 I think I have the wrong exhibit here. If we can go to 5 6 Exhibit 15.01 at page 34. My apologies. 7 If we look at paragraph 143, this is where CNRL tells us about the investigation reporting to the 10-1 8 9 and that they've submitted it to the AER on May 18, 10 2021. Remember that date. 11 If we then go to Tab 29 in the same document, 12 page 350. This is the -- this is the report; right? 13 This is the report that was submitted in May. And I 14 would like to pause there. It is CNRL's contention that we don't need to 15 worry about the 10-1 well because there was this full 16 17 investigation into it, the report was submitted to the AER, and the AER was satisfied; there's nothing further 18 to be done here? 19 20 G. IANNATTONE: CNRL agrees that the integrity Α of the 10-1 well is -- is good, and it also agrees that 21 22 the data that it's been measuring is valid. If we could then scroll down -- my apologies. 23 0 Let me 24 just find you a page reference. 25 If we go to page 358. So in May, CNRL says at 26 current -- if you could just scroll down. After one

1		year of buildup pressure is now higher than when it was
2		<pre>first measured; correct?</pre>
3	A	That's correct, yeah.
4	Q	So this is what the AER has when it makes its decision
5		in August, that there's nothing to be concerned about
6		in the 10-1 well? There was no update to this report
7		between May and August?
8	A	There was no update to the report, no.
9	Q	If we can then go to Exhibit 15.01, page 358. And my
10		apologies. If we can go to 43.02. It's not sorry.
11		Hang on. My apologies. It is 15.01, 43, page 43
12		483. My apologies.
13		Here we have a a time line of events produced
14		by CNRL, and here we see that the pressure has been
15		declining since March 2021. So when CNRL provided the
16		report to the AER in May of 2021, the pressure was
17		already declining, but it didn't tell the AER that?
18	A	That's correct, yes.
19	Q	And it also didn't update its report before the AER
20		gave its decision in August 2021?
21	A	Sorry. I missed the question. Could you please repeat
22		that last part.
23	Q	You said that you did not update the report before the
24		decision in August 2021; correct?
25	A	No, we did not update the report.
26		So the history here of this gauge was the that

we saw a very evident pressure buildup that is 1 2 reflected in, you know, Point 7 and 8 on this plot. 3 Clearly in Canadian Natural's opinion, that is a 4 valve-closing event, but that's only Canadian Natural's opinion. And then at the time we saw a nice buildup, 5 6 so we thought, Yeah, this is all good -- very good. Ιt 7 looks like in 9 -- Point Number 9, yeah, we pulled the gauges to do the investigative work, the chat log, the 8 9 casing integrity-type work. We ran the gauges back in. 10 And the date you're referencing was which point? 11 I was not referencing the -- the graph at all. 0 12 My point was: In May 2021, CNRL produces a 13 report, tells the AER the pressure is high. Despite 14 knowing that from March pressure has been declining, it does not update its report and leaves the AER to make a 15 decision in August without telling the AER that the 16 17 pressure is, in fact, declining? 18 D. OLLENBERGER: As you can see, up until Α 19 Point 9, which is in March, the pressure's very flat. 20 So up to that point there was no established pressure decline observed. So I believe that the contents at 21 22 the time of the report that was sent to the AER remains 23 valid. And then from there it decreases, but there's no 24 Sure. 0 25 update to the port. 26 My point is this: CNRL says it's concerned about

this pressure decrease, but it does nothing about it; 1 2 it does not tell the AER about it? 3 The intent of the conditions on the 10-1 are with Α 4 respect to reporting any potential concerns with flow 5 behind casing or any impacts from SAGD operations. 6 Seeing as the KN06 pad had not began steaming 7 operations until May of 2023, there was no evidence of any sort of communication, and therefore there was no 8 9 expected need to communicate that to the AER. 10 0 If we then move on to Exhibit 01.01, page 41. What is 11 the -- in -- in this graph, what is the distance 12 between the injector and the SAGD top? So if we look 13 at your heel, for instance, what is the distance 14 between the injector and the SAGD top? 15 S. BARLAND: Looking at it, I believe it's Α about 6 metres. 16 17 6 metres. Okay. 0 How long does it take for a steam chamber to reach 18 the top of a reservoir? 19 20 Depends on the actual conformance of that well pair. Α 21 Generally it's in a matter of months, usually, if the 22 sand is very clean and -- and conformance is good. What is the distance between the top of the SAGD 23 0 reservoir and the Wabiskaw D bitumen? 24 Probably around 10, depending on which well you look 25 Α 26 at, 10 to 12.

1			
	1	Q	Then if we look at your map there at the bottom with
	2		your proposed heels, do you agree that where those
	3		proposed heels are there will be a concentration of
	4		heat?
	5	А	D. OLLENBERGER: I would say no more than any
	6		other portion of the horizontal.
	7	Q	How long do you think it will take for the heat to
	8		reach the Wabiskaw D bitumen?
	9	A	P. THOMSEN: We don't have a prediction
	10		included in the record to answer this question. If we
	11		could review the the PNX and temperature logs that
	12		were included in Tab 12 I just need to pull up a
	13		reference for this, and we could show some field data
	14		for that approximate distance. Just one moment while
	15		we pull up the reference for this.
	16	А	M. SCRIMSHAW: Exhibit 15.01, Tab 12. It's
	17		at PDF page 224.
	18	А	P. THOMSEN: If we could zoom in, please,
	19		on the left-hand pair of red and green images to
	20		around the area above that 200 degrees C annotation,
	21		please. And if we could scroll down. Okay. Great.
	22		If we could keep on scrolling down, please.
	23		So some of my colleagues are saying a a
	24		15 metre would be appropriate based off of that
	25		previous cross-section we were looking at. So if we
	26		went up 15 metres from that McMurray non-reservoir base

Dicta Court Reporting Inc. 403-531-0590

1		or the the top of the post-B2 reservoir just give
2		me a second as I work my way up here. I think that'd
3		be about a 50 to 60 degrees Celsius after four years of
4		operation in this example. That's subject to check
5		with actually getting the measurement on this, but \ldots
6	Q	Does CNRL acknowledge that conductive heating is a
7		productive production mechanism?
8	A	Could you repeat the question, please?
9	Q	Does CNRL acknowledge conductive heating as a
10		production mechanism?
11	A	There is some oil that's mobilized via conduction with
12		SAGD.
13	Q	So in Exhibit 50 is that your final answer? Can I
14		proceed?
15	A	Please proceed.
16	Q	In Exhibit 50.002, paragraph 116 on page 34, you agree
17		that conductive heating implies that there's a heat
18		transfer; correct?
19	A	Correct. Conductive heating is heat transfer.
20	Q	Did CNRL include production from conductively heated
21		bitumen in their application?
22	A	D. OLLENBERGER: Can you please clarify the
23		context?
24	Q	So you've been very clear that this application is for
25		McMurray bitumen only. Conductive heating can result
26		in production of Wabiskaw D bitumen. Did you include

		239
1		that in your application?
2	A	G. IANNATTONE: Just one second, please.
3		Thank you.
4	A	D. OLLENBERGER: Could you just repeat the
5		question one more time, please?
6	Q	CNRL said that they are applying for production from
7		the McMurray formation. The question is: If it is
8		possible to produce Wabiskaw D bitumen through the
9		process of conductive heating, did you include that in
10		your application?
11	A	We did not include any production from the Wabiskaw D
12		in our application, and we feel that such production
13		would be highly unlikely.
14	Q	If we then go to Exhibit 50.003 at page 7. In that
15		paragraph that is numbered "1" on the side, more or
16		less in the middle of the paragraph after the word
17		"Figure 3": (as read)
18		Conductive heating of the confinement strata
19		will inevitably occur
20		And then there is the explanation of how it will work,
21		and then at the bottom of that paragraph: (as read)
22		To the extent that this does occur, it will
23		result in higher volumes of bitumen
24		production and more optimal exploitation of
25		the total resource.
26		So we have the statement that it will inevitably happen

and that will result in further exploitation, which does not form part of your application.

1

2

3 T. BOONE: So you're -- that's out of my Α 4 And now the confinement strata consists report; right? of McMurray and Wabiskaw. And so it -- it would be 5 6 very specific to the location, you know, how much 7 production occurred out of the confinement strata and -- and which zone it came out of, but, you know, 8 I mean, once the 9 inevitably you can't stop conduction. 10 steam hits the top of the reservoir, it's there for ten 11 years and conduction continues to occur, and once --12 once any bitumen up there is mobilized, it's heated.

13 Now, the -- the good thing is you get a little bit 14 of oil out of that; right? And the -- one of the reasons SAGD has worked really well is steam actually 15 stops at the top of the reservoir. 16 If steam kept going 17 up there and heated up all this low-quality reservoir, you'd see your steam-to-oil ratios incline -- or, you 18 know, shoot up -- increase significantly, and the whole 19 20 process would become, you know, less economic for 21 But fortunately, I mean, steam has been everyone. 22 contained to the good sands, and -- and the net result has been -- you know, most projects have very good and 23 24 very consistent steam-to-oil ratios with SAGD. 25 So we inevitably get this conductive heating. We 0 26 inevitably get this production from the Wabiskaw D. My

		201
1		question is: How will you know
2	A	G. IANNATTONE: No.
3	A	T. BOONE: I didn't
4	A	G. IANNATTONE: Excuse me.
5	A	T. BOONE: say that. I said from the
6		confinement strata there. And it depends on the
7		permeability. Okay? And and it's not necessarily
8		the Wabiskaw D. I didn't look at to see if there
9		were barriers between and I think generally there
10		are barriers between the Wabiskaw D and the McMurray
11		formation steam chambers.
12	Q	If we can then move on to Exhibit 50.002,
13		paragraph 123, on page 35.
14		This refers to an overpressure event; correct?
15	A	G. IANNATTONE: I think this is that Cenovus
16		example that we talked to earlier this morning.
17	Q	In your opinion, if if there was a thermal expansion
18		in the Wabiskaw D, what kind of pressure could that
19		generate?
20	A	Are you referring now to the KN08, KN09 drainage boxes?
21	Q	Correct. If there was a similar event as in this
22		example, what kind of pressure are we looking at?
23		Could it reach 6.5 as in the Cenovus example?
24	A	P. THOMSEN: We have not included a
25		prediction or a model of this within the record to
26		bring up. What we can answer this question with is the

1 Cenovus example had temperatures of up to 150 degrees C 2 in the Wabiskaw D sand, and with the example that we 3 were just looking at, 15 metres above, we were looking at temperatures around 50 to 60 degrees Celsius. 4 So we 5 would have lower temperatures. 6 Α G. IANNATTONE: I think to answer your 7 question is we don't have a prediction or a model that predicts the pressure in the Wabiskaw D over the KN08 8 9 and KN09 drainage boxes due to conductive heating. 10 Very well. Do you agree that steam most often rises to 0 11 the top of a reservoir and that the overlying strata is 12 heated over time by conduction from the top of the 13 steam chamber? 14 Α P. THOMSEN: Overburdened heat losses will 15 occur via conduction. And what was the second part of the question? 16 17 Do you agree that steam most often rises to the top of 0 the reservoir and that the overlying strata is heated 18 19 over time by the conduction from the top of the steam chamber? 20 21 Just one moment. Α 22 So our steam chamber development may reach the top 23 of the post-B2 reservoir. In some instances, there are 24 mud beds that can impair the rise of the steam chamber, and so in some portions of our development, the steam 25 26 chamber will -- will not reach the top of the post-B2

reservoir.

1

Q I am, in the interest of time, going to skip over a couple of questions, and I'm going to jump to the Long Lake example of CNRL. It's, I believe, in the transcripts on page 117. I believe lines 24 to 26, page 117.

7 So here CNRL referenced the Long Lake Pads 14 and 15, and you used it as an example of SAGD operations 8 9 which have an MOP, where the hydrostatic head of the 10 water is near the seismic scale faults in the caprock, 11 and you suggest that Long Lake is an example where this 12 type of operation was conducted safely; correct? 13 The purpose for communicating this was this is an area Α 14 where there is a potential concern about shear failure of the faults through the caprock, and I don't know 15 specifically how far those faults extend within the 16 17 caprock, but it was an area of concern. 18 Did you know that Long Lake has 18 observation wells in 0 Pads 14 and 15? 19 20 Could you repeat the question, please? Α 21 Did you know -- did you know that Long Lake has 0 22 18 observation wells in Pads 14 and 15? I do not know the number of observation wells. 23 Α 24 I am then going to jump further to the geomechanics Ο 25 topic. I am referring to Exhibit 46.02 at Tab 5,

26 page 32. It's the geomechanical modelling report. And

Dicta Court Reporting Inc. 403-531-0590

I'm going to have to ask you for a little bit of help 1 2 because I only have the acronym here, and I do not, in 3 fact, know what it stands for, "SSL"? D. WALTERS: 4 Α I can speak to that. It -- it stands for shear stress level. 5 6 Thank you very much. Ο 7 Can you confirm that in the modelling output you used in computing the SSL it is dependent on the 8 9 properties that have been assumed for each of the main 10 zones in the modelling? 11 Yes, that's correct. It depends on the shear strength Α 12 properties we assign to each of those materials. 13 Can you show me in your report where you assigned those 0 properties? 14 15 So the Table 1 in the report -- which was corrected, so Α that's on page -- PDF page 43 -- this table lists the 16 17 different zones that were included in the model and 18 some of the inputs. The shear strength properties 19 themselves, there was -- was -- were discussed in the 20 text below that table, so two paragraphs down. The paragraph starts: 21 (as read) 22 Shear strength of the mudstones and mud-dominated confinement strata ... 23 24 Do you agree that the properties that were assumed for 0 25 each of those zones was assumed for a homogenous 26 material?

1 So the properties assumed for those zones were assumed Α to be at a post-peak or a residual-strength state and 2 3 so that accounts for the potential for there to be 4 shear fractures within the materials and is a 5 conservative approach. There were -- there was lab 6 data that was also presented that shows the shear 7 strength of intact mudstone from the area, and the properties that we assumed for the modelling was much 8 9 lower than those properties. So we used a conservative 10 estimate, but we assumed that for the entire zones, so homogenous through that zone. 11

12 Q And we know from the geological evidence that these 13 zones here are not homogenous. They are, in fact, 14 heterogenous?

However, this -- this modelling 15 Α That's correct. approach and modelling workflow is much like SAGD. 16 17 It's something that's very well established and very 18 The first caprock integrity work project that mature. I worked on was in 2002 when the SAGD commercial 19 20 projects were beginning, and since then I've conducted 21 over 30-plus caprock integrity studies on commercial 22 SAGD projects. It's typical that they don't have the 23 same characterization of the geomechanical material 24 properties in the caprock that you would of the 25 reservoir properties that have been discussed by 26 qeology.

1	Q	To be clear, we don't take issue with your approach.
2		We just doubt whether it actually answers the questions
3		that this Panel needs to answer.
4	А	The modelling approach that we take is first developed
5		from a risk perspective. So as you heard in the direct
6		evidence, a lot of the characterization for KN08 and
7		09 a lot of work has been put into looking for risks
8		that could be a risk for containment, which is
9		eventually what the caprock integrity study would look
10		to evaluate over the operational history. So the
11		models that are then developed, which this is an
12		example of that we've just talked about, are fit for
13		purpose based on the risks that have been identified.
14		And geologically, there were very few risks and very
15		low risk identified for containment, as has been
16		discussed, with respect to faults and fractures. The
17		operating conditions are relatively low risk as well in
18		terms of operating pressures and volumes injected at
19		the start-up pressures. So associated with that, the
20		inputs that were used were conservative to analyze
21		caprock integrity, and it was felt representative
22		reasonably representative to confirm that we have a
23		low-risk operation, and I believe it showed that.
24	Q	Do you acknowledge that we don't, in fact, have your
25		model on the record? All we have is your report?
26	A	That is correct. This modelling report is on the

1 record. 2 Could you show us in your report where the maximum 0 3 confinement strata uplift appears? 4 The uplift or the deformations, the vertical Α 5 deformations are not shown in the report. Just summary 6 plots of the stress levels which are a result of that 7 deformation. The pressure and temperature results that induce that deformation, they are all shown in the 8 9 report. 10 Ο Could you show us the deformations in your report or 11 the predictions for deformation in your report? 12 Not in the report. If you would like, I could Α No. provide those deformations or deformation plots. 13 14 The problem that I have is that I have no further 0 opportunity to file further evidence or do anything 15 with that information. 16 17 I'm going to stop it here because I'm running 18 rapidly out of time, and I'm going to hand it over to Mr. McLeod. 19 Mr. McLeod Cross-examines the Canadian Natural 20 Resources Limited Witness Panel 21 22 A. MCLEOD: Can everyone hear me? Ο 23 Excellent. 24 All right. So I'm going to start with 25 Exhibit 50.03 at page 3. Now, Dr., at the top here 26 you say that you re-affirm the conclusions from your

> Dicta Court Reporting Inc. 403-531-0590

1		initial report, which I believe is in Exhibit 15.01.
2		Do you agree with that?
3	А	T. BOONE: Yes.
4	Q	Okay. And you would also agree that in Exhibit 15.0
5		yeah, 15.01, you had recommended a temporary MOP of
6		6,600 kilopascals; right?
7	A	I that was being recommended or being proposed by
8		CNRL, and and I supported it.
9	Q	And so when you say that you re-affirmed the
10		conclusions in your initial report that a temporary MOP
11		of 6,600 kilopascals is acceptable, you've actually
12		changed that recommendation now, haven't you?
13	A	I don't believe so, but maybe you could point me to it
14		if I
15	Q	Sure.
16	A	had a misstatement there.
17	Q	Yeah. In under Issue 3 there, you say it is your
18		assessment that it's reasonable to permit an MOP of
19		6,600 kilopascals as requested by CNRL for the purpose
20		of starting up the SAGD wells. And then you go on to
21		say in Issue 4 that it: (as read)
22		Is my assessment that solvent injection
23		during start-up phase, as requested by CNRL
24		in Exhibit 15.1, page 47, paragraph 199,
25		should be allowed with a pressure limit of
26		5,500 kilopascals equal to the MOP without

the allowance for a higher temporary MOP. 1 So I'm a little bit confused about what -- the 2 3 temporary MOP that you recommend. 4 And -- and I -- I recognize that there's been a Α Sure. bunch of, you know, confusion. 5 There's different 6 numbers floating around there; right? So the temporary 7 MOP of 6,600 kPa applies to the start-up of the wells. And so this is when they're initially trying to get the 8 9 wells circulating. And so that's in the very first few 10 days or few weeks of operations. And -- and the 11 challenge, then, is just to get steam circulating 12 because you have this pressure head of water in the 13 well, and you have to overcome that, and you have to 14 overcome your -- your pressures in your flow lines to 15 the plant and whatever else. So that's very early on. 16 And so then what happens is you get the wells 17 circulating, and that temporary MOP of 6,600 kPa doesn't apply. Okay? Once they're up and running -- I 18 mean, there is a period where it -- as Peter said 19 20 yesterday, maybe things -- you know, there's a 21 shutdown, and you need to apply it again. 22 So it's --0 But the --23 Α 24 It's not just at the start, then. It's -- it's any 0 25 time that you have to restart the --Well there --26 Α

1	Q	the wells?
2	A	There's a limit on the time period there, but so
3	Q	What is that time limit?
4	A	I I'm going to refer to Mr. Thomsen.
5	A	P. THOMSEN: Canadian Natural has modified
6		its requests, as presented yesterday, to a maximum
7		continuous time of 24 hours for use of bottom-hold
8		pressures above 5,500 kPa and below the requested
9		temporary MOP of 6,600 kPa.
10	A	T. BOONE: And and so, again, I'll
11		just say now that's during steam injection only. So
12		during solvent injection, which is referred to in
13		Issue 4, I think the proposal has always been that the
14		pressure limit would be the the MOP itself, which
15		was originally in the application 6,000 kPa and now has
16		been reduced to 5,500 kPa.
17	Q	So you're suggesting, then, that the temporary MOP
18		would only apply to the times prior to the injection of
19		solvent?
20	А	D. OLLENBERGER: As I stated yesterday, solvent
21		injection will be subject to the long-term MOP of
22		5,500 kPa.
23	Q	Right. And so when when are we going to see the
24		the exceedance to 6,600 kPa? Is that before or after
25		injection of solvent?
26	А	It would typically be before injection of solvent.

270

1 Under very rare circumstances, there would potentially be a case after an extended shut-in that we would need 2 3 to recirculate the wells. Due to the heat that would be stored in the wellbore, we would not expect to need 4 5 to use the temporary MOP at that time. 6 But you've requested to have that temporary MOP extend 0 7 beyond just the start-up of these wells? I don't think that we did do that. 8 Α Any time that 9 there's solvent in the well being injected, we would 10 not exceed the long-term MOP of 5,500 kPa. 11 I think you might have missed my question. My question 0 12 was whether you intended to exceed the 5,500 kilopascal 13 MOP at any time aside from at the start-up of these 14 wells. As we've stated in our submission, it's very likely 15 Α that in early SAGD all the injected hydrocarbon would 16 17 be produced back out of the wells; therefore, if we 18 ever did have to recirculate the wells, it's expected there would be no hydrocarbon downhole. 19 There may be instances where we would have to recirculate the wells. 20 If such times occurred and we could not unload the 21 22 wells below the long-term MOP of 5,500 kPa, we may 23 proceed to use the temporary MOP; however, this 24 situation is very highly unlikely to occur. 25 And, sir, where in your application was that request 0 26 for a temporary MOP for recirculation events?

I think that's covered under the umbrella of -- that we 1 Α 2 will not exceed the temporary -- temporary MOP for more 3 than 24 continuous hours or 14 nonconsecutive dates. Ι 4 believe those 14 nonconsecutive days would cover that 5 time period. 6 But at any time during the life of the project you 0 7 might need that exceedance? Potentially, but I would say it's very highly unlikely. 8 Α 9 Once the wells are on SAGD and the near wellbore area 10 has been conductively heated, unloading the wells 11 becomes much, much easier, and therefore we'd not 12 anticipate to need to use that MO -- temporary MOP to 13 unload the wells and re-establish circulation. 14 And in our experience, that has never had to 15 We've never had to use the temporary MOP again occur. to re-establish circulation in any of our well pairs. 16 17 Now, Dr. Boone, was it CNRL that suggested to you that 0 there should be a temporary MOP of 6,600 kilopascals, 18 or did you reach that conclusion on your own? 19 20 T. BOONE: So there was -- well, when I Α 21 first got involved in KN06, that hearing, the temporary 22 MOP was part of that and -- and was approved for KN06. 23 Also, if you look in the D 86, the directive for 24 shallow SAGD projects, there's a specific section in 25 there on exceedance of the MOP -- temporary exceedance 26 of the MOPs, and it's commonly granted to most

> Dicta Court Reporting Inc. 403-531-0590

1		companies in industry, and there's a procedure there
2		in there for asking for permission to temporary
3		temporarily exceed the MOP. So it's
4	Q	So CNRL
5	A	common
б	Q	CNRL
7	A	I didn't suggest it, but it's
8	Q	Okay.
9	А	it's common practice.
10	Q	So CNRL suggested to you that it wanted a a
11		temporary exceedance of the MOP up to 6,600
12		kilopascals, and then you concluded in your report that
13		that was the appropriate temporary MOP?
14	A	I concluded that 6,600 was reasonable, yes.
15	Q	Very good.
16		We'll turn to Exhibit 50.003 at page 22. Can we
17		go back to 21? Sorry. I apologize. It is on 22.
18		So there, Dr. Boone, you indicate that there's
19		no or or the risk that you're you're
20		considering is is whether steam containing no
21		reaction products might escape containment. Can you
22		tell us why it is that you concluded that there would
23		in no circumstances be any reaction products in that
24		steam?
25	A	Sure. So this is early on in generally early on in
26		the process that you're starting up the well, and there
1		

1 isn't a large steam chamber developed yet that would 2 contain reaction products. So that -- that's one 3 point.

But the real key point is if you're going to 4 inject steam -- and the risk here is that you do it 5 6 above fracture pressure and that fracture rises up into 7 the overlying strata, the steam that you're injecting which has no reaction products because it comes from 8 9 the plant flows into the fracture, it's at high 10 pressure, there's some leaking off into the formation, 11 and -- and the only possibility is that some of that 12 injected steam makes it up into the strata. But 13 there's -- there's no potential for reaction products The fracture is at 14 to flow into that fracture. Okay? 15 the high pressure, and it's -- it's injected steam, and it has no reaction products in it. 16

17 Q All right. Thank you.

I'm going to turn you now to Exhibit 20.02 at 18 19 page 70. 70, seven zero. Sorry. Thank you. 20 So from CNRL's response here, is it correct for 21 ISH to understand that it's CNRL's position that 22 bitumen-saturated zones are confinement strata? 23 Α D. OLLENBERGER: Sorry. To clarify, are you 24 questioning whether or not we're implying the bitumen 25 surrounding our SAGD well pairs is confining strata? I'm trying to ascertain whether it is CNRL's position 26 0

1 that bitumen-saturated zones act as a -- or are 2 confinement strata.

3 A One moment, please.

4 Generally be the mud content of our facies that would be what we would use to determine confining 5 6 strata. Bitumen at low temperatures would impede flow 7 There might be some water mobility in cold of fluids. bitumen. However, we wouldn't typically classify 8 9 highly saturated bitumen zones that are heated as 10 confinement strata.

11 Q Thank you.

12 COMMISSIONER CHIASSON: Mr. McLeod, just to give you a 13 heads-up, I'd mentioned previously that we have a --14 need to have a hard stop at 12:15 because of the 15 availability of the room that we have for lunch, so 16 just to -- to give you an early warning.

A. MCLEOD: Yeah. And perhaps this may be
a good time to take a break. I do think that I am
going to have to continue for a little bit after lunch
just --

21 COMMISSIONER CHIASSON: Fair enough.

A. MCLEOD: -- due to the length of some
of the answers that we've been getting, which we
appreciate.

25 COMMISSIONER CHIASSON: Yes. No. We realize that26 because our time was off yesterday.

1		So, Ms. Jamieson.
2		J. JAMIESON: Thank you.
3		Mr. Sverdahl, earlier this morning you were asked
4		about three wells, and you were asked to provide the
5		date they were drilled. You were able to give the date
б		of two of those wells but not the third, and you had
7		committed to bringing that information. Do you have it
8		now or
9	A	S. SVERDAHL: Yes. It's that third well
10		was drilled in February of 2012.
11		J. JAMIESON: Very good. Thank you very
12		much.
13		COMMISSIONER CHIASSON: Okay. Great. Thank you. So
14		I'm assuming that, with that, we don't need to check
15		back end of day. You're satisfied with that,
16		Ms. Riley?
17		M. RILEY: Yes. Thank you. And an
18		undertaking has been avoided.
19		COMMISSIONER CHIASSON: Thank you. Thank you, all.
20		All right. So we will break now, and we will look
21		to return back, let's say, at ten past 1. Thank you.
22		
23		PROCEEDINGS ADJOURNED UNTIL 1:10 PM
24		
25		
26		

276

1	Proceedings taken at Govier H	Hall, Calgary, Alberta
2		
3	February 7, 2024	Afternoon Session
4		
5	Cindy Chiasson	Panel Chair
6	Brian Zaitlin	Panel Member
7	Meg Barker	Panel Member
8		
9	William McClary	AER Legal Counsel
10	Shannon Peddlesden	AER Legal Counsel
11	Andrew Lung	AER Staff
12	Denise Parsons	AER Staff
13	Anastasia Stanislavski	AER Staff
14	Fahad Hamdan	AER Staff
15	Maryam Rahimabadi	AER Staff
16	Susan Harbidge	AER Staff
17	Maksim Xhaferllari	AER Staff
18	Felix Chiang	AER Staff
19	Scott Botterill	AER Staff
20	Baohong Yang	AER Staff
21	Elwyn Galloway	AER Staff
22		
23	J.P. Jamieson	For Canadian Natural
24		Resources Limited
25		
26		

1 M. Riley For ISH Energy Ltd. 2 A. McLeod For ISH Energy Ltd. 3 4 S. Murphy, CSR(A) Official Court Reporter 5 S. Burns, CSR(A), RPR, CRR Official Court Reporter 6 7 (PROCEEDINGS COMMENCED AT 1:14 PM) COMMISSIONER CHIASSON: 8 Could we get the door to the fover closed, please. 9 10 Thank you. So, Mr. McLeod, you're ready to 11 continue? 12 A. MCLEOD: I am ready. 13 COMMISSIONER CHIASSON: Okay. Please go ahead. 14 A. MCLEOD: Everyone can hear me okay? Excellent. 15 16 DEVIN OLLENBERGER, THOMAS BOONE, LENNON ROCHE, 17 MARC SCRIMSHAW, Previously Affirmed. GERARD IANNATTONE, JASON LAVIGNE, SCOTT SVERDAHL, 18 DALE WALTERS, XIANG WANG, PETER THOMSEN, SCOTT BARLAND, 19 20 Previously Sworn A. McLeod Cross-examines the Canadian Natural Resources 21 22 Limited Witness Panel All right. I'll start by 23 Ο A. MCLEOD: 24 bringing up Exhibit 50.02 at page 54. All right. All 25 right. So at paragraph 202 Canadian Natural says that 26 it agrees with ISH that the solvent assist start-up

technology is still in the development stage. After testing at KN01 to 08 with positive results scaling this technology up to pad scale at the KN08 and 09 pads is naturally the next step in the technology development process.

6 And so my question is: What have been the steps 7 that CNRL has taken to go from one well with less than 100 metres cubed injected of solvent to a pad scale 8 9 test with 350 metres cubed per well with, as I 10 understand it, up to 24 SAGD well pairs on KN08? 11 D. OLLENBERGER: Yes, I guess just to clarify, Α 12 obviously, Canadian Natural has applied to conduct this 13 That does not necessarily mean test on a pad scale. 14 that we will plan on conducting hydrocarbon-assisted start-up on every well pair. More than likely it will 15 be every second well pair perchance, and, secondly, we 16 did do an additional trial at Jackfish for 17 18 hydrocarbon-assisted start-up, and as far as the volumes that we've requested, as we've listed, the 19 20 wells on KN08 and KN09 will be longer in length, can be 21 longer in length as applied compared to KN01 Well 22 Pair 8, and therefore we're asking for additional flexibility on the injected volumes. 23 24 Now, I'm no engineer, but it seems to me that doing 0 25 every other well pair with the solvent assist must be 26 aimed at determining what -- what the differences are

1		between using solvent and not using solvent. Am I
2		right?
3	A	Yes. It would be used to intentionally develop
4		analogs.
5	Q	So why is it that CNRL has not applied to use solvent
6		assist on every other well?
7	A	We haven't yet drilled the wells and therefore
8		selecting candidates at this time would be premature.
9	Q	But CNRL didn't give any indication in its application
10		or subsequently filed materials that it intended on
11		doing anything other than using the solvent assist for
12		every well pair on KN08 and KN09?
13	A	Yes, that's correct. I mean, it is just for the intent
14		of being able to maintain operational flexibility. You
15		know, CNRL would like to reserve the right to inject on
16		every well pair.
17	Q	All right. And in terms of the the hydrocarbon that
18		CNRL intends to use for the purpose of the solvent
19		assist start-up, in some places I see that CNRL has
20		referred to it as as xylene and other places as
21		xylene diluent. What is it that CNRL intends on using
22		as the solvent?
23	А	I would characterize it as a xylene diluent blend.
24	Q	And do you have any detail on on the composition of
25		that or the ratios of xylene and diluent, or
26	A	Just one moment, please.
1		

I would say we don't yet have the specific 1 2 composition locked down ahead of the test. Xylene is a 3 more expensive product than diluent, and 100 percent 4 diluent may cause asphaltene deposition. So therefore we would look to do some further tests potentially to 5 6 determine the optimum ratio at KN08 and KN09. 7 I'll now turn to Exhibit 40.01. 0 All right. And T'm 8 looking for Tab 8 there. All right. So we'll maybe 9 scroll down to the "Working Experience" there. And 10 maybe just go down a little bit further so we have 2016

11 to present. Thank you.

12 Dr. Boone, I've had a look over your résumé, which 13 is now displayed on -- on the screen, and I notice that 14 you worked for ExxonMobil and Imperial Oil for quite a while and -- and did some work with -- with SAGD. 15 But I don't see anywhere on your résumé where you have 16 17 worked a lot in -- in developing solvent-assists SAGD projects, yet you've commented quite extensively on the 18 19 solvents at start-up. Can you provide your comments on 20 that?

21AT. BOONE:Sure.Why don't we go to the22listing of my published papers.

23 Q Sure. If we can just scroll down.

A Like, the second one there? "An Integrated Technology
 Program for Solvent-Based Recovery", and I believe you
 guys included that as one of your aids for cross, and

that describes four or five different solvent projects 1 2 that when I was manager for research at Imperial Oil's 3 research lab here our major focus was solvent technologies, and so I -- I have a lot of experience 4 with solvent. 5 So maybe we'll turn to AQ Number 1, Tab 2. 6 Okav. 0 And 7 we'll turn to page 12. Now, Dr. Boone, this is the paper that we were 8 9 just talking about in -- in your résumé, and I think it 10 was published around 2011; is that right? 11 Yes. Α 12 And about halfway down the page on -- on the 0 Okav. page that's on the screen here, you and your co-authors 13 14 wrote that: (as read) A fundamental learning from a long history of 15 pilots at Cold Lake is it is always much more 16 17 difficult to reliably interpret field results than as is anticipating in the planning stage 18 or can be directly ascertained from 19 simulation models. 20 21 Would you agree that that is applicable to field tests 22 generally? 23 Α Yes. I'd say that's generally true. 24 And then later on in that same page, if we can just Ο 25 scroll down -- sorry -- starting at "Another Learning", 26 you and your co-authors wrote that: (as read)

Another learning from experiences that pilots 1 2 are rarely confined to the planned or design 3 pilot conformance area. Would you agree that that is applicable to the -- the 4 5 pad scale test that CNRL is now proposing? 6 Α Well, I think you need to -- so the pad scale test that 7 CNRL is proposing is in the very early start-up phase, and they're injecting solvent, and I think you heard 8 previously with the intent of keeping it within 9 10 3 metres of the wellbore. And so in this case, I mean, 11 it is very localized around the well, and -- and 12 there's really no possibility that -- that one well is 13 going to communicate with another. 14 This paper focuses on recovery processes, and 15 that's, you know, a much longer term. We're going to be injecting much larger volumes of solvent, and the 16 17 steam chambers have grown to the point where they're connecting between wells, and there's a lot of 18 possibility for fluids moving from one well to the 19 other well. 20 So you're saying, then, that this is one of 21 0 Okay. 22 those rare cases where a pilot will be confined to the planned or designed pilot area? 23 Yeah, and I -- I -- you know, this is -- these are 24 Α 25 pretty small-scale trials. I'm not -- I don't know 26 whether they would really be qualified as a pilot used

1		in the sense of this paper.
2	Q	Okay. Now, you go on there to say: (as read)
3		Additionally facility operations are
4		typically more variable and complex than is
5		anticipated at the planning stage.
6		Recognizing these challenges, high-quality
7		production fluid measurements were performed,
8		not only at the wells where solvent was
9		injected, but also at all adjacent steam-only
10		wells.
11		You'll agree that the the idea that facility
12		operations are more variable and complex than is is
13		normally planned is true?
14	A	Definitely, yes.
15	Q	And that would apply to the development of these two
16		pads as well? It will be more complex than it is on
17		paper?
18	A	G. IANNATTONE: If I could take this one, Tom.
19		We do not have any solvent-related facilities for the
20		solvent start-up.
21	Q	Okay.
22	A	It should be thought of as a stimulation to the
23		wellbore, so we inject the solvent, we produce it back,
24		we create some reservoir voidage, and essentially
25		that's the end of it. There's it's very simple,
26		quick to do; probably, you know, within a few days of

1		the injection, the solvent's been produced back so
2		there is no impact at all on surface facilities.
3	Q	And I'm just going to turn to page 14 of that exhibit.
4		And, sir, you'd agree, Dr. Boone, that with the
5		statement that the transition from a successful pilot
6		phase through to completion of a successful first
7		commercial application is also commonly more difficult
8		than anticipated?
9	A	T. BOONE: Yes.
10	Q	And you'd agree with me that we haven't yet had a
11		or, rather, CNRL hasn't yet had a successful pilot
12		phase for the as a start-up?
13	А	I haven't reviewed the data that they had on SA
14		start-up.
15	A	G. IANNATTONE: I would agree they haven't had
16		a successful start-up phase yet. That, in fact, is the
17		purpose of wanting to trial it here at KN08 and KN09 so
18		we can advance the technology.
19		Yeah sorry my colleague here corrected me.
20		He said that we've had success in the execution, not
21		necessarily in the results, right. So we're that's
22		why we're continuing to pilot. We're trying to see if
23		we can get this technology to work subsurface.
24	Q	But essentially and as you've or CNRL mentions at
25		paragraph 202 of Exhibit 50.002, the intention is is
26		to scale the technology up to pad scale; in other

1 words, do a commercial scale, not to merely test it. 2 That's the intention. Α Yes. 3 All right. I'm going to turn to Exhibit 01.01 at Ο 4 page 77. Now, this was the first plot plan that CNRL submitted in -- in conjunction with this application. 5 6 Now, I'm wondering if -- if the witness panel can point 7 to where on -- on this plot plan there is any equipment 8 to complete the solvent-assist start-up? 9 Α Just one moment please, thanks. 10 Α L. ROCHE: So, yeah, there will be 11 nothing specific on this plot tied to that. Like 12 Mr. Iannattone said, we come in and do solvent-assisted 13 We bring in third-party pumping, and we pump start-up. 14 them down the wells and maintain our pressure limitations, but as far as flowback, we just use the 15 existing facilities. 16 17 Okay. And -- and I'm going to turn you now to page 315 0 of this same exhibit -- sorry -- 316 it must be. 18 19 All right. So this is the plot plan that CNRL 20 provided in response to one of the SIRs from the AER. 21 Can you tell me is -- is this the -- the pad that CNRL 22 plans to build on KN08? 23 This is a typical plot plan Α D. OLLENBERGER: 24 for a SAGD pad. Subject to the number of well pairs 25 and final design, it could be altered. 26 And you wouldn't be able to point, then, anywhere on 0

-		201
1		that plot plan to any sort of equipment that might
2		monitor the injection or return of solvents?
3	A	This pad would be equipped with the typical SAGD
4		monitoring.
5	Q	And I suppose that would be the typical SAGD monitoring
6		that was customary as of the date this was issued for
7		implementation on May 17th, 2018?
8	A	I believe that could be correct. Canadian Natural has
9		not proposed any additional monitoring for hydrocarbon
10		start-up.
11	Q	Thank you.
12		All right. We'll turn now to the thermal
13		compatibility of wells, and in that respect, I will
14		turn to Exhibit 50.002 at page 57. Now on in
15		paragraph 214, we have Canadian Natural's proposal with
16		respect to the 10-2 well: (as read)
17		to pull out existing equipment, remove
18		the packer assembly, patch the Wabiskaw B
19		perforations, cement from plug back to
20		15 metres above the Wabiskaw member [and so
21		on].
22		So I'll ask you to just briefly read that and keep it
23		in mind, and then I'll ask that we turn to
24		Exhibit 50.003 at page 249. And and here we have
25		the visual representation of the planned workover for
26		the 10-2 well, and and it appears to me that there
1		

1 might be a little bit of a discrepancy between what was 2 written in -- in paragraph 214, which was that CNRL 3 would pull out existing equipment, remove the packer assembly, and patch the Wabiskaw B perforations to, in 4 this proposed plan, indicating that CNRL will pull 5 6 existing equipment, drill out the plug, patch the 7 Wabiskaw B perfs and so on. So I'm just wondering if 8 you could comment on those differences and what the 9 intended plan is? 10 Α L. ROCHE: Just repeat that Sorry. 11 aqain. The variances? 12 So at paragraph 214 CNRL says that it intends to 0 Yes. pull out existing equipment, remove the packer 13 14 assembly, patch the Wabiskaw B perforations, and so on, and then in Tab 33, CNRL says that it will pull 15 existing equipment, drill out the plug, patch the 16 17 Wabiskaw B perfs. And so the discrepancy that I'm seeing there and, you know, I'm no -- no reservoir 18 19 engineer, but the discrepancy I'm seeing is that 20 there's pull existing equipment in para 214 and remove 21 the packer assembly, whereas on the visual 22 representation it talks about drilling out the plug, and my impression is that those are different things? 23 24 Yeah, so I think -- so the first one, pulling out the Α 25 existing, we would go in, and we'd pull out the 26 existing packer and the coils, and then we would go in

> Dicta Court Reporting Inc. 403-531-0590

1		and set a patch. So the drilling out the plug is more
2		part of our commitment to reestablish production after
3		the GOB order is lifted.
4	Q	Oh, I understand. Okay.
5		So it was just that this proposed plan isn't quite
6		in the order of intended operations?
7	A	That would be correct.
8	Q	Okay. And and is it fair to say that based on just
9		this diagram and just paragraph 214, that there's not
10		enough detail at this point to I guess send out a a
11		completions crew to do the workover?
12	A	Based on this, no. We have detailed programs that we
13		would share with ISH before executing any operations.
14	Q	Perfect. I'm next going to turn to Exhibit 32.02 at
15		page 27. And can we just scroll down to para 92.
16		So CNRL has proposed that no wellbore intervention
17		would be required in the 1234 well because
18		continuous monitoring has been restored there, and at
19		the time of ISH's submission it it agreed with
20		that that view. But I'm wondering if if that
21		monitoring well at 1234 if it's actually approved to
22		be a monitoring well at this point?
23	A	D. OLLENBERGER: The requirement of the 1234
24		well to be a monitoring well has been removed from our
25		approval.
26	Q	And so would it be CNRL's intention then to apply for

289

approval for 12-34 to be a monitoring well? 1 2 Can you please repeat your question? Α Sorry. 3 Sorry. The question is: If -- if the approval Ο Sure. 4 for 12-34 being a monitoring well has been removed, would CNRL reapply for that approval? 5 6 Α The monitoring condition of 12-34 now would be more 7 with respect to the thermal compatibility component, not as an observation well in and of itself. 8 The 12-34 9 was originally an aguifer monitoring well. 10 Q Thank you. 11 I'm going to now turn to Exhibit 43.002 at 12 page 21, and we'll just scroll down there a little bit 13 to the response. Sorry. 14 So CNRL, at the response, about two-thirds of the 15 way down the screen there, says: (as read) In the unlikely event of any type of casing 16 17 breach in the overlying formations of the 12-34 well, hydrostatic flow path would be 18 created between the McMurray and breached 19 20 upper zone and reservoir fluid transfer would be experienced. Canadian Natural has 21 22 installed a gauge that measures pressure and 23 temperature which is continuously monitored 24 for a transient response in the data. If any 25 out-of-zone casing breach occurs, the 26 pressure gauge will record a change in

> Dicta Court Reporting Inc. 403-531-0590

pressure which would indicate a flow path is 1 2 Temperature trends will also be present. 3 monitored, which would indicate fluids 4 flowing past the gauge. Pressure and 5 temperature data will be used concurrently to 6 detect a casing failure. 7 Now, Dr. Boone had confirmed that he had not: 8 (as read) 9 ... assessed issues associated with pathways 10 that may involve the wellbores [in his first 11 report. 12 And had indicated as well in his first report that: 13 (as read) 14 While tens of kilopascal pressure changes can 15 be resolved by the gauges, it would be very difficult to differentiate from the ongoing 16 17 pressure changes. So my question is: What is CNRL going to do in the 18 event of a casing breach? 19 20 P. THOMSEN: We just need to discuss. Α 21 Can you just repeat the question once more, 22 please? The question was: 23 0 Sure. What is CNRL going to do in 24 the event of a casing failure? 25 Α So in the event of a casing failure and if there was 26 if there was a casing failure connected to a zone with

a different pressure and cross-flow started to occur in 1 2 the well, we would measure a pressure change associated 3 with that cross-flow, and the response would be to kill 4 the well. And it would be relatively simple to use fluid with -- like, water has a high enough density to 5 6 be able to control the well, and then we would put 7 together a plan to address the casing failure. And if, in the course of that casing failure, there was 8 0 9 hydrostatic flow created between the McMurray and 10 breached the upper zone, what would CNRL do to 11 remediate that occurrence? 12 We would likely zonally abandon the monitoring Α 13 There are other options that could also be interval. 14 considered, but that's the likely course of action. 15 CNRL hasn't done a risk assessment, though, to -- to 0 consider what the appropriate mitigations would be 16 17 there? 18 Canadian Natural has significant experience with Α monitoring wellbore integrity. We are continuously 19 20 monitoring wells with steam injection and have experience with -- with casing failures occurring at 21 22 various times of thermal operations. So CNRL --23 Canadian Natural has a response procedure for 24 high-pressure well kills for thermal assets and that 25 can deal with bottom-hole pressure that is far in 26 excess of the KN08 and KN09 setting.

I'm going to turn now to Exhibit 50.002 at page 59, and 1 0 2 I'm looking at paragraph 219. 3 Mr. Iannattone, CNRL will acknowledge that ISH's consent to proceeding with the workover proposals is 4 5 subject to negotiation and execution of an agreement 6 detailing the respective parties' obligations and 7 rights? 8 Α G. IANNATTONE: Right. I think we're just 9 quoting what they had in their IR response here. 10 Ο Okay. And CNRL acknowledges that that is going to be a 11 necessary step in the process to do these workovers? 12 I believe so. That has been the step, I think, that Α we've taken in the past. 13 14 Thank you. 0 Now, just for the -- the 15 A. MCLEOD: Commissioners' knowledge, I believe I've got maybe 10 16 17 or 15 minutes more of questions, and we should be able to burn through those relatively quickly. 18 19 COMMISSIONER CHIASSON: Thank you for that update. 20 A. MCLEOD: All right. So if I can have 0 21 the transcript brought up at page 135. 22 Now, Mr. Ollenberger, I'll have you review lines 3 through 6 of the transcript. 23 24 D. OLLENBERGER: I've reviewed them. Α 25 And so you'll agree that it was your evidence that a 0 26 20-year delay should be anticipated before CNRL and ISH

1		would be able to produce the gas resource that is
2		subject to the GOB order?
3	A	Yes.
4	Q	And as a result of that conclusion, you think that the
5		discount of 10 percent per annum for 20 years should be
6		applied to the present value of future cash flows?
7	А	That is the assessment we conducted.
8	Q	That was the assessment that CNRL conducted or
9		Mr. Ollenberger?
10	A	We used the 10 percent discounting, correct.
11	Q	But was it Mr. Ollenberger who did the the
12		applied the discount formula, or who was it?
13	A	I was leading a team that conducted the discounting.
14	Q	Okay. Then perhaps I'll direct this question to you.
15		You're not an economist or an accountant or an auditor?
16	А	Correct.
17	Q	Okay. And can you tell us how CNRL has reported its
18		portion of the gas asset on its balance sheet? Has it
19		applied the same discount based on the delay in
20		production of 20 years?
21	A	It's my understanding that the Kirby Upper Mannville II
22		gas pool is not on our reserve books.
23	Q	You haven't recorded it on your reserves at all?
24	A	Subject to check, I believe because it's shut in, it
25		would not be considered proven reserves.
26	Q	Can I get an undertaking for you to review CNRL's

1		records to confirm whether the gas resource under the
2		Upper Mannville II pool is is on the reserves, and
3		if so, the value that it's recorded at?
4	A	Yes.
5	A	G. IANNATTONE: I think we can check to see if
6		it's on our reserves. With respect to the value, I'm
7		not sure that that's relevant here because anyways,
8		I don't believe it's on our reserves, but I'm not
9		committing to the value at this point in time.
10	Q	Well, sir, I would suggest to
11		you that given that CNRL takes a position that the
12		evaluation that ISH has assigned to its gas resource is
13		wrong, that it only it would be fair that CNRL tells
14		us how it values the same gas resource.
15	A	I wouldn't say that Canadian Natural is saying that
16		ISH's valuation is wrong. All we're saying is that
17		and maybe what we should do is pull up that IR question
18		where Canadian Natural asked ISH a series of questions
19		so that we could better understand how they came to
20		their value, and I I have the number here.
21	Q	I mean, the the value that ISH came to was accepted
22		by CNRL subject to this 20-year discount?
23	A	That's that's correct. We've used their values, and
24		we just discounted them because it was unclear to us
25		what their values meant because the only reference to
26		timing there is it said that it had an effective date
1		

1 of January 1st, 2024. There's no detail, even though 2 we asked for it, in terms of when did the production 3 start and some other questions. So we're making -- we 4 just don't know. We just don't know. So we -- that 5 was our approach. 6 But going back, we typically don't publicly 7 disclose reserves and values of reserves at this minute detailed level. We will confirm if we have reserves 8 9 booked or not, and we'll report -- report back, but I 10 don't think it's our corporate policy to talk about 11 what kind of value we have in a public forum about our 12 reserves, unless we want to move this part of the hearing into a confidential portion, but I'm certain --13 14 certainly wouldn't support that. 15 COMMISSIONER CHIASSON: Is it confidential to speak to, if it's on your reserve report, the method that you 16 17 would use for assessing future value? G. IANNATTONE: No. 18 Α 19 COMMISSIONER CHIASSON: Because it seems to me that 20 that's what -- if I understand correctly, Mr. McLeod, 21 that that's what you're getting at, is what's the 22 methodology that they would use. 23 A. MCLEOD: Yeah. That's correct. I am 24 getting at what is the methodology, yeah. 25 Α G. IANNATTONE: Yeah. 26 Because I think the Panel COMMISSIONER CHIASSON:

would be interested in that information. 1 Okay. Yeah. 2 G. IANNATTONE: Α No. Methodology 3 is fine. The exact dollar value is not, so ... And --4 0 A. MCLEOD: 5 COMMISSIONER CHIASSON: So just so that we're clear, 6 then, for the undertaking, so it's that CNRL will check 7 to assess whether or not their interest in the gas in 8 the upper -- the Kirby Upper Mannville II pool is on 9 its reserve reports and, if so, what's the methodology 10 that it's used for determining the future value. 11 A. MCLEOD: For determining the present 12 value. COMMISSIONER CHIASSON: Present value. 13 Okay. Thank 14 you. And future value or --15 A. MCLEOD: I mean, the -- the future 16 value can derived from the present value --17 COMMISSIONER CHIASSON: Okay. -- based on the discount. A. MCLEOD: 18 So 19 I'm only concerned about the present value. 20 COMMISSIONER CHIASSON: Okay. 21 A. MCLEOD: Yeah. COMMISSIONER CHIASSON: 22 Thank you. 23 Thank you. Got that, Mr. McClary? Lovely. UNDERTAKING 1 - For Canadian Natural 24 25 Resources Limited to check and assess whether 26 or not their interest in the gas in the Kirby

1		Upper Mannville II pool is on its reserve
2		reports and, if so, advise the methodology it
3		used for determining the present value
4		(Fulfilled on Page 405)
5	Q	A. MCLEOD: Now, one further question on
6		that
7	A	G. IANNATTONE: Sorry, Commissioner Chiasson.
8		In terms of timing, those reserves are in another group
9		that we don't look after, so is it okay if we report
10		back by noon tomorrow?
11		COMMISSIONER CHIASSON: That that should work fine.
12		I think we will have to see once that comes back in
13		terms of whether or not ISH may have a need to explore
14		any further on that.
15		A. MCLEOD: Yeah.
16		COMMISSIONER CHIASSON: We'll be open to looking at
17		that
18		A. MCLEOD: Yes.
19		COMMISSIONER CHIASSON: that timing.
20		A. MCLEOD: Yeah. That that's
21		agreeable.
22		COMMISSIONER CHIASSON: Okay.
23		A. MCLEOD: Subject to the ability for ISH
24		to potentially question on it.
25		COMMISSIONER CHIASSON: All right. Thank you.
26	Q	A. MCLEOD: Now, one final question on
	~	

	1		that and I understand that CNRL likely has a very
	2		robust accounting program for its its proven
	3		reserves, and so my my question is: For proven
	4		reserves, what is the effective date that is used for
	5		the valuation of the present value of a proven
	6		resource?
	7	A	G. IANNATTONE: Is that proven producing
	8		reserves or proven undeveloped preserves?
	9	Q	Both.
1	0	A	That is our annual year-end date, so typically
1	.1		December 31st of the prior year.
1	2	Q	Perfect. Thank you.
1	3		Next I'm going to turn to Exhibit 50.002 at
1	4		page 44.
1	_5		Now, here I see on the the fourth row of this
1	6		table that CNRL estimates the cost of a DFIT on KN08 or
1	7		9 as \$1,075,000. If we turn to page 53 of this same
1	8		exhibit, in paragraph 197, CNRL says that the cost of
1	9		DFITs on three intervals over the KN08 and KN09
2	20		drainage areas would be approximately \$375,000. You'd
2	21		agree with me the difference between those two is the
2	22		cost of drilling a well?
2	23	А	D. OLLENBERGER: Yes. The 1 point sorry
2	24		the 1 million 75 I'm having trouble with the system
2	25		here. The 1,075,000 total cost estimate is 375,000 for
2	26		the DFIT execution itself and 700,000 for a cased hole

1		strat.
2	Q	And in its latest submission, CNRL has already agreed
3		to drill an additional gas monitoring well in KN09;
4		right?
5	A	A future well, yes.
6	Q	So it's not actually accurate, then, to suggest that a
7		DFIT would cost over a million dollars?
8	A	I believe it will still cost over a million dollars all
9		in.
10	Q	But you're going to be drilling a well anyways. You're
11		going to spend that \$700,000 either way, so the added
12		cost to the DFIT is only \$375,000.
13	A	I would say that if that future well on KN09 was in an
14		ideal location to conduct a DFIT, which we're not
15		currently certain, that it potentially could be used
16		for a DFIT and then converted to a monitoring well.
17	Q	All right. So if you've overestimated the the cost
18		for the DFIT, fair to say that you might have also
19		overestimated the time delay that might occur as a
20		result of conducting a DFIT?
21	A	G. IANNATTONE: So so, first of all,
22		obviously that we only have winter access here; right?
23		So we have to drill a well and we have to conduct a
24		DFIT in the same winter season. That is easier said
25		than done. A good example is this winter, for example,
26		where we had record highs in January, so we couldn't

300

even move drilling rigs in to start our strat program until later on in the month of January. So there's no guarantees.

4

5

6

7

I guess, more importantly, we don't think that an additional DFIT is going to change our requested MOPs, but -- so we just can't -- we just don't know if it's going to be a time delay or not.

Further, what we do with the information once 8 we can -- if we did do an additional DFIT, what would 9 10 we do with the information? We'd have to either 11 reapply, reaffirming our MOPs, and is that process open 12 to consultation? If it is, all bets are off in terms 13 So we cannot sit here today and say that of timing. 14 doing an additional DFIT would not delay the project. 15 All right, sir. 0

16 A And I think one of the points that I made is that 17 before we commit to drilling a pad, we pretty much have 18 to have certainty that we can execute under our 19 conditions. So until we have that, the corporation 20 will not commit.

21 T. BOONE: Can I just add one Α Sorry. 22 comment here? I see on paragraph 197 it refers to my 23 risk assessment and the maximum consequence being less 24 than \$1 million. But -- but the DFIT specifically 25 refers to Risk Number 2 where the maximum consequence was a hundred thousand dollars or less. 26 So if -- if

1		you're just we need to read that correctly. So
2		that's why the DFIT being much more costly than the
3		consequence itself makes it not justifiable.
4	А	G. IANNOTTONE: Yeah. The last
5	Q	Based on your assessment of of the of the risk,
6		which was based on information that was conveyed to you
7		by CNRL; right?
8	A	T. BOONE: No. I I assessed the risk
9		of fluids migrating during start-up into the Wabiskaw B
10		gas zone myself.
11	A	G. IANNATTONE: I would like to add an
12		additional point that was brought up by my colleague.
13		The other prerequisite for DFIT is is that we need a
14		vertical wellbore. Most of our strat wells are
15		deviated. So likely we'd have to plan and design a new
16		wellbore.
17	Q	All right, sir. My last question for you if I heard
18		you correctly there, you said that it was unnecessary
19		to do a DFIT because regardless of the results, your
20		MOP is not going to change. So CNRL is is going to
21		take new information and not change its position?
22	A	P. THOMSEN: Canadian Natural will use all
23		information available with the the assessment and
24		the future operations. Previously I'd mentioned
25		proportionality, and when you consider the use of the
26		temporary MOP, it really is for the first time to
1		

initiate its potential use for the first time to 1 2 initiate circulation, and if it was used, it would 3 likely be for a couple hours with a -- with a volume that's well under 180 cubic metres. And so even if 4 5 there was some unlikely result of having a -- a reduced 6 stress, yes, we would -- we would continue to request 7 and justify the temporary MOP of 6,600 kPa for a start-up, and that's in part it's such a short duration 8 9 and a small volume that's injected. 10 Α G. IANNATTONE: The -- the last point, as --11 as we've said, we've lowered our long-term MOP from 12 6,000 kPa to 5,500 kPa, and that is a mitigation, and 13 that is a -- an additional reason why we don't feel 14 that an additional DFIT is -- is required because 15 we've -- we've modified our request. Thank you. 16 0 17 A. MCLEOD: Subject to questions on the undertaking that was given, those are my questions this 18 afternoon, Commissioner Chiasson. 19 20 COMMISSIONER CHIASSON: Thank you, Mr. McLeod. 21 So you look like you're about to say something, 22 Ms. Riley. No? Absolutely not. 23 M. RILEY: 24 COMMISSIONER CHIASSON: Okay. Thank you. 25 All right. So what we would do next is -- what 26 would be next on our schedule is questions from the AER

We will take a short break just 1 staff and Panel. 2 because we need to check in with our team, so -- but we 3 anticipate it being no longer than ten minutes, if So we will break and be back shortly. 4 that. 5 (ADJOURNMENT) 6 COMMISSIONER CHIASSON: Okay. Thank you for your 7 So, witness panel, what we will do is we patience. will be starting with -- Mr. McClary and Ms. Peddlesden 8 9 will be directing questions to you that have been 10 formulated by the staff team who are supporting the 11 Hearing Panel. Once they are finished with those 12 questions, then the Commissioners, the Hearing Panel, we may have questions for you as well, so just so that 13 14 you know it's proceeding. 15 So Mr. McClary is going to kick things off. W. MCCLARY: Thank you, Commissioner 16 17 Chiasson. Alberta Energy Regulator Legal Counsel Questions the 18 Canadian Natural Resources Limited Witness Panel 19 As Commissioner Chiasson has 20 W. MCCLARY: 0 21 said, my name is Will McClary. I'm legal counsel here 22 at the Alberta Energy Regulator, and I'm going to be asking a few questions today on the subject of the 23 24 Fustic papers and the gas chromatography mass 25 spectometry -- thank you -- or what I will call it, thankfully, for the rest of the afternoon "GCMS data", 26

and I want to explore that a little bit because we had some questions.

We might do a bit of shuffling on this bench just because we don't have enough room here to accommodate our subject-matter experts who are helping us with the questioning, so I apologize in advance if that's disruptive. We'll try to do it quietly, but once I'm done my questions, we'll get a few more SMEs up here, and Ms. Peddlesden will continue with the questioning.

10 So I pose this to the entire witness panel, and 11 you can identify who is best suited to respond and we 12 can proceed from there, but the general understanding 13 that we have at this point is that the Fustic paper 14 from 2011 that was submitted at Exhibit 43.002, I believe it's Tab 7A, forms the basis of CNRL's 15 interpretation of the GCMS data that's been presented 16 17 so far.

So to the witness panel, I guess, is that correct?
And then who is best suited to answer further questions
on the subject?

21AS. SVERDAHL:Mr. Barland is the best to22take that.

23 Q Thanks.

1

2

24Mr. Barland; is that correct?25AS. BARLAND:Yes. So most of the industry26usage of GCMS in the oil sands reservoirs is based on

1		those fundamental or pioneering papers on on the use
2		of the analysis of oil compounds and the plotting
3		them versus depth.
4	Q	Thanks. Now, when you say "oil compounds", what do you
5		mean?
6	А	So crude oil or bitumen is made up of multiple
7		different hydrocarbon compound classes, and what we do
8		is some certain members of those oil compounds and then
9		plot them versus depth to determine their gradients.
10	Q	Thanks. So my understanding from having reviewed
11		and I guess sorry also going back, and I will
12		slow down, I promise, reporters. Going back, you
13		referred to two papers, I believe, or "papers" plural.
14		Is there another paper in addition to the Fustic 2011
15		paper?
16	A	There is also the Fustic 2013 paper that was submitted
17		as well in the IRs from the AER to CNRL.
18	Q	Thanks. And that's you're correct there; that's
19		Fustic 2013. I'll refer to it as and it's
20		Exhibit 43.002, Tab 7B.
21		So in addition to those two papers, are there any
22		other papers that CNRL relies on or any other kind of
23		scientific methodologies described elsewhere that would
24		be relevant to our consideration of the analysis?
25	А	No. I don't think so. I think the gist of it is
26		contained in the Fustic. I would add, though, that
1		

1 that's been over ten years since both of those papers 2 were published, and our sampling density as well as the 3 probable interpretations of barriers and baffles may have been influenced by real-world industry knowledge 4 from our own other producing assets as well since then. 5 6 Thanks. So my understanding, then, of that evidence is 0 7 that you're saying there's -- there are subsequent -subsequent experience that CNRL has had in this area of 8 9 interpreting GCMS data that supplements the -- what's 10 presented in Fustic 2011 and Fustic 2013? 11 Correct. Α 12 Thanks. That's helpful. 0 Have you presented kind of the basis for that 13 14 analysis to us anywhere in the materials? 15 So in the reply submission -- I can't remember what the Α exhibit number is. 16 I can get that. 17 I believe it's 50. Five zero. 0 There is one example that I -- I brought 18 Α Yeah. Yes. in from CNRL's Jackfish project. 19 This was -- I used to 20 work at Devon Canada, and we did a -- we did a CSBG 21 technical conference presentation in 2019 that was 22 published as well, and that case study on the use of 23 GCMS -- this one example was from that -- from that 24 technical conference presentation. 25 Okay. But the underlying principle, I guess, from 0 26 Fustic 2011 and 2013, is that still sound?

1 A Yes.

2 And, in general, I guess, the description of the Fustic 0 3 papers of that method -- which we'll go into a little bit more in detail in a moment -- that is still 4 5 generally sound; it's not contradicted or anything? 6 Α Not to my knowledge. 7 Now, if I could please pull up, I quess, Okav. Ο Exhibit 43.002, Tab 7A or page 147 of the PDF. Just, 8 9 yeah, the next page there, please, and then a little 10 bit further down, please, there's a paragraph that 11 begins -- or contains the phrase: (as read) 12 The continuity of biodegradation-susceptible 13 aromatic hydrocarbon concentrations. 14 W. MCCLARY: It's the fourth line in the 15 second paragraph. If you could just maybe highlight that for Mr. Barland with the cursor or select it. 16 17 Yeah. They just made it a little bigger. Α W. MCCLARY: So this is the abstract for 18 Ο 19 the paper. Can you -- can you see it? I can read it 20 as well if you prefer. 21 (as read) Α 22 Continuity of biodegradation-susceptible aromatic hydrocarbon concentrations measured 23 through vertical profiles of a reservoir were 24 25 used to determine siltstone-prone intervals 26 observed in log and core acted as barriers or

1		baffles to fluid flow over geologic time.
2	Q	And then the next sentence is: (as read)
3		Integration of the bitumen molecular
4		composition data with geological
5		cross-sections fosters predictions of the
6		lateral extent of the identified barriers.
7		Is that that's what we're talking about?
8	A	Yeah.
9	Q	And now is that a fairly good summary of the Fustic
10		method, the 2011 Fustic method?
11	A	I would say so, yes.
12	Q	Is there any kind of important supplement to that that
13		we would want to add based on the intervening years?
14	A	I would I would say the only thing I would add to
15		that would be our interpretations of some of the
16		forward-stepping or upwards-increasing steps in the
17		in the geochemical or the oil-compound concentration
18		profiles. So the paper or the presentation that I
19		referred to earlier that I did at a previous company
20		examined these forward-stepping changes,
21		upward-increasing changes, and found that they were
22		barriers to steam as well.
23	Q	Okay. So, I mean, we can get into that in a bit more
24		detail in a moment, but just to confirm, when you say
25		"upward increasing", you mean that the relevant
26		concentration of the polycyclic aromatic hydrocarbons,

1		or PAHs, that are being measured in this method is
2		increasing
3	A	As you go up.
4	Q	as you go up as opposed to going down, which is
5		what's described by Fustic?
6	A	Yes. Correct.
7	Q	So now that I think that response to a question that
8		was raised yesterday about the direction of different
9		offsets?
10	A	Yes.
11	Q	And I intend to explore that in a bit more detail later
12		on, but there was a phrase you used yesterday that I
13		wanted to check in on and ask you about, and I believe
14		it was the "equilibration of compounds over geologic
15		time".
16	A	Yes.
17	Q	Could you explain a little bit more in depth what you
18		mean by that?
19	А	So as the oil charges the reservoir, it's light. As it
20		biodegrades, it becomes heavier and heavier, so there
21		are buoyancy effects as the oil degrades. It also
22		creates biogenic methane and so that will rise to the
23		top of the reservoir through the oil and/or bitumen and
24		all aid in its movement. So if you have a very
25		connected column or a very easily mixed column of
26		hydrocarbons or slowly degrading biodegrading

310

1 bitumen, that mixing process will create that diffusion 2 across barriers or baffles. If you don't see that or 3 you see two separate curves, that means there was something in between them that prevented that mixing. 4 5 Now, when you say "mixing", can you explain a bit more 0 6 in detail what you mean by "mixing"? Is it your 7 evidence that the -- the compounds themselves would diffuse across the zone or, you know, we're talking 8 about molecules within substances -- like, what is 9 10 mixing? What is equilibrating in this? 11 So, yes, it's molecules slowly diffusing. Α 12 And so if you could imagine a theoretical bitumen 0 13 molecule that's at one point in the zone, is it your 14 evidence, then, that that molecule would move -- or not a molecule, like a small amount of bitumen? 15 Portion. 16 Α 17 A portion of it? Q If the buoyancy or changes in oil/water contact may 18 Α force it there, yes, it could. This is very slow, 19 20 This is very slow. though. 21 W. MCCLARY: So if we could pull up please 22 Exhibit 43.002 at Tab 7B or PDF page 196 or -- sorry --23 203. And now about midway through the left page 203. 24 side -- stop there, please. 25 Under "Reservoir Charging" and "In-reservoir Fluid Mixing" -- maybe actually just scroll down a little bit 26

1 There that's the paragraph I'm looking more, please. 2 at. 3 W. MCCLARY: And now, Mr. Barland, could 0 4 you please read that for us? Under the "Reservoir Charging" and "Fluid Mixing". 5 Α 6 Yeah. Is that large enough? Or I could read it as 0 7 well if it's easier. (as read) 8 Α 9 Fluids in petroleum reservoirs are constantly 10 mixing with a tendency to attain equilibrium 11 [from several different papers]. 12 Biodegradation or physical leaking results in 13 some fluid components being removed from the 14 reservoir, whereas other components such as methane and CO2 are generated in the 15 16 reservoir as byproducts of biodegradation. 17 [Again, more quotes from different papers] These processes are poorly documented in 18 studies dealing with the Athabasca oil sands 19 20 deposits, but it's clear that mixing times with their viscous fluids may exceed 21 22 reservoir age. Does that contradict what you just told me about 23 0 24 bitumen moving or molecules moving within bitumen in 25 the reservoir to reach equilibrium over geologic time? 26 So -- so I think that actually confirms it. Α

1 Can you explain how? 0 2 So if fluids are constantly mixing with a tendency to Α 3 attain equilibrium, that's what I was describing. 4 Sorry. I mean the last sentence of that paragraph in Ο 5 which it says that: (as read) 6 The processes are poorly documented in 7 studies dealing with Athabasca oil sands deposits, but it's clear that mixing times 8 with these viscous fluids may exceed 9 10 reservoir age. 11 I don't know that it -- it discounts that entirely. Α Ι 12 would say that the reservoir age in the -- in the 13 McMurray formation that we're looking at here is 14 probably in excess of a hundred million years. The oil would have charged it afterward. Being -- being 15 "poorly documented" means that they're, you know, they 16 17 could be right or they could be wrong. I'm really specifically looking at the part of the 18 0 phrase where it says: (as read) 19 20 But it is clear that mixing times with these viscous fluids may exceed reservoir age. 21 22 I'm trying to understand whether that contradicts the 23 idea that -- that there is mixing as suggested by the 24 concept of equilibration of the chemical compounds. 25 Α Okay. So what I -- what I would say or respond to that 26 with is that the fluid was not always as viscous as it

The process of biodegradation is still 1 is currently. 2 occurring today in the -- in the reservoir as well as 3 an outcrop in the McMurray formation north of Fort 4 McMurray. So anywhere you have -- anywhere you have an oil/water contact still, you would still have that 5 bacteria because the -- the sediments haven't been 6 7 sterilized; they haven't been buried greater -- to greater than 80 degrees Celsius. 8

9 So it -- it's still an ongoing process because the 10 oil initially charged at light API levels; the mixing 11 would have been easier then. So mixing now, yes, very, 12 very difficult to mix bitumen, but when the oil was 13 charging, it wasn't bitumen. It slowly was converted 14 to that.

That does clear that up for us. Thanks. 15 Understood. 0 Now, I guess taking the -- the combination of the 16 17 two papers, Fustic 2011 and 2013, my understanding of the papers is that, you know, they've -- they've 18 conducted the GCMS analysis on the number of wells and 19 identified a whole bunch of compounds that are relevant 20 21 and interesting for the assessment that they're trying 22 to conduct. Broadly speaking, the compounds that we're 23 interested in for the purpose of the analysis conducted 24 on the wells for this hearing relates to polycyclic 25 aromatic hydrocarbons; correct? 26 Α Yes.

1	Q	And based on, again, those papers, it it seems as
2		though there are some PAHs that are susceptible to
3		biodegradation at a greater rate or, you know,
4		over slow like, shorter time periods, we'll say,
5		than other PAHs; is that correct?
6	A	Yes.
7	Q	And in Fustic 2013, they identify a number of PAHs
8		which act almost that are, I guess, effectively for
9		their analysis not as susceptible to the biodegradation
10		and therefore show a consistent concentration in a
11		vertical profile?
12	A	Yes. Yeah. So they would they would be a straight
13		up-and-down line. Usually those are the heavier ends.
14		You can think of you can think of the oil over the
15		biodegraded bitumen as the food of the bacteria.
16		That's essentially what it is. And if there was a
17		party underground, the first thing to go would be the
18		chips and the pop and the really tasty stuff; the last
19		thing to go would be the broccoli. The heaviest ends,
20		that's the broccoli.
21	Q	And in this case, my understanding is the subset of
22		PAHs that we're interested in, the chips and pop, are
23		kind of carbon molecules that are slapped on to these
24		PAHs?
25	A	Absolutely.
26	Q	And the broccoli

		510
1	A	And the easiest bonds to break.
2	Q	Yeah. The broccoli is the the leftover kind of base
3		PAH itself
4	A	Yes.
5	Q	that gets eaten last?
6	A	The the longer chain ring carbon structures.
7	Q	And then if we're extending that analogy, would it be
8		consistent to say that these these other markers
9		that showed a consistent profile through through a
10		certain formation that don't show a or a curve of
11		biodegradation, those are kind of like something you
12		wouldn't even think about eating at the party?
13	A	That could be your shoe.
14	Q	Yeah. Somebody's shoe. Thanks.
15		So now are there different shoes?
16	A	Oh, yes. Yes.
17	Q	And do those shoes tell us anything about the oil?
18	A	So so the longer chain, bigger molecules that are
19		harder for the bacteria to to biodegrade or to eat,
20		sometimes you will you will use them to determine
21		oil providence. You can you can also use different
22		ratios of of certain longer chain ones, like
23		9 versus 1 methylphenanthrene to determine
24		biodegradation index. That's a that's a commonly
25		discussed result in both Fustic papers.
26		Yeah. Pristane/phytane ratios determine oil

1 providence usually. That's kind of one that's commonly 2 used in both of these papers. So the longer chain ones 3 do have their uses, generally not -- because they don't move as you plot them with depth, it's not useful for 4 determining barriers and baffles. So you have to move 5 6 to a shorter chain or -- or lower atomic weight 7 molecules that you can actually observe change with depth to determine those barriers and baffles. 8 9 Q Thanks. Now, going back to the shoe analogy, as it 10 were --11 Okay. Α 12 -- I believe you said at the beginning of your answer 0 13 just there that the shoe print, we'll say, can 14 determine providence or can be associated with providence of the oil; is that correct? 15 16 Yes. Α Would there be any other anticipated chemical 17 0 differences between oil with different shoe prints or 18 that has different providence? 19 20 There -- there probably is. Again, I think some Α Yeah. 21 of what's discussed in both papers discusses that a 22 little bit. In general that's probably not as -- as useful to a working geologist or determining barriers 23 and baffles than the -- than the molecules that -- that 24 25 you can observe the barriers and baffles in. 26 Thank you. So --0

1 Α The compound classes, I quess. Sorry. 2 Sorry for stepping on you there. 0 Thanks. 3 Just to confirm, though, then, it wouldn't be the case -- or feel free to correct me, but it would not be 4 the case that oil with a different shoe print might 5 6 affect the interpretation of the -- you know, what gets 7 eaten first, whether it's the pop or chips, or the 8 curve that we see in response to the concentration of 9 the PAHs that do biodegrade? 10 Α So, yeah, I suppose I should clarify a little bit. Ιf 11 there were multiple charge events of differing -- at 12 differing times of different providence, that might 13 obscure things. We generally don't see that or the --14 the Fustic papers, along with a few other examples of 15 papers from, say, Dr. Jennifer Adams or Dr. Barry 16 Bennett do not see that in the McMurray or the 17 Mannville group as a whole. In general, Wabiskaw oil providence looks like McMurray oil providence. 18 So did you look for it in this case? Like, did you 19 0 20 take the samples that you would be able to tell what 21 the shoe prints are for the -- the oil through the 22 column? 23 All of that gets output from the -- from the mass Α Yes. 24 spec spreadsheet we get of -- of every aromatic hydrocarbon individually and then some to plot. 25 I have 26 looked at MAS versus TAS or the tricyclic terpanes

1		versus the pentacyclic terpanes, and the providences
2		look very similar.
3	Q	For the wells in question for this hearing, you've
4		looked at you've conducted the analysis or plotted
5		the shoe prints and I'm sorry that I'm not going to
6		be able to say which terpanes they are, but you plotted
7		the shoe prints
8	A	Yeah.
9	Q	for all of the wells in question?
10	A	I would probably five of the six.
11	Q	Okay. And are those plots anywhere in the materials?
12	A	No. We didn't submit any of those plots.
13	Q	Is there a reason why?
14	A	They don't show anything in terms of barriers and
15		baffles. So I didn't feel like they were relevant
16		or or useful.
17	Q	Thanks. I think that about does it for the shoe print
18		discussion. Now, I'd like to move over to the pop and
19		chips and eventually get to the broccoli.
20		W. MCCLARY: So if we could go, please,
21		to still keeping in Exhibit 43.02 and go to
22		page 177, please.
23	Q	W. MCCLARY: So I'll save you having to
24		look across the room, and I'll just read this out, and
25		the word we're looking for is: (as read)
26		Anaerobic biodegradation occurs within the

		320
1		oil/water transition zone.
2		So I think it might be It's about halfway through
3		the paragraph under that with under the heading
4		"Bitumen Quality Characterization".
5	A	Okay.
6	Q	And it says: (as read)
7		Anaerobic biodegradation occurs within the
8		oil/water transition zone where diffusion of
9		biodegradable hydrocarbon components through
10		the oil column to the active biodegradation
11		zone is responsible for observed vertical
12		compositional gradients.
13		Now, can you describe for me please what a vertical
14		compositional gradient is that you're looking for in
15		this analysis?
16	A	So that's exactly what what the plots describe in
17		all of the submitted GCMS plots of CNRL's or of of
18		ISH's experts as well show that vertical compositional
19		gradient. So generally the the most or the least
20		biodegradation occurs at the closer to the top of
21		the reservoir, and the most occurs near the oil/water
22		contact.
23	Q	Thanks. Now, when it says "gradient", what exactly are
24		you looking for to establish a gradient?
25	А	That change versus depth, right. So lots up here, less
26		down here near the oil/water contact.

1 And now when you're trying to establish a gradient for 0 2 your analysis, you know, you've just described two 3 points on a plot. Do you -- how many points do you Like, what are you looking for in terms of 4 need? establishing a trend or a gradient or a curve? 5 So -- so in general you always need three points to 6 Α 7 make a line, minimum, right? So we would -- we endeavour to take a sample every -- probably 8 9 75 centimetres to 2 metres. If we -- if we think 10 there's nothing to sample, there's no facies change or something we're interested in, we -- we might increase 11 12 that sample density just a little bit or -- sorry --13 decrease that sample density. So we'd go to a sample 14 every 2-and-a-half metres. But by and large a lot of 15 the Fustic paper -- and, you know, that was pioneering 16 work 12, 13 years ago. They go -- they sample every 4, 17 4-and-a-half metres, so our sample density has increased just because we're looking for small --18 smaller changes sometimes, especially in areas that 19 20 have more mud, so you -- you just have less bitumen to sample sometimes. 21 22 Thanks. And when you say "sampling", what exactly are 0 23 you sampling?

A So we sample the core. We actually take a -- a spoon or a garden trowel, and you physically carve a little piece out of the core as clean as you can get it and

1 put it in a Ziploc bag and off it goes to Schlumberger. 2 That answers that question. I was going to say --0 3 because yesterday you referred to Schlumberger as running the analysis, but it is, in fact, CNRL that 4 5 collects that sample? 6 Α We -- ves. We -- we would go and collect it, or the 7 coring lab that we're -- core analysis lab sometimes 8 will take our samples on brand-new cores. 9 Ο Thanks. I'm going to explore that a little bit more in 10 detail after we talk about the papers, we'll get 11 through that, but thanks for that. 12 W. MCCLARY: Now, if we could go to 13 page 180, please, in the same document, and it's in the 14 left column, about halfway down. And I'm looking for the "biodegraded reservoirs". Oh, yeah. 15 There. 180. 16 You can stop there. Thanks. 17 Α Yeah. And the statement is: W. MCCLARY: 18 Ο 19 (as read) 20 In biodegraded reservoirs such as those in the Athabasca oil sands, the systematic 21 22 removal of more biodegradation-susceptible 23 compounds of the oil/water contact creates 24 downward decreasing concentration gradients 25 in an oil column. 26 And then I believe it goes on later on this page to say

1		"the susceptibility" is that in the same paragraph?
2	A	Yeah, I think it is.
3	Q	Yeah. (as read)
4		The susceptibility of alkylnaphthalenes to
5		biodegradation decreased in the order:
6		methylnaphthalene, C1N; dimethylnaphthalene,
7		C2N; trimethylnaphthalene, C3N;
8		tetramethylnaphthalene, C4N
9		THE COURT REPORTER: Mr. McClary, you are going
10		very fast. We are not scientists.
11		W. MCCLARY: I'll continue. I promise
12		well, no promises, but I hope that's the last time I
13		have to do that.
14	Q	W. MCCLARY: (as read)
15		leading to the conclusion that the
16		comparison of their concentrations can be
17		used for relative biodegradation assessment.
18		And then it notes a bit about the subscript
19		representing the carbon changes, and those carbon
20		changes we discussed, that's the pop and chips kind
21		of that's what the bacteria will latch on to?
22	A	Yeah.
23	Q	But what I'm picking up from this is that there are a
24		number of PAHs that one could plot and also a number of
25		different ways that one could plot them when trying to
26		establish the gradient that's being discussed.

1 Α Yes. So in the initial submission that we received from 2 0 3 CNRL, there was, I believe -- like, one chosen molecule 4 in this IR response, which we'll get into a little bit 5 later. We -- we asked you to -- to graph it a little 6 bit differently and include multiple compounds. 7 Α Yes. Can you speak to CNRL's analysis and why it is that the 8 0 9 decision was made to present data in the initial way 10 versus other ways? So in the initial way, the compound class that seems to 11 Α 12 pick up barriers and baffles or seems to establish the 13 most reliable concentration gradients with depth in 14 the -- in the Kirby/Jackfish/Pike areas of the southern Athabasca reservoirs, we found that the phenanthrene 15 16 group generally seems to plot the most reliably and 17 consistently to -- to identify those gradients. So that's what was presented by and large in the -- in the 18 first submission. 19 20 We -- we just didn't want to complicate it; right? 21 Here -- here's the one group that we feel strongly works the best, so that's what we're going to present. 22 I will -- I will say plotting all three different 23 24 ways on all six wells showed very, very similar zones 25 or layers of resistance or barrier/baffle, whatever you There was no difference in those 26 want to call it.

1		depths.
2	Q	So then what I'm understanding is that you did conduct
3		the analysis, and you plotted the other PAHs that
4	A	Yes.
5	Q	you know, Fustic identifies or may be relevant, but
6		for the sake of simplicity, that that data was
7		omitted from the initial submission?
8	A	Yeah. We we have plots of the naphthalene group,
9		the ethyl dibenzothiophene group, phenanthrene group,
10		styrenes, methyl dibenzothiophenes all kinds of
11		different compound classes. The ones that we really
12		trust in in this area are the phenanthrenes.
13	Q	Thanks. That that that helps a lot.
14		And when you are so when you're doing your
15		sample collection at the intervals you identified from
16		the core as we discussed, those samples are sent for
17		GCMS analysis, and there's the whole slew of the
18		different points, and then you conduct the analysis on
19		a number of those points but present the one that you
20		think is most representative. That's the
21	A	Well, we do we do the analysis on on every point.
22		So every depth point every sample gets the same
23		analysis. We just plot certain compound groups that we
24		feel like are the most effective at determining
25		barriers and baffles, and the one that we trust the
26		most generally in the Athabasca area is the

1 So that's what we -- that's what we phenanthrene. 2 showed. 3 Where does that trust come from? 0 4 What we -- what we looked for initially -- so I started Α working on -- on GCMS in 2013 in -- in the Pike area, 5 6 and we plotted everything. We plotted every compound 7 class we could look -- we could think of within the spreadsheets that Schlumberger -- or Gusher at the time 8 9 would have -- would have submitted for us or -- or analyzed for us. And the four or five different ones 10 11 that jumped out were the naphthalene group, the methyl 12 and ethyl dibenzothiophenes, the phenanthrenes, and the 13 The styrenes generally are those longer styrenes. 14 chain hydrocarbons that don't biodegrade much, so those ones don't help us nearly as much. The phenanthrenes 15 and the C2DBTs or the ethyl dibenzothiophenes -- sorry 16 17 if I'm going too fast -- those ones were the more 18 consistent ones in the Jackfish/Pike area, and after doing -- I'd probably say I've looked at 140 different 19 20 wells in -- in that southern Athabasca area, and it's 21 based on my -- on my experience looking at them. 22 0 Thanks. 23 And, again, when you're -- when you're 24 conducting -- you're gathering guite a bit of data; 25 right? There's all -- like, GCMS gives you --26 Yeah. Α The --

1	Q	quite a bit of data
2	A	the spreadsheets got thousands of columns.
3	Q	Yeah. Again, you're looking for would it be fair to
4		describe it as a "curve"? Like, is that a fair
5		assessment?
6	A	In our reservoir sands, yes. If we get a if we get
7		a very uniform curve with no flat spots or breaks or
8		jump backs or sorry back steps, that's what we're
9		looking for, yes.
10	Q	And in assessing whether something forms a curve, I'm
11		assuming you're trying to gather as much data as you
12		can; right? Like like or you're trying to have
13		as many data points that conform with that curve as you
14		can?
15	А	Yeah. Depending on cost too. It's still these
16		these cost 6 to \$800 a sample too, so you can't you
17		don't want to do too little, but too many is is
18		is overkill; right?
19	Q	Yeah. What does it tell you if it doesn't form a
20		curve?
21	A	That tells you your reservoir is very unconnected and
22		you shouldn't put a well pair there or drill a pad
23		there.
24	Q	Thanks.
25		Now, if we could scroll down a little bit on that
26		same page, we could see the examples. And maybe it's

1		better if you walk us through these. Are you familiar
2		with the three kinds of descriptions here?
3	A	Yes.
4	Q	Can you maybe walk us through this is Figure 4A, B,
5		and C from Fustic 2011.
6	A	So these these yeah. These are these are
7		generalized curves with with, you know, eight
8		samples in each, just just kind of cartoon showed
9		or cartoon shown. And the first the
10		or sorry Figure A in Figure 4 is a this is
11		what we would look for in our reservoir. If we found
12		this every time, we would say, This is great; put
13		put a well pair here. Figure B is a "maybe", depending
14	:	on the overall thickness of the lower the lower kind
15		of connected curve there. And then Figure C is "we
16		never want to do that". I we I would walk away
17		from that reservoir immediately.
18	Q	And sorry that's a reservoir analysis; right?
19	А	So both Fustic papers generally only sampled really
20		well-connected sands or very, very clean sands.
21		There there isn't much there isn't too many
22		samples from a much muddier type of reservoir in in
23		both papers.
24	Q	Now, if you were trying to find a reservoir that had a
25		barrier above it, which of the patterns would you be
26		looking for?

1 A The third one, 'C'.

2 Q Right.

3	А	Although I would say our subsequent operational
4		knowledge or examining wells that are on producing pads
5		would say if that if that upper row of or the
6		upper curve of four samples was moved off far to the
7		left in comparison to the lower four samples, we would
8		also consider that not a good result sorry to the
9		right.

10 Q Sorry. And when you say "not a good result",

11 scientifically and geologically, what is that?

12 A In terms of reservoir connectivity. We would say if --13 so that -- that column up there, if that moved off to 14 the right quite a ways, we would say that's something 15 we want to avoid as well with our well pairs. If we 16 were looking for a barrier, that would be another good 17 example of one in our -- in my opinion.

18 Q And do you have any -- I guess, like, a geochemical 19 explanation as to why that -- the shift in Figure 4C of 20 the top four sample points forming that grade and if 21 it's shifted off to the right, why that would indicate 22 a baffle or a barrier?

A So in the Fustic papers, in both of them, they mention
those forward shifts or the forward upward increasing
shifts are due to low permeability, low porosity, areas
where fluid was difficult to mix. In my -- in my

		330
1		understanding or in my operational experience, that
2		means something that is impacting your reservoir
3		connectivity. That would be where steam would stop as
4		well.
5	Q	And I guess interpreting that back to to a geology,
6		what would that be indicative of?
7	А	A barrier.
8	Q	And, again
9	A	Or, at minimum, a baffle.
10	Q	And the premise for that would be, just so I'm
11		understanding this, that the there's a barrier to
12		the mixing present between the two
13	А	Correct.
14	Q	that's resulting?
15		And that's the geochemical explanation for the
16	A	So
17	Q	the
18	A	The smooth slope in 'A' and the slightly less smooth
19		in 'B' means connected. The break or the the back
20		step in 'C' means disconnected. A forward step of a
21		similar amount after after looking at many, many
22		wells and having some calibration data in terms of
23		observation temperature logs or reservoir saturation
24		tool temperature logs, we see this that
25		forward-stepping example be a problem in our reservoirs
26		as well.

1	Q	Problem in your reservoirs. But have you seen it
2		equate to a barrier or baffle as well in practice?
3	А	Yes.
4	Q	And is that evidence on the record anywhere?
5	А	That would be the one the example that I showed from
6		the Jackfish my my technical presentation that
7		was at the CSBG in 2019.
8	Q	Thanks.
9		So then I guess if I'm conceptualizing this, the
10		evidence effectively is saying any discontinuity
11		between curves that are observed in the data,
12		regardless of the direction, in CNRL's view, based on
13		Fustic 2011 and '13 as well as your presentation, you
14		know, that that gives us an indication of a barrier
15		or a baffle? That's
16	А	That would be my assessment.
17	Q	Thanks.
18		Now I'd like to turn to the evidence or the
19		actual plots that were submitted. It's just a little
20		further down in the same document. It begins it's
21		Tab 7C at PDF 244. So this is the this was an
22		information request response submitted by CNRL;
23		correct?
24	А	Yes.
25	Q	And this you'll see at the bottom of the slide it
26		says "Plotted After Fowler Figure 1"?

331

1	A	Yes.
2	Q	And I believe if you scroll up one page oh, too far.
3		243. You'll see that this is the Fustic figures?
4	A	Yes.
5	Q	So do these tell us anything different than what was
6		presented initially from CNRL?
7	A	I don't believe so. In the Fustic example, they're
8		plotting the or the they start always plotting
9		the methylphenanthrene class of compounds and the C2P,
10		which is the dimethyl or ethylphenanthrenes. And what
11		we plotted was the entire group of phenanthrenes in our
12		first submission, and then Dr Dr. Fowler in in
13		the in the ISH submission plotted the naphthalenes,
14		the dibenzothiophenes, and the phenanthrenes all
15		together in one plot.
16	Q	Now
17	A	So that that was your second
18	Q	Yeah.
19	A	slide there.
20	Q	So would there be any reason to doubt the conclusions
21		if a response is seen in one PAH and not another or
22		to
23	A	I would say you might think about questioning things
24		or or replotting or maybe going back and doing
25		another few samples, but I to my knowledge, we
26		didn't actually see that in these the behaviours or
1		

1 the trends where the same -- plotting the 2 methylphenanthrenes, the dimethyl and 3 ethylphenanthrenes like this example, or the full 4 compounds of phenanthrenes such as CNRL and Dr. Fowler 5 did, as well as the naphthalenes or the 6 dibenzothiophenes. 7 Now, there -- there -- there may be small changes compound class to compound class, but the overall 8 trends, I believe, look very similar. 9 10 Q So, again, it's just a choice as to how you present the 11 data what -- which compound you choose to plot? 12 Well, yes and no. In -- in general, the -- I would say Α 13 the trends would always be the same, but you -- you 14 always want to look for something that moves with depth so that it creates that gradient towards the oil/water 15 So that tells you about the biodegradation. 16 contact. 17 If you plotted the styrenes in these wells, which I have, they're almost vertical. So it just doesn't tell 18 you what -- what your -- it doesn't tell you anything 19 20 you paid for. 21 And then is it always the case that your biodegradation 0 results in a profile of a decrease in the subject PAH 22 23 as you go deeper? 24 Not always. The closer you get to an oil/water Α No. 25 contact or a paleo oil/water contact, that always does. 26 If you say -- say you had something that was surrounded

1 by two aquitards or aquicludes and was completely 2 separated from the upper or lower zone, that one may --3 may have a -- a -- a forward shift. But to my -- well, 4 it -- it doesn't happen in these ones. It -- it -- you 5 know, we generally do decrease toward the current 6 oil/water contact, which would've -- would be just 7 below the lowest sample in any of these plots. Thanks. 8 0 9 And I'm just looking at the slide that we have up 10 right now, again, PDF 243, and you can see between 11 about 225 metres of subsea depth --12 Yeah. Α -- and 220, it appears that there's an increase in the 13 Ο 14 C2P concentration with depth. So what's going on? 15 Sorry. Can you make that just a little bigger, the --Α 16 the figure on the --17 Yeah. If we could just go -- zoom in just above the 0 red line on that. 18 19 Yeah. Okav. Yeah. So -- so both classes are -- are Α 20 doing the same thing there. That would be -- it looks 21 like an 80 to 100 microgram per gram concentration 22 increase right around the level of the mid-B1 mudstone. And, I mean, if you draw -- if you were to draw 23 Ο Yeah. 24 a line from the -- just looking at the blue -- the blue 25 points, if you were to draw a line between the 26 concentrations present at about 226 metres of depth

down to 217 and a half, we'll say, like, the -- the 1 2 line that intersects with the mid-B1 mudstone or the 3 point that intersects, that would appear to -- to 4 create a curve between 230 -- or between 225 and two --So, you know, is that the type 5 217 and a half or so. 6 of data that we're looking for to establish a curve, or 7 do we need something more than that? I -- I think that's what you would do, although in 8 Α No. 9 general, it's more connect the dots than try to draw 10 the curve. Where you see the flat spots or the jumps 11 back and forth, that's where you would say, There must 12 be something in this part of the -- of the strata that 13 is causing compartmentalization. And in general, in 14 this -- in the zone you're looking at, we've got a lot 15 of back steps going up. So as you're looking from the bottom -- from the lower part of that zone up, we --16 17 we're seeing a couple of forward steps and a lot of back steps, which, to me, says a lot of 18 compartmentalization in that general depth interval. 19 20 When you say "compartmentalization", what does that 0 21 mean in geochemical terms and -- and also in -- in 22 terms of the geology? 23 So -- so I would say in geochemical terms it doesn't Α It's -- it's more reservoir 24 really mean anything. 25 compartmentalization, or the little bits of sand that we sampled in those muddier sections are their own 26

1 little compartments. Each -- each sample looks like 2 it's moving back and back and back further, suggesting 3 this little thing was its own compartment, separated 4 from the ones above and below, and then the next one 5 was, and then the next one was, until you -- until 6 you're almost fully biodegraded in those classes just 7 at the top of the Wabiskaw -- or the Wabiskaw D non-reservoir unit pic there on the -- with the black 8 line at 225 or so. 9 10 0 Thanks. 11 And if you were trying to establish trend based on 12 these data points, would you -- what would your 13 conclusion be about the depths here between about 235 14 and 217 and a half again? Is -- are -- is there a 15 trend? There really isn't. You could make three or four 16 Α 17 different trends which says that those are -- it's a 18 very compartmentalized interval over that described depth top and base. 19 20 So now going back -- and if we could zoom out just a 0 21 little bit, please, and maybe scroll down. 22 Going back to Fustic, then, does this correspond 23 to anything that we found in Fustic about the signature of a baffle or a barrier? 24 25 This would correspond exactly to that figure -- or --Α 26 Figure 4 letter 'C' diagram that -- in the cartoon.

_		
1	Q	So if I recall correctly, Figure 4C showed two separate
2		trends, one trend in the zone above and then a trend in
3		the zone below?
4	А	So you've got that moving back.
5	Q	So is it your evidence, then, that the the trend in
6		the zone above here is that there is no gradient, or
7		there is no profile of the degradation with depth?
8	A	There there's a backward stepping profile in
9		general, and then we have a little bit of a forward
10		step as you cross above the Wabiskaw C and into the
11		into the Wabiskaw B. Yeah. So multiple barriers
12		would would create a non-profile like like this
13		that suggests a lot of compartmentalization between the
14		samples at those depths.
15	Q	But, again, if we're trying to establish a gradient, as
16		we discussed, you'd probably need more than a single
17		point fluctuating in each direction; right?
18	A	Well, yes. But the the strongest gradient there is
19		between the in the upper B1, so above the mid-B1
20		mudstone towards the Wabiskaw D. Those are all back
21		stepping toward the toward the lowest concentration
22		in the Wabiskaw D non-reservoir.
23	Q	Okay. So just to confirm, the top four points in this
24		graph, in your view, form the gradient that's being
25		compared here?
26	A	No. About 215 to sorry yeah. Two 217 and a

1		half to to 224 would be a nice would be would
2		be a gradient that would suggest that compartment was
3		on its own. I wonder if I could get the mouse just to
4		show you
5	Q	Yeah. By
6	A	and everybody else.
7	Q	Yeah. That would be very helpful, actually. Thank
8		you. And if you need a break at all, let me know.
9	A	No. I'm okay.
10		So so just just to clarify, down here we
11		have a very nice gradient where where I'm where
12		I'm pointing with the little hand. And then up here,
13		this is this would be a gradient that not really
14		described by Fustic because he didn't they didn't
15		sample much you know, muddier intervals like this.
16		But each of those stepping backs would say it in
17		general, it you want to have a gradient go like this
18		if it's a connected reservoir; right? Like this stuff
19		down here. Each of these stepping back suggests that
20		this is a its own little compartment, and then
21		there there are multiple multiple segregated
22		zones within this larger zone.
23		And then as we go up up above, we could say
24		that just at the base of the Wabiskaw D, you start to
25		get or sorry Wabiskaw B, you start to get this
26		again, although there are only two points there. In

general, you would say -- in my assessment of this well 1 2 especially, you would say there's a nice connected 3 reservoir below, and then we start to see these 4 segregations or points that step back toward a -- each of these would've had their own paleo water contact, 5 6 and -- and that little bit of bitumen would have 7 biograded on its own. Thanks. 8 0 9 And then there's -- there's a point around 10 227-and-a-half metres that looks like it's the highest 11 concentration on this graph of the blue --12 Right there? Α 13 -- diamond. 0 14 What's the story there? So that one could be an isolated compartment as well 15 Α that did not actually have much water to get rid of. 16 So the -- the bacteria live on water; right? 17 You --18 you -- well, they live on the energy they get from the hydrocarbons, as well as they also need nitrogen 19 20 phosphate -- other nutrients to live. So if there 21 isn't very much water there to begin with or that water 22 was expelled quickly, the biodegradation ceases. So that would have been another little compartment as 23 well. 24 25 Thanks. 0 And then just -- just going back, the -- the paper 26

1		you reference that you presented or the presentation
2		and maybe there was a paper associated, is that
3	A	No, just the presentation.
4	Q	Is it in our record? Is it in evidence?
5	A	Not the whole thing, just the excerpt that I added
6	Q	Just the one
7	А	to describe the forward stepping or the
8	Q	Okay.
9	А	steam steam being a barrier not always at a back
10		step in the in the reservoir gradients.
11	Q	And has anyone else looked at that? Like, have you had
12		any peer review on it, or has anyone
13	A	Yeah. We we actually presented it at that at the
14		CSBG technical conference. It it is not
15		peer-reviewed. The the CSBG presentations are
16		reviewed by the chair of the of the part of the
17		conference that you present in, but I don't believe
18		they're technically peer-reviewed.
19	Q	Thanks.
20		Now, going to the I guess one more kind of
21		conceptual question before I move into a little bit of
22		a nitty-gritty type of area. How how completely can
23		this analysis be applied? Because it seems like the
24		the conversation that's happened so far is that if the
25		graphical data tracks with Fustic, then that suggests
26		there is a baffle or a barrier. If the data is

340

inconsistent, does that demonstrate the absence of a 1 2 baffle or a barrier as well? 3 So CNRL relies on more than just the GCMS. The GCMS is Α 4 a corroboration piece of data or an additional piece of 5 data. We don't -- we don't core every well, as well as 6 we don't GCMS every single core we -- we take. We 7 would always rely on our geologic principles and correlations from well logs from that core facies as 8 9 well as 3D seismic interpretations married to those 10 well logs and core data as well. So we're trying to 11 help ourselves be a little bit predictive with the 12 GCMS. 13 So all that to say that the GCMS is sort of a help, not 0 14 hurt, in terms of identifying the presence of a baffle or a barrier? 15 16 I would agree, yes. Α 17 Thanks. 0 And is there any, then, susceptibility to a bit of 18 a confirmation bias, or do you have checks and balances 19 20 on that? 21 We actually try to calibrate the GCMS with the Α Yes. 22 obs wells that we have in -- in Kirby south, Jackfish. 23 We haven't got any on -- obs wells currently in Kirby 24 north, but we're hoping to. 25 Sorry. When you say --0 26 Α Or monitoring wells. So we're -- we're using those to

1		calibrate our interpretation or our understanding of
2		the GCMS, saying, Did steam stop at this location that
3		was predicted, or did it actually get past it?
4	Q	So that calibration you could also refer to maybe as
5		ground truthing or
6	А	Correct.
7	Q	And is any of that information before us?
8	A	In the example I provided from Jackfish, yes.
9	Q	Okay.
10	A	That is a ground truth piece of data. We also compare
11		it with 4D against our 4D results and RST log
12		results, although the the the one example that I
13		did present in in the technical presentation is
14		is not from Kirby north; it is from Jackfish.
15	Q	Thanks. Give me a moment to confer here.
16		Thanks. Moving into the nitty-gritty.
17	A	All right.
18	Q	I used to do a lot of groundwater sampling, and it's
19		really difficult to do that when it's minus 30 and
20		you've got nitrile gloves on. Led me to think that
21		sometimes sampling methodology can lead to bad results.
22		Is there any concern about methodology between when you
23		spoon the bitumen out of the core or when you, I
24		guess, gather the core from the well and when you spoon
25		it out and put it in a bag and send it to Schlumberger
26		that would lead to uncertainty in these results?

1 So I -- I don't want to say "never", but it's probably Α 2 really rare. The reason why GCMS works is that these 3 are non-volatile molecules; they don't evaporate like the very, very light hydrocarbon ends. Like, if you 4 5 pour gasoline on the ground, you can smell it; right? 6 That -- that's volatilization of that hydrocarbon. 7 So the reason why they're present in These do not. 8 cores and -- and don't require major special handling 9 is because they're tough and -- and they don't gas off 10 really easily.

11 Q Now, I think -- go ahead.

12 Schlumberger -- I attended a -- a technical Α Sorry. 13 presentation by Schlumberger where they did a -- they 14 did the exact same GCMS analysis from a twinned well that was -- one was cored over 50 years ago, one was 15 cored 6 months ago, and the trends themselves were the 16 17 same. Some of the absolute concentrations were a little bit lower in the oldest well, but that was their 18 19 sales pitch to say, Look, you can do this on cores that 20 have been sitting around or cores that you just take 21 fresh, and you're going to get data you can rely on. 22 Now, I believe there's a reference in Fustic 2011 about 0 the vintage of the core. So is that to say that the 23 24 recent developments have negated the comment about 25 trying to get fresh core for this analysis? 26 Α So I would say the fresher the better always, but I

don't think that going back a few years and -- and 1 2 utilizing a core that you have stored somewhere sitting 3 on the shelf is -- negates any validity of the data. So then if there are outlying data points that present 4 Ο themselves to you during your analysis, how do you 5 6 treat those? Is it your inclination to disregard them 7 or to -- to try and associate a geochemical and geological explanation for an outlier? 8 9 So I -- I would say the latter. We would -- we don't Α 10 disregard them. We would actually talk to the lab and 11 see if there is anything wrong with the machine, if it 12 hadn't been cleaned recently or something like that. 13 They do do repeat analysises [sic] on every well. So 14 they'll pick a single sample or -- or two samples and do a repeat analysis to ensure it's within tolerances. 15 We get those. We don't plot them, but we get them. 16 17 And if they look like they're very close in absolute concentration for the classes we're plotting, we would 18 go ahead with the data then. 19 20 Thanks. 0 21 And then before the data goes to the lab, is there 22 any susceptibility to the -- to the -- like, the 23 sampling method, like the spooning of the oil out of 24 the core, like, if you get some sand in there accidentally or if you get something else? 25 26 Α So you -- you're literally spooning the

> Dicta Court Reporting Inc. 403-531-0590

344

1 bitumen-saturated sand. So the sand goes with it. 2 And do those samples have varying concentrations of 0 3 sand? 4 I'm -- I'm sure they do. It all depends on the spot Α you're sampling. A -- a finer grain sand, you would 5 probably have more grains along with it. A very, very 6 7 coarse grain sand that has large pores you would probably have a little bit more oil than -- than sand 8 9 grains. 10 The method of extracting the oil from the sand 11 grains is cold. It involves no solvent. They press it 12 out, so under very -- under high pressures. So you're 13 ensured a clean representative oil sample. 14 Also the amount that they actually need to run through the machine is very, very small, and we 15 generally give a more than 50-gram total sample weight, 16 17 so there's plenty of sample to go around to do a repeat check or to validate if -- if there was a question 18 19 about a data point. 20 And that all happens at the lab? 0 21 Yes. Α 22 And I assume they provide a report of their results 0 with respect to quality assurance and quality control? 23 24 With every -- with every output there's a QA/QC. Α Yeah. 25 And there's parameters within which they operate that 0 26 they, you know, provide the service within a certain

> Dicta Court Reporting Inc. 403-531-0590

345

1		number of like, a kind of certain error bars on
2		their results?
3	A	Yes, there is.
4	Q	And so do we have those error bars in evidence?
5	A	I I think they were submitted with the
6	Q	With the confidential
7	A	with the confidential data, yes.
8	Q	Thank you.
9		If you give me a moment, I need to confer, but I
10		think that might be everything I've got for you.
11	A	Thanks.
12	Q	That's it for me. Thank you very much.
13		COMMISSIONER CHIASSON: Thank you.
14		So the Panel needs a short break. Court
15		reporters, how are how are you doing? Or I'm
16		assuming perhaps the witness panel could also use
17		let's let's break for 15 minutes now, and that way
18		that gives everyone a chance to tend to what needs
19		needs to and whether that's a walk or otherwise. So we
20		will come back at 3:40.
21		(ADJOURNMENT)
22		COMMISSIONER CHIASSON: So thank you, all. Hopefully
23		everyone benefitted from the break as much as the Panel
24		did. We will pass it over now to Ms. Peddlesden to
25		continue with questions.
26	Q	S. PEDDLESDEN: Good afternoon. So I'll be
1		

1 asking questions about lateral continuity to start 2 with. 3 S. PEDDLESDEN: Ms. Wheaton, if you could put 4 Exhibit 32.03 at page 5. We've noticed that Canadian 5 S. PEDDLESDEN: 0 6 Natural has interpreted the mid-B1 mudstone as a marine 7 regional mudstone, and we wanted to look more closely at this particular sample. This is a submission from 8 ISH, but we just wanted to identify which well --9 10 well -- this is 1-3 -- and if Canadian Natural could 11 speak to where the green vertical arrow -- and speak to 12 the variation within the sample on display. 13 J. LAVIGNE: The area within the -- between Α 14 the green arrows is the mid-B1 mudstone. It has some 15 variability. It is a marine flooding surface. It does It is bioturbated by a very small 16 contain some silt. 17 low diversity suite of trace fossils, but there --18 there is a bunch of compositional variation within it. All right. And to be more specific -- would you happen 19 0 20 to be able to get the mouse where you could point? 21 Sure. Α 22 I'm not sure where it is right now. 0 23 Yeah. We have it. Α 24 I appreciate that. Ο 25 Α Yeah. 26 0 Thank you.

		548
1		All right. So if we start at the top and just
2		work your way down, and if you could speak to the
3		bioturbation and the change in colour
4	A	Sure.
5	Q	and then the bioturbation, please.
6	A	Sure. Would you mind if I started from the bottom and
7		worked up?
8	Q	You can do that. That's fine. Thank you.
9	A	It's a it's a geology thing.
10		So sorry. So starting at the bottom, there's a
11		sharp surface, and you'll notice there's a slight
12		difference in the colour here. I would also like to
13		point out that this core is a little bit desiccated
14		from being in storage, and so sometimes after a period
15		of time they don't look quite as good as they do when
16		they're fresh. But within the within the mid-B1
17		mudstone, there are for the most part, it's it's
18		mud, but if if you can follow my cursor up a little
19		bit, I'm sort of halfway now, and you can see some
20		small silt-filled burrows in in the mud, and then
21		above it you'll see that there's a darker few
22		centimetre-thick unit that has a bit of a higher
23		organic component. And then as we go into the top of
24		the of the unit, there's there's also a little
25		bit of bioturbation and a bit of silt mixed in.
26		And Canadian Natural has been fairly conservative
1		

with what we call the mid-B1 mudstone. Right at the 1 2 very top of this green arrow where there's an 3 appreciable silt and even some fine-grained sand that 4 has bitumen in it, also bioturbated -- there's some nice paleoficus burrows and things here -- but we've 5 6 tended to pick the -- the more mudstone-dominated 7 portion when we apply isopach maps of the mid-B1 mudstone, and we would say that where we start picking 8 9 up appreciable sand or silt and the bioturbation 10 increases in both size and intensity, that's what we 11 would say is now the regional upper B1 sequence. 12 All right. Thank you. 0

13 I'd like to turn to Exhibit 43.121, and this comes 14 from Well 1AB-07-02. If you could expand it where the 15 annotations are in red on the mid-B1 mudstone for this 16 well. And if you want to start from the bottom, but --17 A Sure.

18 Q -- just give a geological interpretation of this core 19 sample, please.

20 Okay. So I'll start at the very bottom, in the bottom Α 21 right of the core photo, and perhaps for the Panel's 22 orientation, the -- in these core samples that are turned on their side, the bottom right is the bottom, 23 24 and then we'll go up vertically through the series of 25 cores so that the top of the cored sequence shown is in 26 the upper left. So we'll work our way through --

1 through this.

2 These lower two tubes are the lower B1 regional 3 sequence, and you can see that they -- they contain --4 it's -- it's very muddy here, but it does contain sands with some small burrows in them. And then near the top 5 6 of the lower B1 sequence, not present in every well, 7 but we can see that there is -- we're developing a paleosol at the top. So that's a fossil soil, and it's 8 9 capped with a coal.

10 And -- and so what that represents, the lower B1 11 sequence, is a -- is a tidal flat sequence, and the 12 coaly portion that you observe at the top of that 13 sequence represents a period where the tidal flat had 14 built its way up to sea level, and so you'd have a 15 coastal salt marsh develop along the side.

Now, where the -- yeah. 16 No. Where the red line 17 is, you can see that it's kind of distorted, jumbled up That's a transgressive surface of erosion at 18 a bit. the top of the -- the coal. And so in that case, the 19 20 coal has armoured the lower B1 sequence. And during 21 transgressive erosion, you can see there are pieces of 22 coal that have been ripped up and churned and 23 incorporated into the lower deposits of the -- of the 24 mid-B1 mudstone. And by the time you get to this point 25 that I'm highlighting, the mid-B1 mudstone is -- looks 26 very similar in character to the previous well, still

1 having bits of coaly material incorporated. And up 2 around this level, we start to pick up some of the 3 bioturbation, the silty small burrows and some very 4 distal storm beds that have put -- put little sand lenses into the marine environment. 5 6 And then by the -- where the red line is here, 7 we're into something that more approximates the upper -- the regional upper B1 sequence. 8 9 And further to that point, does Canadian Natural 0 10 classify mid-B1 mudstone, as it appears to in this 11 particular sample, as bioturbated and non-bioturbated? 12 I would say that the bioturbation in it is quite Α 13 variable. Many very shaley or muddy rocks are 14 extensively bioturbated, but it's not always visible, and it's -- often when you see the appreciable silt 15 content like I'm showing here just below 470 metres, 16 17 it's with the incorporation of that silt that you get an indication of how bioturbated the unit might be. 18 All right. So would you consider the mid-B1 mudstone 19 0 to consist of two distinct facies characterizing it? 20 I would say that it's -- it would be very difficult to 21 Α 22 map those two distinct facies. I would perhaps say instead that the mid-B1 mudstone has -- has variable 23 24 character. 25 And speaking towards lateral continuity, when you say 0

26 it has "variable character", what, in your opinion,

would be the best location to sample the character of 1 2 the mid-B1 mudstone where there's a disagreement 3 between the parties overtop of Drainage Box KN09? Where would you recommend putting a sample, if you were 4 5 going to take a core sample and drill a well? Sorry. 6 Α Oh, if we were going to take a core sample. 7 If you were going to drill a new well. Ο I think when you look at the area of the Wabiskaw --8 Α 9 where the Wabiskaw D has cut deepest along this centre 10 part of that axis, that's the place where it's cut the 11 deepest, and that's the place where you would look 12 to -- to sample or test the presence of the mid-B1 13 mudstone. 14 I appreciate your opinion on that. 0 15 Previously you described the turbated part as potentially the regional upper B1? 16 17 Α Yes. In your opinion, is this annotation potentially in the 18 0 19 wrong spot marking the top, or is it just an 20 interpretive --21 It's -- it's a little bit interpretive, and sometimes Α 22 the -- sometimes the contact can be kind of 23 gradational, and so some people perhaps would pick it 24 back here at about 470, where you first start seeing 25 coarser grain sand, and the issue with that is, of 26 course, then right above it where my cursor is right

> Dicta Court Reporting Inc. 403-531-0590

over the O-N-E of mudstone, it's very similar in 1 2 character to the silty bioturbated deposits below. And 3 so -- so it's -- in this well, it's sort of been picked where the -- the silt and sand component seems to be 4 more dominant. 5 6 So further to that, if you could comment on the 0 7 possible genesis and lateral continuity of the non-bioturbated mudstone facies and how that would 8 influence the lateral continuity of such beds. 9 I could 10 put up a different picture for you to speak to. Ιt 11 might be more helpful. 12 Perhaps. And while you're doing it, could you please Α repeat the last part of what you asked. 13 14 Yeah. Yeah. I will. Okay. So if we could put up 0 Exhibit 43.076. 15 16 Okay. Α 17 All right. So this is Well 05-02, and if we look at 0 the annotated mid-B1 mudstone in the top right 18 19 corner --20 S. PEDDLESDEN: Ms. Wheaton, if you could zoom 21 in on the top right. 22 S. PEDDLESDEN: -- and just speak to the 0 bioturbation and the lateral continuity. 23 24 Okay. Coming out of the top of the lower B1 in the Α 25 tube second from the top, there -- right at 469 where 26 my cursor is, there's a sharp erosive surface there

where we start depositing mud, and we can see a bunch 1 2 of very small, sand-filled burrows in -- in this area 3 at the end of that tube. And then as we come up to the 4 top portion labelled the "mid-B1 mudstone", again it 5 looks like we can see perhaps some coaly ripups, and 6 there's some very small, possibly chondrites-like 7 burrows in the darker shales of the mid-B1 mudstone. Now, this -- the red line at the top of it is --8 9 is -- this is the base of the upper regional B1 10 sequence, which is also a shallower tidal flat. And so 11 what you can see right here where my cursor is, you can 12 see some rooting and some overprinting on the -- on the 13 mid-B1 mudstone. And this represents a small 14 inconformity where the lower B1 tidal sequence was 15 flooded over by the mid-B1 mudstone, and then 16 subsequently the upper regional B1 sequence prorated 17 over the top. That's a very shallow setting, and so 18 we've overprinted some roots on the upper part of the 19 mudstone. 20 I'm just going to confer as far as further questions. 0 Thank you. 21 22 Okay. I do have one more question. Is it 23 possible that the bioturbated component of what has

been defined as the mid-B1 mudstone could be part of
the upper B1 regional -- oh, pardon me. I'm getting
corrected. I will ask you in a second.

1			555
	1		So could it be part of the lower B1 and not part
	2		of the mid-B1? And the previous slide would be more
	3		indicative of that.
	4	A	Right.
	5		S. PEDDLESDEN: If you could put
	6		Exhibit 43.121 back up. I appreciate it, Ms. Wheaton.
	7		Thanks.
	8	A	Sorry. Is this the one
	9	Q	S. PEDDLESDEN: This is the one where you can
	10		see the bioturbations quite distinctly
	11	A	Yeah. Okay.
	12	Q	and the difference.
	13	A	Yeah. So I think I understand the question. The
	14		bioturbation the bioturbate character in the mid-B1
	15		mudstone with the small, silty-looking burrows is
	16		different than the bioturbate character in these
	17		underlying lower B1 regional sequence mudstones, which
	18		have a fair posity [sic] of burrowing. If we could go
	19		back, perhaps, to the exhibit that we were just on, if
	20		that would be possible.
	21	Q	Yes. That was
	22	A	So I just want to differentiate between the relatively
	23		non-burrowed character of these particular lower B1
	24		regional muds versus the silty bioturbated ones within
	25		the mid-B1 mudstone just to make that a bit of a
	26		contrast, and then if we could please go back to the

1	0	43.76? Oh, was it this one that you were referring to?
	Q	
2	A	No. I'm sorry. The other core photo we were just
3		looking at.
4	Q	That one is actually Exhibit 43.76. 43.076.
5		Mr. Lavigne, I've been corrected on my question,
6		SO
7	А	Okay.
8	Q	thank you for your patience. I'm just going to give
9		you the real question. I just had it upside down.
10		So the question is: The non-bioturbated facies,
11		could that be part of the lower B1 mudstone? So the
12		opposite of what I said. I was looking at the
13		turbated; I'm looking at the turbated and where you
14		think it fits.
15	A	I'm very sorry. Could you repeat that one more time?
16		I just want to make sure I have it.
17	Q	Okay. This is actually 43.76. Its much more clear in
18		43.121.
19		S. PEDDLESDEN: If you could put that one back
20		up, Ms. Wheaton. Yeah, this one.
21	Q	S. PEDDLESDEN: Here I had asked you if the
22		turbated part would be better categorized with the top.
23		That was an error. What I meant to ask you to opine on
24		was if the non-turbated could possibly be classified as
25		the lower B1, not the mid-B1 mudstone.
26	A	Right. In this particular case, I would say no simply
	-	

Г

because the -- the mid-B1 mudstone as interpreted here 1 2 sits above this transgressive surface of erosion and it does display the character that we -- we see in the 3 mid-B1 mudstone. That being said, however, both the 4 5 lower regional 1 -- B1 sequence and the upper regional 6 B1 sequence are highly variable in terms of their 7 sedimentary character, and it -- it can make it difficult sometimes to actually pick it, and in some 8 9 cases you end up picking something that's quite thin as 10 the mid-B1 mudstone. That's why we look at offsetting 11 wells, and we try -- we come from stratigraphic datum, 12 and we try to -- try to see at that stratigraphic level 13 what the -- what the differences are.

14 It's fair to say that it's -- it's recognized as a 15 It is mappable. The sedimentary character is -unit. is not perhaps completely unique to -- to a deposit, 16 17 and so part of -- part of our interpretation and the way we map that surface is to compare to offsetting 18 wells so that we make sure we're looking at the same 19 20 horizon, but it -- it is very fair to say that it's -it's -- it's variable in its character. 21

22 Q Thank you.

26

Dr. Boone, my next questions are also on lateral continuity, but they're directed to your expert report, your supplemental report.

S. PEDDLESDEN: So specifically, Ms. Wheaton,

1		if you can put up Exhibit 50.03 at page 13. And we'll
2		be discussing page 13 and 16 in detail.
3	A	T. BOONE: Okay.
4	Q	S. PEDDLESDEN: Okay. Just starting with
5		page 13, are the vertical permeability values for
6		Facies F1 to F6 provided in Table A1 from the sources
7		listed, which are on this article as Gotawala and Gates
8		and Murtaza and Dehghanpour?
9	A	So those two sources there, they don't provide vertical
10		permeability, right.
11	Q	Okay.
12	A	What they do provide is the steam rise rate in clean
13		sands, essentially, so an analog in this case. And I
14		would have to check which that which analog it is.
15		I think it's written there.
16		And so I assume the 2,000 millidarcies' based on
17		typical for regional you know, the the good clean
18		sands in the Athabasca.
19	Q	Thank you.
20	A	And consulting with some geoscientists, they said it
21		might be a little bit higher.
22	Q	And for the F5 facies, how did you come to the Number 1
23		microdarcies?
24	A	For the F5 facies, I really assigned it a 1 millidarcy,
25		although I thought that was very conservative. If I go
26		into the literature, there's a lot of evidence of

1		measurements of less than 1 millidarcy and even
2		hundredths of a millidarcy in, you know, hundred
3		percent shales or muds.
4	Q	Particularly which muds were you basing the the
5		values on?
б	А	I wasn't basing it on particularly on any specific
7		mud.
8	Q	Okay.
9	A	I mean, it's it's sort of general.
10	Q	Okay.
11	А	And and now the interim permeabilities there,
12		there's another chart there. Did you want to go to
13		that, the one on the next page based on some
14		micromodelling?
15	Q	Yeah. That would be great, yeah.
16	А	So let's talk about that. So, you know, the if
17		you're going to do reservoir modelling of facies like
18		this and this is the challenge for doing any
19		reservoir modelling of steam moving up through the
20		confinement, is how do you capture all these fine bits,
21		okay, that are that you can look at them, and you
22		can see there's tens to many tens in in a metre.
23		And so the standard way to do that is to do
24		micromodelling. And so that is you create a
25		simulation model on something that's, like, a metre
26		cubed. And I I I think in that subtitle on that

Dicta Court Reporting Inc. 403-531-0590

1			
	1		figure, it describes that, the the size of the
	2		models.
	3	Q	Right. And how did you get your values for this
	4		diagram?
	5	A	So that's not my work. That's taken from a paper by
	б		the Clayton Deutsche group out of the University of
	7		Alberta that are sort of the experts in that area, and
	8		it seemed to be pertinent, so I included it here. And
	9		you can see that that, you know, in this section
	10		here, they they modelled things like muddy his, and
	11		they typically got very low vertical permeabilities;
	12		right?
	13		And so when I compare that to my table, I'd say
	14		the table I have higher numbers of vertical
	15		permeabilities, and that that was intentional that
	16		it that it be conservative.
	17	Q	Could you confirm that the Wabiskaw D upper
	18		heterolithic unit and the Wabiskaw C are both given the
	19		F5 facies as their values for your model?
	20	А	I I would say that's generally true, but you can
	21		look you know, I only applied it to the four cases
	22		that are included
	23	Q	Right.
	24	А	in my report, and it and it's visual mud index.
	25		So it wasn't done specifically on a on a facies
	26		basis.

1	Q	Okay. Yeah. That was the next question, is what was
2		it based on, the visual mud?
3	А	But that that's the standard that's sort of used
4		in in industry that's, you know, been found to be
5		reasonably predictive of where you get good SAGD pay.
6		But I'm I'm taking those same facies and reversing
7		it and saying, Let's let's try and use this to model
8		the the confinement strata.
9	Q	Okay.
10		S. PEDDLESDEN: Ms. Wheaton, can you take us
11		to page 16.
12	Q	S. PEDDLESDEN: And, Dr. Boone, can you talk
13		about intervals of similar lithology? Can there be
14		intervals of similar lithology deposited in a range of
15		depositional settings?
16	A	T. BOONE: I I I would say yes, but
17		you're you're getting outside my area of expertise.
18		I would consult with my geologist friends on that.
19	Q	And then could you speak to the distribution of the
20		same or similar lithology in, for example, a deltaic
21		meandering channel or an estuary setting and how that
22		may be of different lateral extent or continuity?
23	A	Again, you're you're out of my expertise.
24	Q	Oh, absolutely. Yeah. Canadian Natural, you can
25		answer.
26		Mr. Lavigne.

1AJ. LAVIGNE:Could I please bring up a2figure?

3 Q Oh, yes. Yes.

4 A Exhibit 43.002, PDF page 26. Thank you. If we could
5 maybe just reduce that a little bit so we could see the
6 whole slide, please. Thank you.

7 So visual mud index is sort of a 1D point that you 8 would use in core. And to your question, yes, 9 different depositional settings can have the same 10 visual mud index. And so one of the differences -- the 11 McMurray formation point bar shown in the bottom half 12 of the slide show continuous mudstone beds over -- that 13 can be mapped for tens, even over a hundred metres 14 in -- in well-studied outcrops.

The -- the -- the deposits of the Wabiskaw D non-reservoir unit and the basal upper Wabiskaw D unit are more like the top two panels where there are -there are flasers and wavy beds of mud with -- with interbedded sands.

And in -- when we look at the diagram in the top centre, what happens is we have a dominance of mudstone versus sandstones, and the -- sorry. I'm just looking for a figure. And in that case, individual mudstones for -- may not have the same lateral extents that we would think of in point bars. And that's typically why we think about and look at the Wabiskaw D quite 1 differently than the McMurray.

2 If I could -- if I could please ask to go forward 3 to Slide 30 of the same presentation, please. This is 4 a modern example from an estuary in Europe. And just to orient the Panel, in -- in the lower right you can 5 6 see some sort of sand dunes that -- thank you. You can 7 see some dunes across the bottom of this estuary. And what -- what has happened with side-scan sonar, the 8 9 bottom of this channel was imaged, and right where my 10 cursor is dragging in the centre of these red circles, 11 you can see -- you can see a slight discontinuity, and 12 that's a fluid mud caused from the way mudstones deposit in estuaries. That's very different than the 13 14 way mudstones deposit in rivers. And so in this 15 particular case, the -- the mudstones that -- that are being seen here are on the order of 1 metre thick. 16 17 Now, that being said, they're very high -- they have a high volume of water in them. 18 And so in the rock record, when they compact, they'll be much thinner 19 than that. But what this shows is how mudstones can be 20 21 deposited in -- in -- interbedded with sandstones, and 22 that describes the nature of that flaser-type bedding 23 that we see. Now, if I could please ask to go to the next slide 24 in this same document. 25 Thank you. 26 This is another scanning profile, and you can see

> Dicta Court Reporting Inc. 403-531-0590

363

the scale of this, and what's -- these deposits --1 2 these laminated deposits that I'm tracing out here with 3 fairly horizontal beds, that's a deposit of fluid muds 4 that's draped all of the sand dunes along the bottom of the estuary. And in this case, if you notice the scale 5 6 in the lower left here is 100 metres. So what this has 7 deposited is a deposit of mudstone beds that is on the order of a metre thick over perhaps 900 metres to a 8 9 kilometre as a fairly continuous deposit.

10 So while the mudstone distribution of individual 11 mudstone beds within the Wabiskaw D -- individually 12 they are smaller, but as an aggregate of deposits in 13 high visual mud index deposits, they can be mapped over 14 fairly large areas.

15 Q Thank you.

Back to Dr. Boone. With your calculations, you were relying on homogeneous confinement strata, I believe? Can you speak to that?

19 T. BOONE: Homogeneous at what -- sorry. Α 20 Homogeneous at what scale? So, you know, clearly they're heterolithic at the visual mud index scale. 21 22 And so, you know, it's being classified into units, but 23 there's no assumption of it being homogeneous. The --24 Okay. Q

25 A -- the condition is that it's a heterolithic unit and
26 that --

1 0 Okay. 2 -- that if steam was going to rise through it, you Α 3 know, especially where there's a lot of mud, it's a --4 it's a very torturous path. 5 Right. Q 6 Α And -- and the other key point there is it's not just 7 steam rising up; it's -- bitumen has to drain down that 8 same pathway. And if it becomes a torturous pathway, 9 that's a slow process, which is why steam rise becomes 10 very slow. 11 Okay. And when you submitted your calculations, could 0 12 their validity be reduced based upon a lack of lateral 13 continuity? 14 Α You know, definitely. If -- if, for example, there was a channel that was sand filled that cut through those 15 facies and was, you know, between the wells or -- or 16 17 you drilled it, then that would be potentially an 18 issue. 19 Like -- now, there's -- there's a lot of 20 low-quality facies in -- in all the wells over these 21 drainage boxes, so it -- it -- that seems unlikely. Ιt 22 seems that the channels that are there are mud-filled and -- and impermeable, but the geo -- my geoscience 23 24 friends there might want to elaborate on that more. 25 That's okay. 0 26 Are you aware -- in your opinion, could the

bioturbation increase or decrease the vertical 1 2 permeability for the steam to rise? 3 In -- I'm not aware of any case where bioturbation of a Α 4 shale has made it permeable to steam, okay, in that -for that to happen, would the -- the bioturbation would 5 6 have to be filled with sand, and it would have to be 7 connected through the whole section. Now, that possibly can happen, and maybe there's examples out 8 9 there. But the thicker the section you get, the more 10 unlikely it is that bioturbation will -- will provide 11 pathways for steam. And did the model consider variable bioturbation? 12 0 It's -- it's a visual mud index --13 Α No. 14 Right. 0 15 -- just as you see there. Α And as far as how the visual mud index for the Facies 1 16 0 17 to 6 scheme is calculated, you spoke to using typical 18 numbers that you would see in literature and picking 19 the 1 microdarcy as a conservative one. Is that --20 For the --Α 21 -- the correct --0 22 -- permeabilities associated --Α -- permeability? 23 0 24 -- with them. The -- the visual mud index, that --Α 25 that chart of those facies is from Suncor MacKay, 26 and -- and a lot of other people have reproduced it.

1	Q	Right. So do you know if it was created with digital
2		software, or is it variable between geologists
3		performing the work?
4	А	My I mean, in my experience, it's geologists looking
5		at it and and visually making a determination.
6	Q	Thank you.
7		Okay. So we'll be moving to the next topic, which
8		is monitoring.
9		S. PEDDLESDEN: Ms. Wheaton, if you could put
10		up Exhibit 15.01, PDF page 106 of 505, and this is the
11		Wabiskaw net gas isopach.
12	Q	S. PEDDLESDEN: So similar question that we
13		had put to Mr. Lavigne, when you look at this map and
14		you look at particularly the KN09 drainage area, where
15		would Canadian Natural recommend putting a monitoring
16		well and provide supporting reasons?
17	А	G. IANNATTONE: Okay. I'm going to try and
18		answer this one.
19		We have plans to drill a strat well that's
20		slightly to the northeast of the KN09 box. And so in
21		those plans to drill that strat well, we would case it
22		and make it available as a Wabiskaw B gas monitoring
23		well.
24	Q	And have you considered putting the sampling well in an
25		area that has thicker gas pay?
26	A	I don't know exactly the exact location, but I would
1		

1		guess or maybe Mr. Sverdahl knows it, but it would
2		be in that not the darkest red, but it would be
3		likely in that the next reddest colour. And I'm not
4		sure what that contour is, but it might be 2 metres.
5	A	S. SVERDAHL: Yeah. It would be in that
6		range. We have tried to optimize it as as much as
7		we can to make sure we're going through what we're
8		interpreting Wabiskaw B gas.
9	Q	And then how will the gas sampling be submitted? In
10		your latest reply submission, you had mentioned
11		providing a gas sampling of the Kirby Upper
12		Mannville II gas pool prior to production. How about a
13		frequency after that? What would you think would be
14		reasonable to notice any anomalies in the Kirby area
15		Kirby north Wabiskaw B?
16	A	G. IANNATTONE: Okay. Just to clarify, so
17		we're talking about gas sampling, and you're talking
18		about gas sampling after the GOB gas resource is
19		allowed to produce?
20	Q	Right.
21	A	Okay.
22	Q	Yes.
23	A	So I believe, as typical in gas operations, that as the
24		gas is produced there is a frequency of normal gas
25		sampling. I'm not a hundred percent sure what that is,
26		if it's monthly or annually. It probably depends a lot

	1		on the type of gas, but so what I'm trying to say is
	2		there's a natural process that gas samples would be
	3		taken and analyzed on a frequent basis.
	4	Q	I might be confused. Are you talking about the gas
	5		sample from the Wabiskaw B, the monitoring gas sample?
	6	A	No. No. I'm talk so okay.
	7	Q	Right.
	8	A	So just to be clear
	9	Q	Yeah. I think we're talking about two different
	10	A	Just to be clear, when we talk about gas sampling,
	11		we're not necessarily talking about the gas monitoring
	12		wells.
	13	Q	Right.
	14	A	It could come from other wells. And so
	15	Q	Right. Okay. I
	16	А	after
	17	Q	I wanted you to speak to sampling of the monitoring
	18		well. In the reply submission, there was
	19		acknowledgement of getting a baseline gas sample
	20	А	Right.
	21	Q	by Canadian Natural
	22	А	So so I guess I would say we haven't necessarily
	23		decided okay. You're talking about the baseline
	24		baseline sample now?
	25	Q	Yes.
	26	A	Baseline not okay.
ļ			

369

Г

1	Q	Baseline sample
2	A	Let's go to the baseline.
3	Q	of the Wabiskaw B
4	A	Yeah.
5	Q	gas reserve.
6	A	Right. Right. So first
7	Q	Yeah.
8	А	of all, there's four wells that are available, I
9		guess, in the Kirby Upper Mannville II gas pool, and
10		all of them are GOBed. So, first of all, we'd have to
11		apply for a GOB waiver to get permission to to
12		sample. Then we would select, I believe, one of the
13		four wells, probably the most convenient one where
14		either, you know, it could be an access issue or it
15		could be a mechanical issue downhole, but we would like
16		to select the most convenient one. And we would have
17		to produce the well for some period of time just to
18		clear the wellbore from the gas that's been sitting
19		there for decades, and we would sample one of those
20		four wells. And that would provide the baseline.
21	Q	And if you were required to submit gas sampling on an
22		interval basis, would you be able to submit it to the
23		AER in an Annual Directive 54 report?
24	A	Yes, we could do that, but one moment, please.
25		Okay. Excuse me. Yeah. So our plan would be to
26		collect the baseline sampling now, once, right, and

Dicta Court Reporting Inc. 403-531-0590

Г

1		collect it again prior to the GOB gas production coming
2		back on. So that could be years later to see if
3		there's been any contamination over the period. We
4		were not committing to an interval of baseline gas
5		sampling over the years.
6	Q	All right. Moving on to maximum operating pressures.
7		S. PEDDLESDEN: So for this question, if we
8		could have Exhibit 15.01, Ms. Wheaton, at PDF page 32,
9		paragraph 135.
10	Q	S. PEDDLESDEN: All right. So we have here
11		start-up, mitigation, 5,500 kPa rather than the MOP of
12		6,000, adopting the recommendation, and we've spoken
13		about this already. Long-term MOP of 6,000 kPa and
14		then the 6,600 for the 24-hour start-up. So my
15		question is: Provide the technical basis for the
16		proposed long-term MOP, maximum operating pressure, of
17		5,500 kPa at KN08 and KN09.
18	A	P. THOMSEN: Could you clarify? Are you
19		referring to the modified long-term maximum operating
20		pressure of 5,500 in the reply submission?
21	Q	Yes.
22	A	Okay.
23	Q	Just why it was changed to 5,500. Just confirming the
24		technical reasons. The application was 6,000, so
25	A	There there isn't a really solid technical
26		justification for reducing it. I mean, the evaluation

Dicta Court Reporting Inc. 403-531-0590

1		supported the use of a long-term MOP of 6,000 kPa.
2	Q	All right. So do you foresee any potential technical
3		concerns with this change in your application?
4	A	Just a moment, please.
5		Okay. So with the modification to the long-term
6		MOP, there there is some minor risk reduction
7		associated with that, and associated with that is
8		there there could be some increased operational
9		downtime associated with a reduced long-term MOP for
10		upset conditions. We'd mentioned
11	Q	Power outages?
12	А	Interruptions.
13	Q	Steam?
14	А	Potential potential for scale plugging inside a
15		well. So
16	Q	Scale what? Pardon?
17	А	Scale plugging inside a wall.
18	Q	Okay. Thank you.
19		All right. Moving on to the geomechanical model,
20		if we could get Exhibit 46.002, PDF page 43 displayed.
21		All right. So here we have the model, but as
22		pointed out earlier this morning or afternoon it's
23		been quite a day we didn't really understand
24		Canadian Natural's assumptions or input parameters for
25		the analysis, so we're just going to explore that a
26		little bit. Describe the geomechanical lab testing
1		

1 conditions.

2 A D. WALTERS: So the -- so there was a 3 figure in the report that showed some lab testing for 4 mudstones. So those were triaxial tests conducted in a 5 lab, so standard triaxial tests at different effective 6 confined stresses, and that gave some information about 7 the elastic properties and the shear strength.

8 For the sand itself for the McMurray, analog data 9 was used based on UTF public data, so -- and that's 10 been used in other projects in the past as well. And 11 there's a paper reference, I believe, at the bottom of 12 the page.

13 Q Which formation were the samples taken from for the 14 model, or were they assumed to be McMurray sand or ... 15 A The samples were actually taken from the Clearwater and 16 the Wabiskaw shales, so the -- the main caprock for the 17 mudstone testing.

18 Q Okay.

19 A Yeah. And the McMurray data was taken from McMurray20 sand.

21 Q Okay. I'll just confer with Baohong.

Okay. Canadian Natural, did the tested samples have the same elastic properties and strength as the confinement strata found -- or contoured and estimated to be found in the KN08 and KN09 drainage area?
A Yeah, so no samples from the confinement strata were

actually tested in the lab. 1 So we did do some log 2 comparisons to check the gamma ray, which is a measure 3 of the V shale that's been talked about earlier today, and it was comparable to the mudstones that were tested 4 5 but not exact, and so not exactly the same mudstone. 6 But those -- those -- because that data was 7 available and -- and relevant because it was close -regionally close to this area, that was used to guide. 8 9 And then, as was described in the report, a 10 conservative assumption for the shear strength, then, 11 of that -- those mudstone layers was assumed to add a 12 layer of conservatism. 13 All right. Describe the stress range used to determine 0 14 the Young's modulus. So the -- the Young's modulus values in the table that 15 Α were used, so the 500 MPa is -- that number was based 16 17 more on experience and would be representative of 18 mudstones over an effective stress -- stress range of 500 kPa to 2, 2-and-a-half -- 2,500 kPa. 19 And then 20 the -- there was, as mentioned, a sensitivity done with 21 a stiffer value assigned to the mudstones to do some sensitivity, and the range of those effective stresses 22 23 was from 2,500 up to 9,500 kPa. So it covered quite a 24 large range. 25 And what are the range of effective stresses observed 0 26 in your model results?

1	A	So the the initial effective stress is approximately
2		4,500 kPa. And so in areas where the operating
3		pressure was increasing, that could potentially go down
4		to 2,500 kPa, and it potentially could increase as well
5		with the heating and the stress changes associated with
6		heating.
7	Q	And is that the pore pressure? That's the effective
8		stress in the pores, or is that separate?
9	A	The effective stress is the total stress minus the pore
10		pressure. So
11	Q	Oh, thank you.
12	А	Yeah. So as the pore pressure increases with your
13		operating pressure, then the effective stress would
14		decrease.
15	Q	Thank you.
16	А	Yeah.
17	Q	I appreciate that.
18		And then which model are your results based upon?
19	А	How do you mean, which "which model"?
20	Q	We noticed in your submission it had 500 MPa to
21		1.3 gigapascal, and then just as you were speaking you
22		mentioned a range in the effective stresses, 4,500 to
23		9,500. So I'll just confer on how to
24	А	I think that cleared that clears it up. So the
25		the model that was presented in terms of the results
26		was based on that tabular data, so it was the 500 MPa

1		stiffness for the mudstone layers and then an
2		elastoplastic model for the sand.
3	Q	And it was based on the confinement unit that you had
4		mentioned earlier?
5	A	The confinement stresses, correct.
6	Q	Oh, sorry. I meant the confinement strata.
7		Okay. So the effective stress is based on which
8		confinement unit, as in the mid-B1, the lower B1?
9		That's the confinement unit we're hoping you can
10		identify.
11	A	Yeah. So the the main focus of the shear stress
12		level was the mid-B1 mudstone in in the long-term
13		SAGD model. So so that was sort of the the layer
14		that was focused on in terms of plotting across
15		the model and through time and monitoring through
16		time.
17	Q	The mid-B1?
18	A	The mid-B1 mudstone.
19	Q	Okay.
20	А	Yeah. And but the entire B1 sequence was included
21		in the long-term model.
22		And then in the in the fracture models, there
23		was a slightly different treatment where the entire B1
24		sequence was assigned properties associated with the
25		stress gradients.
26	Q	And by the entire strata, you mean all the identified

1		strata from CNRL pardon me Canadian Natural,
2		the six that worked together? Okay.
3	А	Yeah.
4	Q	And then, finally, provide the thermal expansion
5		coefficient used for the McMurray post-B reservoir and
6		confinement strata?
7	A	Yeah. So the the linear thermal expansion
8		coefficient that was used was 1 E to the minus 5,
9		100 degrees Celsius. And that's a value that, again,
10		we have a lot of experience using and matching surface
11		eve [phonetic] data from other projects. We did run
12		some sensitivities with higher thermal expansion
13		coefficient as well, but the 1 E to the minus 5 is our
14		best estimate of our representative thermal expansion
15		coefficient.
16	Q	Yeah. And then you found those coefficients would be
17		representative of the McMurray sands and confinement
18		strata that you would find in the KN08 and KN09?
19	A	Yes.
20	Q	Thanks.
21		Okay. So there's a bit more on geomechanical.
22		This is Exhibit 46.002, same exhibit, but at page 71
23		and 72.
24		S. PEDDLESDEN: If you could scroll down,
25		there's a helpful table coming up. Oh, probably the
26		next page. 71, 72. That's the table. Thank you,
1		

Ms. Wheaton.

1

2	Q	S. PEDDLESDEN: All right. Based on the
3		current models, provide the calculated maximum SSL and
4		TSL, so the shear and the tensile, for other mudstones
5		and non-reservoir and heterolithic strata that Canadian
6		Natural will rely upon as confinement strata in the
7		absence of A2 mudstone and mid-B1 mudstone.
8	А	So yeah. So this table is representative of the
9		mid-B1 mudstone, and so you can see the number is
10		tabulated there. I guess to get you the exact numbers,
11		I'd probably have to take it away and come back.
12	Q	That's okay. We were more so just exploring if you had
13		conducted a sensitivity analysis and if you had assumed
14		that the mid-B1 mudstone was present with lateral
15		continuity.
16	А	So the several conservative assumptions were made in
17		the modelling again to try and investigate some of the
18		risk of containment. So the in general I would say
19		these numbers are representative of the lower B1 and
20		the entire B1 sequence in that it's a mud-dominated
21		sequence, as has been talked about previously.
22		However, in in the long-term model, the initial
23		stresses that were assigned to the lower B1 and the
24		upper B1 were lower values to be conservative, and
25		therefore the shear stress level and the tensile stress
26		level were higher than these values. But the some

of work that we did, specifically the log analysis, 1 2 shows quite nicely that the mud content that's been 3 identified by geology shows up in the log in terms of 4 gamma ray and also shows up when you calculate elastic properties from the log for the entire B1 sequence. 5 So 6 it gives us some justification for applying these 7 values to the entire B1 sequence from a confinement strata integrity point of view. 8

9 So I quess the short answer is we'd say these 10 were -- these are applicable to the entire B1 sequence. 11 And then, as was asked, that's for the base case or that table of values that were -- were documented. 12 13 Several sensitivities were investigated with, you know, 14 higher thermal expansion and some variations -- other 15 variations that may cause more uplift or may cause more stress change in the caprock, like the higher 16 stiffness, and all those values, the shear stress level 17 and the tensile stress level were well below 1. 18 So although we investigated some very conservative low 19 20 cases, there was no case that looked to -- to be 21 problematic.

22 Q Thank you.

23 If you could now discuss potential impacts that 24 natural fractures and faults, if they exist, may have 25 on the rock strength.

26 A So the mudstone, as we discussed, was assigned a shear

strength lower than the mudstone data that was 1 2 So it was assigned a cohesion of zero and a presented. 3 friction angle of 30 degrees, and that was done to --4 even though the characterization shows, you know, very small amount of fractures or no fractures in those 5 6 units, to make a conservative assumption that there 7 could be fractures in those units, and so that frictional strength assigned then accounts for the 8 9 potential of having fractures present.

10 And -- however, for faults, potentially faults 11 because if -- especially if they were seismic -- seen 12 on seismic, then there's some significant deformation 13 Faults would typically have even a lower on them. 14 shear strength, but we've identified no faults on 15 seismic, so that suggests if there were any faults, their subseismic scale, very small offsets, and 16 17 therefore the shear strength, we wouldn't expect to see a significant difference lower than this conservative 18 19 assumption already made.

20 So from that perspective, we feel this is a 21 reasonable assessment, and although there is some 22 uncertainty in it because the evaluation shows the risk 23 is so low of any problem with confinement strata 24 integrity, we feel it covers and is adequate to 25 describe the situation.

26 Q Even in the potential absence of the A2 mudstone, which

1 we all agree is absent. How about in the potential absence of the mid-B1 mudstone? 2 Is it still a 3 conservative, in your opinion, model? 4 I think from the log data that we have, it shows Α Yeah. consistent high mud content behaviour of the B1. 5 So 6 although it's not a -- necessarily a marine shale 7 with -- with lateral continuity over large distances, the high mud content then would give it geomechanical 8 9 properties and strength closer to the muddy behaviour 10 that we've assigned it. 11 Okay. And correct me if I'm wrong, Canadian Natural --0 12 I seem to remember the seismic data was accurate to 13 within 7 to 8 metres. Is that --14 Α S. SVERDAHL: Yes. That's our estimate --15 Okay. 0 -- of the resolution of the seismic data. 16 Α 17 I don't have a pinpoint, so thank you. 0 18 All right. You're off the hook on geomechanical. Thank you for providing that background. 19 20 We'll now look at thermal compatibility, which is 21 Issue 5. Oh, I apologize. I should have conferred 22 before I let you go, Mr. Walters. 23 Back to the geomechanical model. All right. 24 Discuss how potential variations in the minimum in situ 25 stress of the confining strata may affect the predicted 26 SSL and TSL.

So the -- both -- both of those parameters are affected 1 Α 2 by your assumption on the initial stress date. So 3 there were some sensitivities that we ran as was 4 documented for the fracturing risk but for the long term as well, and so if you assumed a smaller or a 5 6 lower-stress gradient than what we assumed based on our 7 DFIT testing, then it would increase the initial shear stress level and/or tensile stress level. 8

9 So, for instance, in that table that's in front of 10 you, you know, potential -- instead of 0.36, it might 11 increase to 0.46 to start, and that's if you would 12 maybe decrease the stress gradients by 1 kPa per metre. 13 So that sensitivity is run, but then the incremental 14 changes through the life of the operations would be the So they would all shift, then, by those values, 15 same. and -- and they would all shift by the same amount 16 17 because nowhere through the history of the model did we 18 encounter any shear failure. So there was no, then, complex stress or strain behaviour that would then 19 20 cause something other than a linear shift to those values. 21 22 And then provide the minimum in situ stress and the 0 predicted SSL and TSL based upon that. 23

A So for that sensitivity -- so we looked both going
lower and going higher, but on the low end, so instead
of the 13.1 kPa per metre, let's say, for the McMurray

1 sand --

2 Q Right.

	~	
3	A	and then the 14.6 kPa per metre that we would have
4		for the mudstones, they I initialized it with
5		12.1 kPa per metre and 13.6. So similar stress
6		contrast but dropped the numbers by that 1 kPa per
7		metre, and the pressures remain the same.
8	Q	Thank you. I'm just going to confer if you're done.
9		All right. We're going to move on to thermal
10		compatibility. You're clear, Mr. Walters. Thanks for
11		that.
12		Thermal compatibility was Issue 5 that we're
13		addressing at this hearing. I would like to see
14		Exhibit 50.002, PDF page 56. And we're looking at
15		paragraph 211 to 212, so it will be pages 56 and 57.
16		Perfect. All right. So we start with 10-34 well. In
17		the revised workover plan submitted in Canadian
18		Natural's reply, there was a plan to knock the
19		permanent bridge plug to the seller and equip the well
20		with continuous downhole surface readout pressure and
21		temperature monitoring.
22		Is Canadian Natural planning to place thermal
23		cement inside 114.3-millimetre production casing across
24		the non-completed McMurray formation in Well 10-34 as
25		it is required in Section 5.4.2 to 125 of Directive 20?
26	A	L. ROCHE: As of right now, the plan was
1		

1		not to put was only put cement across the McMurray
2		formation as it is a monitoring well. So right now we
3		weren't planning to cement the 114 ml.
4	Q	So 10-34 is going to be used as a monitoring well?
5	A	Yeah. We've committed to making that Wabiskaw B gas
6		monitoring well.
7	Q	How deep does 10-34 go?
8	A	It's got a total depth of 500 metres.
9	Q	So it goes right down into the McMurray formation?
10	A	It encounters the McMurray, yes.
11	Q	So where are you putting the monitoring on 10-34?
12	A	We have existing perforations in the Wabiskaw A from
13		435 to 438.5, and we would be aiming to set it 1 metre
14		above that.
15	Q	And then what's the plan from 438 to 500?
16	A	It would be remaining open.
17	Q	Why would you choose not to abandon the bottom leg with
18		thermal cement? What's the future plan?
19	A	The future plan here, eventually post-GOB, would be to
20		return it to production, but as far as cementing it,
21		that's an option.
22	Q	All right.
23	A	Okay.
24	Q	Are you aware of the current casing in Well 10-34?
25	A	Yes. It's J55.
26	Q	And how about the connections?
1		

1	A	They're, like, the standard API 8 rounds, so it would
2		be non-thermally compatible as per our protocol.
3	Q	Right. And they're not compatible to Directive 20 for
4		a thermal area?
5	A	So as my colleagues just mentioned to me one option
б		that we would leave use to keep the well
7		open sorry is to have the ability to do
8		temperature logs, R, C, P, and X logs for monitoring
9		SAGD chamber growth.
10	Q	So you're proposing potential monitoring deeper in the
11		10-34, deeper than the 4-38 plus 1 metre?
12	A	Those are done on an annual or a biannual basis.
13	Q	And how do you propose to deal with the non-thermal
14		capability? Are you going to be monitoring the steam
15		chamber growth and whether or not it gets close to
16		Well 10-34?
17	A	We'll have the surface readouts in there. We'll have
18		the pressure data at Wabiskaw, and we'll also have the
19		temperature, and as I just mentioned, we will be using
20		it for PNX logging, which is an annual or biannual
21		basis, but it gives us temperature in the wellbore.
22	Q	And you predicted my next question. Thank you. Okay.
23		All right. One more question on thermal
24		compatibility. I'd now like to have Exhibit 50.002
25		is that the one we're on? Yeah. So it's just the same
26		area, basically. Paragraphs 211 to 218. Here we have

Г

Canadian Natural is planning to remediate the thermal 1 2 non-compatibility issues related to Wells 12-34, 10-34, 3 10-2, and 10-3. The concern would be the thermal 4 compatibility. 5 And the question is: Does Canadian Natural plan 6 to conduct cement bond logs verifying if there is 7 adequate isolation behind intermediate casing above the McMurray formation to ensure isolation to surface 8 9 casing? So from the intermediate casing above the 10 McMurray formation to the surface casing in the 11 existing cased wells located within the drainage area of Pads KN08 and KN09. 12 13 That is not in our plans right now. On the one well Α 14 that we are looking to abandon, as per Directive 20, we 15 will be using cement retainers on those wells. As far as the other ones --16 17 How does that address behind the casing, like, on 0 18 the ... 19 It doesn't. Can you repeat that. Α 20 Just if you're planning on abandoning it with 0 Oh. 21 thermal cement, is that going to come back to surface? 22 Like, are you going to know all the way around or 23 should -- like, would a cement bond log confirm whether 24 or not there were any integrity issues of communication 25 between zones? 26 A cement bond log would definitely confirm if we have a Α

1		strong cement bond, but we do not have any cement bond
2		logs on these wells specifically.
3	Q	So then how would you represent to the Regulator that
4		you do have well integrity and that we don't have to be
5		concerned with communication?
6	A	So all four of the subject wells that were identified
7		in our thermal compatibility study do have thermal
8		cement initially placed in it, so that is, I guess, the
9		driver, plus we'll have monitoring throughout KN08 and
10		KN09.
11	Q	And the monitoring would have a drop in pressure that
12		would let you know there might be communication between
13		zones, or what would the monitoring reveal?
14	A	The monitoring would reveal if we were to have a
15		communication into the Wabiskaw B.
16	Q	And then how timely would it be to report it to the
17		Regulator if you did see an anomaly?
18	A	Similar to the bottom water in our scheme approval, I
19		would probably look at 30 days with a plan to remediate
20		in 60 days.
21	Q	Okay. Yeah. No further questions. Thank you for your
22		time, and thanks for answering those. The Panel will
23		have their own concerns and questions, so thank you.
24		The Alberta Energy Regulator Panel Questions the
25		Canadian Natural Resources Limited Witness Panel
26		COMMISSIONER CHIASSON: Thank you, Ms. Peddlesden.

1 The Panel does have some questions for the witness 2 panel. So we'll start off with Commissioner Zaitlin. 3 Q COMMISSIONER ZAITLIN: Thank you very much. I just 4 have two sets of questions to ask. One will be for a 5 tag team with Mr. Lavigne and Dr. Boone, if possible.

6 Mr. Lavigne, you showed a number of examples of 7 the various isopach maps by stratigraphic unit that basically shows the distribution of the different 8 9 stratigraphic units across KN08 and KN09. You showed 10 various cores showing the range of facies. Basically 11 what this together shows is highlighting the 12 heterogeneity of the containment strata in those 13 drainage boxes, specifically in terms of thickness 14 across the area. Dr. Boone put forward in his -- in his data showed data associated with the steam rate 15 16 rise methodology.

17 So the question I have first is: Is that data put 18 together in any way in terms of a reservoir model that 19 shows the 3D distribution of the different reservoir 20 facies and units across the area showing the -- that 21 heterogeneity?

A J. LAVIGNE: Sorry, Commissioner Zaitlin.
Canadian Natural has conducted a preliminary geomodel
that was not ready in time for these proceedings. It
is standard practice that we make 3D models over our
McMurray assets, so ...

1	Q	So where you are now, does it show significant
2		heterogeneity across those boxes?
3	A	Yeah, the models
4	A	S. BARLAND: Hi, Commissioner Zaitlin. So
5		I was involved with some of the model building or
6		preliminary stages of model building and the low
7		permeabilities in the heterogenous confinement strata
8		units are quite well represented in the current version
9		of the 3D model, although it is in a preliminary state.
10		I would say it represents or closely corresponds to the
11		higher numbered F4/F5 facies that Dr. Boone had
12		described and and shown you guys earlier today.
13	Q	So to follow up on that, are there certain areas in the
14		KN08 and KN09 boxes that would preferentially be at
15		be at risk for earlier breakthrough because of specific
16		facies distribution in in those boxes?
17	A	Yeah. So we're just in the very early stages of of
18		trying a few cases of simulation on that model. No
19		indications as of yet for steam breakthrough. Again,
20		scenario building and running the actual predictive
21		history match or the forecast history match is in its
22		early stages.
23	Q	Just to follow up on that, though, do you think this
24		model, when it's built, would be able to help highlight
25		where the best position of the monitoring wells should
26		be?

1	А	Any any model has uncertainty, so using it to
2		predict a single 7-inch position for a monitoring well
3		may be more than a than a model can can guarantee
4		to do. It may help inform that decision, but I would
5		say it's probably too much to say, Yes, it's going to
6		depict the right spot.
7	Q	Following on, on a second
8	А	Sorry, Commissioner Zaitlin. I'm just wondering, is it
9		the gas monitoring well you're you're asking about?
10	Q	I'm asking more about how the distribution of
11		containment facies will be effective across the area
12		spatially to make sure that there's no upward movement
13		of steam that may or may not happen and may or may not
14		go into the Kirby pool.
15	A	Okay. So not a specific well, but identifying areas of
16		potential better spots to place one
17	Q	That's right.
18	А	if needed?
19	Q	Northeast corner, northwest corner, that type of thing.
20	А	Excuse me one more second.
21	Q	Sure.
22	А	I think I think we'll leave it there if you're if
23		that does answer your question. I would say the
24		variability is is hard to predict, although once we
25		get to that stage, it could be informative.
26	Q	Fair enough.

	For Mr. Lavigne, you talked about the 1-3-75-9-W4
	well and the identification of that well having a tidal
	creek that cut out the B1 mudstone. What was the
	dimensions that you used that you thought occurred
	with those tidal creeks and how many other wells, if
	any, actually intersected similar facies at the B1
	level?
A	J. LAVIGNE: I'm just going to pull up an
	exhibit quickly, if I may.
Q	Yes. Of course.
A	Could I please pull up Exhibit 050.003, page 52.
	Thank you. Sorry, Commissioner Zaitlin. Your
	question was the the scale of this feature and have
	we seen it elsewhere?
Q	That is correct, yes.
A	Okay. This is the while both the regional lower B1
	sequence and the regional upper B1 sequence are quite
	variable in lithologies and and do contain some
	sandier deposits that would be interpreted as tidal
	channels, this is the example that we this is the
	only example we've seen directly on the pad regionally,
	only example we've seen directly on the pad regionally, away from these pads we have seen small features like
	away from these pads we have seen small features like
	away from these pads we have seen small features like this. In fact, in the KNO6 area, there is a small
	Q A Q

As far as scale, in the three-well cross-section 1 2 in the centre -- top centre of this figure, these wells 3 are about 215 metres apart, and so it -- it's very -it's very well constrained aerially. 4 We can't correlate it to any of the offsetting wells. 5 6 I'd like to invite my colleague Mr. Sverdahl to 7 speak on seismic. S. SVERDAHL: Just to add we have 8 Α Yeah. 9 looked substantially at the seismic at this well doing 10 time splices or special decomposition slices, coherency 11 as well. Unfortunately the feature is too thin and/or does not have enough reflectivity to pick up very well 12 13 as a geomorphological feature that we can map or see at 14 this well. So, unfortunately, we're not able to determine the -- the size, the aerial extent of this --15 this feature at this well. 16 Would there be any -- is there the potential for having 17 0 18 any other channel-form-like bodies like this cutting through potential containment strata in any other of 19 the Wabiskaw units? 20 21 J. LAVIGNE: Based on our understanding, Α 22 and our -- sorry. I'm just trying to pull up one more 23 figure. 24 No problem. Ο 25 Α My apologies. 26 Could we please pull up Exhibit 043.002, page 29.

1 Thank you.

Commissioner Zaitlin, you asked specifically about 2 3 the Wabiskaw. So for context, in the lower left of 4 this figure, there's a map, and the Wabiskaw sandstone trend is shown in orange in that southwest/northeast 5 6 orientation, and so this model slice was -- was 7 submitted to try to explain the mudstone-rich facies associated with the Wabiskaw. And as mentioned 8 earlier, the incision at the base of the Wabiskaw D 9 10 thins to the south and rises, and so this figure was 11 included to try to contextualize the two Wabiskaw D 12 confinement strata over the KN08 and 9 pads to the 13 south.

14 Based on our understanding from having examined cores and seismic of this Wabiskaw D sandstone body, 15 we -- we don't -- we feel like this tidal bar has been 16 17 vertically accreting and is draped with these mudstone facies on the side. In contrast to Strobl and Shields 18 earlier core work, the occurrence of high-angle 19 20 cross-bedded facies is volumetrically very, very small 21 and the breccia component as well in the sands is very, 22 very small based on probably about 50 more strat wells since that earlier work was compiled, and so we don't 23 see much evidence of channelization in those non -- in 24 25 those mudstone-rich non-reservoir facies and haven't 26 observed any channelization in any of the cores or

		57 -
1		wells that we've drilled.
2	Q	Okay, thank you. I'll pass it over to Commissioner
3		Chiasson.
4		COMMISSIONER CHIASSON: Thank you, Commissioner
5		Zaitlin.
6		Commissioner Barker has a question.
7		COMMISSIONER BARKER: Thank you, ma'am.
8	Q	COMMISSIONER BARKER: I just have a quick question
9		for Mr. Thomsen. I just wanted to clarify or
10		clarify my understanding of what you had mentioned in
11		response to one of the questions from Ms. Peddlesden.
12		She had asked you if there were any technical concerns
13		with the change to operating MOP in your applications
14		with the change in operating pressure to to 5,500
15		kPa. And I thought I heard you mention that there was
16		a minor risk reduction, but then you had mentioned that
17		there could be some increase in operational downtime
18		and a potential for scale plugging.
19		So I didn't know if the risk reduction was related
20		to those things because that sounds like a risk
21		increase to me, but I wondered if I'm muddling up what
22		you had said.
23	A	P. THOMSEN: The risk reduction is with
24		respect to ISH's concerns about steam communication
25		with the Wab B gas.
26	Q	Okay.

And so that minor risk reduction is with respect to the 1 Α 2 confinement strata integrity. 3 The -- in a sense, I mean, the consequence of this is there is less operational flexibility for the SAGD 4 5 operations, and we would not expect this change in the 6 long-term maximum operating pressure to have any impact 7 on scale precipitation, so that's just -- it's an example of a type of unplanned event that can occur 8 9 with SAGD well operation. 10 0 Okay. So -- so lowering the maximum operating pressure 11 would not have the potential for a scale plugging or 12 increased downtime? No, they're independent. 13 Α 14 They're independent. Okay. Okay. 0 15 So the technical concerns you don't have any real technical concerns with regard to lowering the --16 17 reducing the -- the operating MOP? I don't have any technical concerns as far as 18 Α 19 confinement strata integrity. There are some -- if you 20 can just give me a moment, I just want to confer with 21 my production colleague. 22 Yeah. Sure. 0 So the reduced operational flexibility has to do 23 Α Okay. 24 with pressures that we can apply to the well and some 25 upset operating conditions, and so, for example, if 26 there was scale precipitation inside a well, inside a

tubing, or inside the liner, and we needed to do a 1 2 stimulation to dissolve some of that scale, it would 3 reduce the pressure that we could inject an acid at, 4 let's say. 5 Does that answer your question? 6 It does, yeah. Thanks. So -- yes, that's clear for 0 7 Thank you very much. me. COMMISSIONER BARKER: Thank you. 8 9 Ο COMMISSIONER CHIASSON: So I have questions on a 10 couple of topics, and I was going to say I'll go with 11 the first one, which is actually likely a set of 12 questions, and I can't point to a particular person 13 because this arises out of what we heard yesterday in 14 evidence, and we heard various different terminologies used in relation to time. And so I'm wanting to just 15 16 get some clarity around that to understand whether all 17 these different terms we've heard are meaning the same 18 thing or not, and then I have some follow-up on that. So part of it, I think -- and initially, 19 20 Mr. Lavigne, you had talked about CNRL's definition for 21 barriers and baffles and you mentioned that CNRL's 22 definition for a barrier was that it was not -something that was not permeable to steam over the life 23 24 of operations. And then you referred to the life of 25 operations again but also made reference to life of the 26 KN08 and KN09 pads and life of the drainage boxes. And

then later on I think both Dr. Boone and Mr. Barland 1 2 made reference to lifetime of drainage boxes, and so I'm wondering, are those all the same thing? 3 So, firstly, just for 4 Α J. LAVIGNE: clarification, the definition of barrier and baffle 5 6 that we used was actually out of the Fustic paper, 7 which -- which was presented in a KN06 decision report and so we -- for continuity, we decided to follow 8 those -- those same definitions. 9 10 So sort of to this second part of your question, 11 the -- over the life of the boxes or pads or 12 operations -- I think we're all meaning the same 13 thing -- over, say, the 20 years or 25 years of SAGD 14 operations on those pads. 15 I'll invite any of my colleagues to correct me. G. IANNATTONE: 16 Α I was just going to say I 17 think we've had various numbers in -- in the life of a 18 pad definition or drainage box. I think it was as low as 10 or 15 years and maybe as high as 20. 19 I think 20 what we're talking about is typical. Like, we have a 21 lot of drainage boxes that go beyond 20 years, and we 22 have, you know, others that are shorter, 10. So, like, 23 we have the whole spectrum. So that's why, you know, 24 the definition of a typical life span of a drainage box 25 is -- it's not an exact number. It's a thumb waq. 26 0 Okay.

1 A It's a range.

Q Yeah. So that's -- that's part of what I was wanting to understand is with all these terms, are we all talking about the same thing in terms of after this when the Panel sits down to look at it, are we comparing apples to apples and not apples to oranges, to be quite frank.

So then, similarly, because Mr. Ollenberger talked 8 9 about 20-year delay in relation to valuation of the gas 10 resource and talked about on the assumption that the 11 pool would not be able to produce until the bitumen 12 resources at the Pads KN08 and KN09 are completed. So, 13 again, is that the -- is that the same thing in terms 14 of -- when you're talking about that type of timeline 15 and the resources being completed, same thing as lifetime of the operations, lifetime of the well pad or 16 17 of the drainage boxes?

18 A D. OLLENBERGER: Yes. The 20 years is with
19 respect to what would be considered probably a normal
20 operating life span of a SAGD pad, but of these pads
21 specifically, not necessarily any future pads.

I guess just to clarify also, there is a probably high likelihood or strong likelihood that KN08 and KN09 will not necessarily start steaming operations at the exact same time.

26 Q Okay. And just in the broad range -- and I understand

1 what you say about being a thumb wag or whatever, but 2 we've got 10 to 15 years, up to 20 years; I may have 3 seen something when I was looking at the transcripts that had mentioned 25. So are we looking 10 to 20? 4 Is 5 there -- are there goalposts, like, broad goalposts 6 that you can point out to us, or does it depend on 7 who's talking about what? I think probably the difficulty arises from -- though 8 Α 9 Dr. Boone did say that SAGD is an established 10 technology, and that is true, there's not yet, to my 11 knowledge, a SAGD pad -- definitely I don't think at 12 CNRL or Canadian Natural -- that has reached its final 13 life. And so I think that's where it's relatively hard 14 for us to nail down one number there. We're using 20 15 because I think at our Jackfish asset we have our A pad 16 that is over 20 years of life span and still producing 17 today. So enough about -- talking about timelines, 18 Okay. 0 19 We'll move on to my second question. then. 20 COMMISSIONER CHIASSON: And so for this, Ms. Wheaton, 21 could we pull up -- let me just get the document number 22 right. So 50.002, PDF 44, and I'm interested in Table 5 on that -- on that page. 23

Q COMMISSIONER CHIASSON: So this is the table with the cost estimates, and to some extent some of Mr. McLeod's questions crept into where -- where I was looking to go

with it because he asked earlier today in relation to 1 2 the DFIT estimate, and Mr. Thomsen had referred to this 3 morning in terms of DFIT could cost a range from 4 375,000 to 1 million plus, and we see that it's the -the 1 million figure here. And so I'm interested in 5 6 understanding in relation to this, and I don't know 7 whether anyone on the witness panel was who prepared this table or not, but in terms of understanding, with 8 these various estimated costs both for ISH requests and 9 10 CNRL commitments, are these all subject to ranges in 11 terms of a high and a low possibility? Let's start 12 with that.

13 I mean, these are estimates. Obviously there's Α Yes. 14 not budgeted numbers. Any work in the KN08 and KN09 area we have -- as Mr. Iannattone mentioned, we need 15 16 certainty on development before we can proceed with 17 developing our assets. So there's always, you know, a time component and inflationary pressures that could 18 19 change these costs. I think these are generalization 20 There are probably ways to have these costs be costs. 21 There's probably also ways that these costs, reduced. 22 as often happen in the oil and gas industry, could go well above these costs. 23

Q And so then how -- can you talk about how you settled on costs -- the costs, then, in terms of if there's a high and a low? What -- what got picked? Where --

401

_

2 A We used our best reasonable estimates today.

3 All right. And so then I guess just -- and so 0 Okay. 4 that's for both the ISH estimates and the CNRL So I'm a little interested, then, in 5 estimates there. 6 terms of -- as well because you mentioned in terms of 7 potential for cost savings, that type of thing, and the other one that -- that catches my eye significantly is 8 9 essentially if we look at the first row running across 10 under the grey about ISH request for minimum one 11 observation well per pad, which you would assume, then, 12 would be two pads, and it's saying 2.4 million. And 13 next to it you've got CNRL commitment in terms of 14 converting -- converting wells, which would appear to come out to 995,000. And so I'm just looking to 15 understand that a bit better because here you're 16 17 talking about more wells, and I realize it's conversion, but that -- you know, 2.4 million seems to 18 me to be a significantly higher number. 19 20 So in ISH's submission, they did give an example Α Yes. of what they thought was a sufficient observation well 21 22 where I believe they described a full SAGD observation well with external cemented gauges and thermocouples. 23

Those wells are our most costly wells, and we would not have any existing today that would be able to provide the data that ISH requested. So that is where the large number of the \$1.2 million per well does come from.

1

2

3 When you look at our estimated costs for the CNRL 4 commitment, that's where we would convert the 10-34 5 well plus adding surface equipment for what's estimated 6 at \$115,000 -- sorry -- yes, \$115,000. Further, we 7 said we have the existing 100/1-3, which is a standing cased well, so there's no additional cost to drill that 8 9 To convert that well and add surface equipment, well. 10 that would be where we would be able to go in and hang a gauge and perforate and monitor the Wabiskaw B gas. 11 12 That would be an additional \$90,000 as estimated.

And then if you assume that we needed to go to KN09 and provide a new standing cased well for \$700,000 approximately and then convert that well for the previous mentioned \$90,000, that is how we add up to the \$995,000.

18 And just -- just -- perhaps I misunderstood the Okay. 0 submission that CNRL filed on January 23rd, so the 19 20 reply submission because my understanding was that the 21 suggestion was on the future gas monitoring well on the 22 KN09 that that would be a conversion out of a -- out of 23 a stratigraphic well or out of a -- any number of 24 stratigraphic wells that you would be planning to -- to do over the KN09 -- the KN09 area? 25 26 Α Yes --

1 Q Am I wrong?

2 A -- that's correct. It would be a new well.

3 Q Okay. So this is taking into account the brand-new 4 cost for that well that you would be planning to drill 5 anyway otherwise for -- for -- for stratigraphic 6 purposes?

7 A Potentially. We would not necessarily be leaving it as
8 a standing cased well, so there is additional expense
9 to that. And I guess the point would -- being that in
10 our submission we felt that the existing 100/1-3 well
11 and 10-1 well do provide sufficient monitoring.

So, yes, if we wanted to be, again, reducing costs, you could in theory say we were going to convert an OSC well that was not going to be cased, and there would be some additional savings if you applied that full value.

17 Q Okay. Thank you. That was what I was looking to now, 18 and --

19 COMMISSIONER CHIASSON: You're good?

20 Okay. So that is it for the Panel's questions.
21 So now, Ms. Jamieson, I guess we're looking to you
22 as to whether or not Canadian Natural is looking to do
23 redirect?
24 J. JAMIESON: Yes. So I am -- good

afternoon, Commissioners. I am very keenly aware that
I am between -- my questions are between everybody

going home after a very long day. So -- but I would 1 2 like to do -- I think I can be done in 10 to 3 12 minutes, provided my panel cooperates. So I would propose to -- if you can allow me, I would really like 4 5 to get it done, and then the panel can be released for 6 the evening. 7 G. IANNATTONE: Yeah. Ms. Jamieson, we have the undertaking -- the answer to the undertaking as 8 9 well. 10 J. JAMIESON: Yes. That can come back in 11 tomorrow, though; correct? 12 G. TANNATTONE: We --J. JAMIESON: I think --13 14 G. IANNATTONE: We have the answer tonight, if 15 you want it. 16 J. JAMIESON: Oh, you have it right now? 17 Okay. Yeah, we have it. So it'll G. IANNATTONE: 18 take 30 seconds, I believe. 19 20 J. JAMIESON: Why don't we start there. 21 That's great. So I think the 22 G. IANNATTONE: Okay. 23 undertaking was -- the question was: Does Canadian 24 Natural have any reserves currently booked to the Kirby Upper Mannville II gas pool? And the answer to that 25 26 question is: No, we do not have any proven or probable

> Dicta Court Reporting Inc. 403-531-0590

1 reserves booked to that pool. The reason we don't have 2 reserves is because under the co-key [phonetic] -- the 3 rules is that we don't have line of sight to the regulatory approval. So although -- although the 4 5 reserves will be produced at some future point in time, we can't predict when. So no reserves, no value. 6 7 (UNDERTAKING 1 FULFILLED) Thank you. 8 COMMISSIONER CHIASSON: Okay. 9 ISH, anything that -- that you'd have out of that? 10 Because I know we did -- you did indicate that you'd 11 closed off your questions, subject to anything that 12 might arise out of the undertaking. 13 M. RILEY: My apologies. If we could 14 please consult. Okay. All right. 15 COMMISSIONER CHIASSON: Let us 16 know, please. 17 M. RILEY: To confirm, ISH has nothing 18 further. 19 COMMISSIONER CHIASSON: Thank you very much. 20 All right, Ms. Jamieson. Let's proceed with your 21 redirect, then. 22 J. Jamieson Re-examines the Canadian Natural Resources 23 Limited Witness Panel 24 J. JAMIESON: Okay. Good afternoon, panel. 0 25 Dr. Boone, I'm going to start with you. You 26 received a number of questions from Mr. McLeod --

that's ISH's legal counsel -- I believe -- well, mostly 1 2 yesterday -- a little bit today -- regarding your 3 qualifications to provide the different parts of your assessment on the hearing issues. Can you very briefly 4 speak to why you are qualified to provide the 5 6 assessment that you did in terms of your professional 7 credentials and experience? 8 Α T. BOONE: Sure. So my original PhD thesis was in the area of rock mechanics, but it was 9 10 actually fracture propagation in pore elastic 11 materials. It was sponsored by Schlumberger. So I 12 developed a fair bit of expertise in fracture mechanics 13 and geomechanics at that time. 14 I -- I subsequently moved to Imperial Oil's 15 research lab, where I was mostly working in steam-induced fracturing. We had some containment 16 17 issues at the time, so I spent considerable part of my career working caprock integrity, potential fluid 18 losses outside of zone for various problems and 19 20 developed monitoring techniques that were applied in 21 the oil sands industry. 22 And then I started doing a lot of work in pilots. I was running the pilot program, so drilling different 23 24 wells, doing types of recovery processes. I evolved 25 into becoming a reservoir engineer. 26 Spent some time in Houston doing reservoir

1 simulation and in Norway as well doing reservoir 2 simulation, drilling wells, that type of thing. Came 3 back. I was the research manager for Imperial Oil, oil sands recovery research is what we called it, but at 4 5 the time we were mostly working on solvent processes, 6 SAGD for -- solvent-assisted SAGD for the Athabasca. 7 We were modelling it in the lab, running pilots at Cold Lake but also other solvent processes for Cold Lake. 8

9 And then after that role, I -- I moved on to work 10 for ExxonMobil as the senior EOR reservoir engineer 11 worldwide, so I went around the world looking at 12 various projects and --

13 Q And in all of that time, have you provided other risk 14 assessments like the one that you provided on these 15 hearing issues?

Risk assessments within Imperial Oil in particular 16 Α 17 is -- I'm going to say it's a daily process. So at the research lab every project that we have, we did risk 18 For everything in the field, we did risk 19 assessments. 20 I mean, one good example is for the assessments. Nabiye project. We encountered -- well, CNRL had some 21 22 issues north of us. Just as we were going to -- to go 23 drill up the project, we convened a large team of 24 experts, or I should say a modest team of experts, five 25 or six of us, evaluated the caprock integrity, and based on our risk assessment, added four or five more 26

1 wells to the program at the last minute, which wasn't 2 well received by everyone but technically was certainly 3 justified. The risk assessments that you're talking about, do they 4 Ο include using the APEGA guide and model that you have 5 6 provided in your report? 7 I would say the process was the same. Α Similar. I use the APEGA guide, and, of course, working for Imperial 8 9 Oil, every company has its own risk assessment process. 10 So they're all somewhat different but fundamentally 11 they're the same. 12 Thank you. 0 13 You were also asked about whether you had any 14 other clients other than Canadian Natural during the 15 If the question had been posed the last past year. five to ten years, what would your consulting practice 16 17 have looked like? How would you have responded? 18 Since I retired? I have done some consulting for a Α 19 geomechanical company. I've done another hearing like 20 this for another company. I was hired in a patent 21 infringement lawsuit related to SAGD in in-fill wells 22 that took a year and a half. I was the -- the 23 non-infringement expert. 24 Okay. You also received a number of questions with 0 25 respect to how you had sourced the information and --26 that you relied on in your report, which included

receiving information and data from various Canadian
 Natural personnel.

3 So the question is: Can you just briefly review 4 your methodology for collecting and analyzing the 5 information and data?

6 Α At the high level -- so I went and looked at reports 7 and papers and things out there that -- that recommend how to assess caprock, and generally they say you're 8 9 going to end up with a gualitative answer. It's 10 geology. You're never going to be able to definitively 11 say, No, this is a hundred percent going to seal 12 whatever material you're trying to seal, whether it's 13 CO2, steam, or waste.

14 And so generally the recommendations are, you know, develop a list of all the factors that might 15 apply and assess them all. And that's things like --16 17 and that's why I had that table at the beginning. So do you have enough core wells in the area to make a 18 19 reasonable assessment? Do you have enough wells for 20 FMI, that sort of thing? What other evidence is out 21 there?

22 So what I tried to do was take a comprehensive 23 approach like that. I also looked at the AER 24 directives and that guided some of the choices of the 25 parameters I looked at. And then CNRL sort of more or 26 less gave me open access to talk to anyone in their

organization and seek out data that I thought was 1 2 appropriate and needed to be considered. And during that process, which included contact with 3 0 Canadian Natural staff, how did you maintain your 4 independence? 5 6 Α I -- you know, I didn't ever think it was a problem 7 maintaining my independence. I'm -- I am independent. These are my conclusions. I recognize that, and I need 8 9 to own them, and, you know, I -- I -- those are my 10 professional opinions that I have provided in the 11 reports. 12 Thank you, Dr. Boone. 0 13 Mr. Sverdahl, yesterday you were asked a question about whether faults or fractures can be seen on 14 15 seismic. I think it came up again this afternoon, and you did acknowledge that small faults and fractures 16 17 cannot be seen on seismic, so "subseismic", we heard 18 that term as well. Can you briefly confirm, please, that if small 19 20 faults and fractures cannot be seen on seismic, what is Canadian Natural's workflow for identifying small 21 22 faults and fractures? 23 We review all -- all other Α S. SVERDAHL: 24 data such as core data and image logs to understand if 25 there's fractures or fracture intensity within the 26 areas that were --

1 I'm going to stop you because can you just 0 Sorry. 2 bring your mic closer to you. You're soft spoken and 3 it's just -- speak right in there. Thank you. 4 Our primary method of understanding if there's Α Yeah. faults and fractures -- small-scale faults or fractures 5 6 is to review all of our core data, all of our image log 7 We also look at the seismic in context of areas data. where we see things like sags from differential 8 9 compaction, and we test those areas as appropriately 10 with strat wells and run them, either core and/or image 11 logs, through those features. So we investigate areas 12 where we believe there could be fractures or faults 13 that aren't necessarily detectible on the seismic but 14 we know they may exist. They're in the areas of greater differential compaction. So, yeah, it's an 15 integrated workflow to understand where they -- they 16 17 may be, and we -- we test these features as necessary with getting more direct geological data. 18 Thank you. Last question: Mr. Lavigne, so Canadian 19 0 20 Natural was asked a series of questions at the end of 21 yesterday, actually, regarding -- and then I believe 22 AER legal counsel came back to it, but it had to do 23 with Canadian Natural's use of, first, third party 24 analyzing GCMS data using Schlumberger's lab. Do you 25 recall that set of questions? 26 J. LAVIGNE: Α Yes.

1 The question for you: Can you please clarify 0 Okay. 2 Canadian Natural's workflow for integrating GCMS data 3 into its confinement strata interpretation. 4 Firstly, at the sampling level, Canadian Natural Α strategically picked samples in cores to test 5 6 stratigraphic units that we have correlated to other 7 wells, and -- and then we apply industry standard display techniques and plot it consistently with --8 9 sorry.

10 Sorry. So the GCMS, to reiterate, is -- it's one 11 part of a much bigger workflow, and so we've mapped 12 units, we assess logs, and, as I mentioned, we pick 13 stratigraphic surfaces that we try to -- that we want 14 to test; particularly in the reservoirs, we're very concerned about steam rise. There's tremendous 15 economic implications for barriers and baffles within 16 17 the reservoir. So we start to -- we start there and 18 then -- and then we apply the sampling up through the 19 confinement strata to test the longer-term containment, 20 but we -- we have a third-party vendor conduct the 21 actual analysis, but then we have the expertise 22 in-house that -- that we use industry standard 23 techniques to plot and analyze the data, but it's 24 always layered back to our stratigraphic foundation. 25 Thank you. 0

I see Mr. Sverdahl. Do you have something to add?

1 Α S. SVERDAHL: I think Mr. Lavigne covered 2 most of it. Like he said, we do all of our mapping, 3 you know, based on -- on the available well log data, core data, image log data. We integrate surfaces as we 4 5 can with seismic, and we layer on the GCMS data to all 6 of our other vast geological understanding. The 7 analysis for the GCMS data, the lab analysis, is done by Schlumberger in-house, and we do the interpretation 8 of that lab data that is provided to us and layer that 9 10 into our -- our geological models of both the reservoir 11 understanding and the confinement strata. 12 J. JAMIESON: Thank you, Commissioner 13 Those are all my questions. Thank you. Chiasson. 14 COMMISSIONER CHIASSON: Thank you, Ms. Jamieson. 15 So at this point, and I'm just going to ask you gentlemen not to all jump up, but as a witness panel 16 17 you are -- are released, so we are done with you there, but because I do have a couple of closing comments, and 18 that it would be easier if you wait 'til we close it 19

20 off for the day.

So I realize we are clearly -- clearly behind and that we were -- we were scheduled initially in the schedule for ISH to start direct evidence today. I'm assuming that you would prefer to leave that 'til tomorrow morning and start off with your -- with your direct tomorrow morning.

Dicta Court Reporting Inc. 403-531-0590

1 M. RILEY: Certainly, yes. 2 COMMISSIONER CHIASSON: Okay. And we're well Yes. 3 aware that the concern is that Dr. Chalaturnyk has --4 has timing restrictions in terms of that he's not available on Friday, so we need to ensure that 5 6 cross-examination in relation to any of his evidence 7 from both CNRL and any questions that we have from the AER occurs tomorrow. So we will make sure that that 8 9 happens. 10 Is -- and so I quess I'm just testing in terms of from the parties' perspective, is there a desire to 11 12 start earlier than 9:00 tomorrow or to look at how -how we can adjust the day as it goes along? 13 14 And -- sorry -- I guess in that, I should check 15 and make sure if our court reporters would be available earlier if that was an option. Yes. Okay. 16 I'm seeing 17 a nod yes from them, but ... 18 M. RILEY: I don't want to be difficult, but earlier is not really a possibility for us because 19 we have panel members with children and some 20 21 obligations early in the morning. 22 COMMISSIONER CHIASSON: That's absolutely 23 understandable. So that's not -- that's not a problem. 24 We just thought it was something that -- that we would test. 25 26 So that's -- that's fine. We will start -- we

will start at 9, and we will look to -- look to see, I 1 2 guess, how -- how the day flows. I quess I would test 3 with both parties in terms of -- so clearly today we 4 ran a little later than planned. Is there the flexibility there in terms of running -- because right 5 6 now what we had projected for tomorrow was 'til just 7 before 5:00. Is there the flexibility or the interest in terms of running a little longer tomorrow if need 8 9 be? M. RILEY: 10 We will make arrangements to 11 make that possible if we need to. 12 COMMISSIONER CHIASSON: Okay. M. RILEY: We will also overnight review 13 14 the evidence we intended to present and see if there isn't some time economics to be gained. 15 16 COMMISSIONER CHIASSON: Thank you. We appreciate 17 that, but we don't want to put the squeeze on you otherwise because we -- we recognize that things 18 have -- things have a way of growing generally, aside 19 20 from what -- what you have got, so thank you. So we'll be -- we'll be alive to that tomorrow. 21 22 So we will confirm that we resume tomorrow morning back here at 9:00. As we reminded everyone yesterday, the 23 24 rooms here are not secure. I am assuming that the 25 breakout rooms are not secure, so please make sure that 26 you take all your belongings with you 'til tomorrow,

1	and thank you all for your participation today and,
2	gentlemen, for your patience sitting in those seats
3	for for for two days. We appreciate it.
4	And actually also we would like to provide the
5	feedback to everyone. Thank you for making the effort
6	to use the microphones today and speak clearly. It
7	made a big difference for us. So thank you so much.
8	(WITNESSES STAND DOWN)
9	
10	PROCEEDINGS ADJOURNED UNTIL 9:00 AM, FEBRUARY 8, 2024
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
I	

CERTIFICATE OF TRANSCRIPT: We, Sandie Murphy and Sandra Burns, certify that the foregoing pages are a complete and accurate transcript of the proceedings, taken down by us in shorthand and transcribed from our shorthand notes to the best of our skill and ability. Dated at the City of Calgary, Province of Alberta, this 7th day of February 2024. du Murph Sandie Murphy, CSR(A) Official Court Reporter Sandra Burns, CSR(A), RPR, CRR Official Court Reporter

		1		
\$ \$1 301:24 \$1,075,000 225:16 299:17 \$1.2 402:1 \$115,000 402:6 \$375,000 225:15 299:20 300:12 \$700,000 300:11 402:14 \$800 327:16 \$90,000 402:12, 16 \$995,000 402:17 0 0.36 382:10 0.46 382:11 005 231:18 01.01 207:21 209:10 211:23 224:2 226:6 249:10,20 250:4 252:8 256:10 286:3 02 208:4 043.002 392:26 05-02 353:17 050.003 239:24 242:11 391:11 08 279:2	363:16 366:16,19 377:8,13 379:18 382:12 383:6 384:13 385:11 400:4,5 405:7 1,075,000 299:25 1-3 227:7 228:11 240:25 347:10 1-3-75-9-W4 391:1 1-metre 202:18, 21 203:7,18 1.3 375:21 1.5 231:20 10 201:18 214:6 233:7 234:22 247:7,10 248:22 247:7,10 248:22 249:1,4 256:25, 26 293:16 294:5, 10 397:19,22 399:2,4 404:2 10-1 253:2,8,16, 21 254:6 256:3 403:11 10-2 287:16,26 386:3 10-3 386:3 10-3 386:3 10-	10:30 198:13 10:40 235:2 11 224:3,8 235:2 113 199:8,15 214:19,23 215:15 214:19,23 215:15 114 384:3 114.3-millimetre 383:23 116 258:16 117 263:5,6 12 201:18 231:21 247:7,10 248:22 249:1,4 256:26 257:12,16 282:7 321:16 404:3 1234 289:17, 21,23 12-2 252:16 12-34 290:1,4,6,8, 18 386:2 12.1 383:5 122 228:17 123 261:13 125 383:25 12:15 235:8 275:14 13 211:24 247:5, 13 211:24 247:5, 15 321:16 331:13 358:1,2,5 13.1 382:26 13.6 383:5 135 293:21 371:9 14 215:16 239:6 14 215:16 239:6	15 257:24,26 262:3 263:8,19, 22 287:20 293:17 346:17 397:19 399:2 15.0 268:4 15.01 214:19 215:14 217:15 220:17 223:13,15 233:7 235:20 238:13 244:22 246:16 249:15,25 250:6 253:6 254:9,11 257:16 268:1,5 367:10 371:8 15.1 228:16 236:23 268:24 150 262:1 16 224:7 246:17 251:8,18 358:2 361:11 17 251:18 1766940 201:22 177 319:22 17th 287:7 18 207:22 219:1 238:14 251:8 253:9 263:18,22 180 303:4 322:13, 15 19 205:23 194 235:20 195 217:16 196 226.11	1D 362:7 1st 296:1 2 197:9 217:17,19 246:17 247:10 282:6 282:6 301:25 321:9 368:4 374:19 368:4 374:19 2,000 358:16 2,500 374:19,23 375:4 2-and-a-half 321:14 374:19 2.4 401:12,18 2.46 246:25 20 205:25 206:11 208:4 235:2 242:12 294:5,20 383:25 385:3 386:14 397:13, 19,21 398:18 399:2,4,14,16 20-year 293:26 295:22 398:9 20.02 231:21 274:18 20.02 231:21 274:18 200 237:7 257:20 2002 265:19 2008 206:14 2011 282:10 305:14 306:14
 005 231:18 01.01 207:21 209:10 211:23 224:2 226:6 249:10,20 250:4 252:8 256:10 286:3 02 208:4 043.002 392:26 05-02 353:17 050.003 239:24 	21 254:6 256:3 403:11 10-2 287:16,26 386:3 10-3 386:3 10-34 383:16,24 384:4,7,11,24 385:11,16 386:2 402:4 100 279:8 281:3 334:21 364:6	 122 228:17 123 261:13 125 383:25 12:15 235:8 275:14 13 211:24 247:5, 15 321:16 331:13 358:1,2,5 13.1 382:26 13.6 383:5 135 293:21 371:9 	 17 251:18 1766940 201:22 177 319:22 17th 287:7 18 207:22 219:1 238:14 251:8 253:9 263:18,22 180 303:4 322:13, 15 19 205:23 194 235:20 	19,21 398:18 399:2,4,14,16 20-year 293:26 295:22 398:9 20.02 231:21 274:18 20.2 209:18 229:8 200 237:7 257:20 2002 265:19 2008 206:14 2011 282:10

		2		
2016 281:10 2018 206:15 287:7 2019 307:21 331:7 202 278:25 285:25 2021 253:10 254:15,16,20,24 255:12 2022 209:5,6 2023 256:7 2024 277:3 296:1 416:10 417:9 203 311:23 21 209:5 230:12 273:17 290:12 211 383:15 385:26 212 383:15 214 287:15 288:2, 12,20 289:9 215 337:26 392:3 217 335:1,5 336:14 337:26 218 385:26 219 293:2 22 234:2,21	24-hour 371:14 243 332:3 334:10 244 331:21 249 287:24 25 207:26 208:8 210:12 211:2 220:17 397:13 399:4 26 223:18 263:5 362:4 27 214:24 223:26 224:9,12,13 289:15 28 223:13,16 224:2 29 228:16,17,19 253:11 392:26 3 3 252:19 259:17 267:25 268:17 283:10 293:22 3.8 246:19 30 247:5,15 342:19 363:3 380:3 387:19 404:19 30-plus 265:21	350 253:12 279:9 358 253:25 254:9 375 225:15 375,000 299:25 400:4 3:40 346:20 3D 341:9 388:19, 25 389:9 4 209:18 268:21 270:13 321:16 328:10 336:26 4,500 375:2,22 4-12 206:14 4-38 385:11 4-and-a-half 321:17 4.2 215:6 40 210:11 40.01 281:7 400 252:19 405 298:4 41 256:10 43 239:6 254:11 264:16 372:20 43.002 290:11	46.002 372:20 377:22 46.02 263:25 469 353:25 47 268:24 470 351:16 352:24 483 254:12 4A 328:4 4C 329:19 337:1 4D 342:11 5 5 201:22 231:24, 25 249:15 263:25 347:4 377:8,13 381:21 383:12 399:23 5,500 268:26 270:8,16,22 271:10,12,22 303:12 371:11, 17,20,23 394:14 5-34 236:4 5.4.2 383:25 50 258:3,13 262:4 307:17 343:15 393:22	50.03 247:1 267:25 358:1 500 374:16,19 375:20,26 384:8, 15 505 367:10 51 239:24 52 391:11 53 299:17 54 202:20 278:24 370:23 54s 205:2 55 214:7 226:7 56 227:12 251:7,9 252:8 383:14,15 57 287:14 383:15 59 229:8 293:1 5:00 415:7 6 6 6 201:10,12,15 239:24 252:24 256:16,17 293:23 327:16 343:16 366:17 6,000 270:15 303:12 371:12, 13 24 272:1
			5	
		, , , , ,		
	, , ,			
	3			5:00 415:7
212 383:15			· ·	<u> </u>
,		40 210:11		0
		40.01 281:7		6 201:10,12,15
		400 252:19		239:24 252:24
		405 298:4		
		41 256:10		
			307:17 343:15	
273:16,17	-		393:22	13,24 372:1
220 334:13	31 233:8	305:14 306:20 308:8 311:22	50-003 202:25	6,500 200:24
224 257:17 338:1	315 286:17	362:4	50-gram 345:16	6,600 268:6,11,19
225 334:11 335:4	316 286:18 31st 299:11	43.02 231:24,25	50.002 230:11	269:7,17 270:9, 24 272:18
336:9	31st 299:11 32 263:26 371:8	254:10 319:21	252:24 258:16 261:12 285:25	24 272:18 273:11,14 303:7
226 334:26	32 263:26 371:8 32.02 253:4	43.076 353:15	287:14 293:1	371:14
227-and-a-half	289:14	356:4	299:13 383:14	6.5 261:23
339:10	32.03 347:4	43.121 349:13	385:24 399:22	60 244:23 258:3
23 215:5,11	33 199:8 288:15	355:6 356:18 43 76 356:1 4 17	50.003 205:23	262:4 387:20
230 335:4	339 220:20	43.76 356:1,4,17 435 384:13	214:6 219:1 244:19,20 259:14	600 252:21
235 336:13	34 253:4,6 258:16	435 384:15 438 384:15	273:16 287:24	61 246:22
23rd 402:19	340 220:18,19	438.5 384:13	50.02 199:8 239:6	63 219:2
24 263:5 270:7 272:3 279:10	35 209:10 261:13	44 299:14 399:22	278:24	64 205:23
212.3 217.10				

206:10 251:24 253:9,18 1 340:5 254:4,16,17,19 25 256:2,9 277:9,10, 0 306:14, 11,12,13,14,15, 1 1,12,13,14,15, 16,17,18,19,20,2 286:20 303:26 306:17 370:23 301:5,9,14 286:20 303:26 301:5,9,14 306:17 370:23 402:8,12 414:8 203:13,14 aerial 392:15 402:8,12 aerobic 210:23 15 affect 318:6 381:25 affect 318:7 386:17 Affirmed 198:17 278:17 afternoon 277:3 386:17 Affirmed 198:17 278:17 afterward 303:19 304:26 346:26 372:22 403:25 405:24 410:15 380:24 410:15 agregate 364:12 313:10,12,21 agregate 364:12 313:10,12,21 agregate 364:12 208:5,11 209:20 414:13 213:6 214:10,15 341:10 213:6 214:10,15 afterward 208:5,11 209:20 414:13 213:6 214:10,15 agree 204:20,23 208:5,11 209:20
ble 235:7 282:21 283:4 206:24 284:11 285:4,10, 341:16 381:1
d 235:6 205:4 3 220:9 2,16,20 agreed 289:19 300:2
32

		+		
agreement 293:5 agrees 242:15 253:20,21 278:26 ahead 199:23 278:13 281:2 343:11 344:19	325:3,17,18,21, 23 328:18 340:23 343:14,25 344:5, 15 372:25 378:13 379:1 412:21 413:7 analysises	anticipating 282:18 anymore 205:4 APEGA 408:5,8 API 239:8,12 314:10 385:1	19 340:23 360:21 403:15 406:20 applies 269:7 apply 239:3 269:18,21 270:18 284:15 289:26	221:21 226:7 238:19 239:4 243:9 250:17 251:1 257:20 263:13,17 265:7 272:9 283:3,23 307:8 325:12,26
aid 212:25 310:24 aids 281:26 aimed 279:26 aiming 384:13 Alberta 277:1 304:18,22 360:7 387:24 417:8 alike 250:20 alive 415:21 alkylnaphthalen es 323:4	344:13 analyze 266:20 412:23 analyzed 326:10 369:3 analyzing 409:4 411:24 Anastasia 198:5 277:13 and/or 224:22	apologies 200:7 220:18 231:21 235:14 252:20 253:6,23 254:10, 11,12 392:25 405:13 apologize 198:6 223:15 226:26 248:16 273:17 305:6 381:21 apparently 205:4 25 224 18	349:7 370:11 395:24 409:16 412:7,18 applying 259:6 379:6 appreciable 349:3,9 351:15 appreciates 202:1 approach 197:14 213:20 238:2	326:5,18,20 340:22 347:13 352:8 354:2 360:7 361:17 367:14,25 368:14 373:25 374:8 385:4,26 386:11 388:14,20 390:11 391:23 400:15 402:25 406:9 409:18
es 323:4 allowance 269:1 allowed 229:4 268:25 368:19 altered 286:25 amount 213:16 215:22 216:17 217:13 230:10 311:15 330:21 345:14 380:5 382:16	310:23 382:8 392:11 411:10 Andrew 277:11 angle 380:3 annotated 353:18 annotation 257:20 352:18 annotations 349:15	205:4,25 234:18 appeared 202:17,21 appears 203:3 267:3 287:26 334:13 351:10 apples 398:6 applicable 203:17 282:21 283:4 379:10	265:5,16 266:1,4 296:5 409:23 approached 234:16,20 appropriately 411:9 approval 209:6 289:25 290:1,3,5 387:18 405:4 approved 207:23	areas 216:16 238:8 242:5 250:22 299:20 321:19 324:14 329:25 364:14 375:2 389:13 390:15 410:26 411:7,9,11,14 arise 405:12 arises 396:13 399:8
 amounts 233:18 anaerobic 210:23 319:26 320:7 analog 358:13,14 373:8 analogs 211:19 280:4 analogy 316:7 	annual 299:10 370:23 385:12,20 annually 368:26 annum 294:5 anomalies 368:14 anomaly 387:17 answering 387:22 answers 266:2	applicant 215:7 application 201:21,22 206:21,22,23 207:4,15 212:19 214:2 218:17 223:26 224:3,6, 18 258:21,24 259:1,10,12 260:2 270:15 271:25 280:9	208:12,13,15,17, 26 209:4,8 272:22 289:21 approximate 257:14 approximately 299:20 375:1 402:15 approximates 351:7	armoured 350:20 aromatic 308:13, 23 309:26 314:25 318:24 arrangements 235:8 415:10 arrow 347:11 349:2
317:9 analysis 203:18 216:13 243:12 251:14 306:2,24 307:14 314:19,23 315:9 319:4 320:15 321:2 322:4,7 324:8	answers 266:2 275:23 322:2 anticipate 272:12 304:3 anticipated 284:5 285:8 293:26 317:17	285:7 286:5 371:24 372:3 applications 201:1 394:13 applied 202:19 229:4 279:12,21 280:5 294:6,12,	AQ 282:6 aquicludes 334:1 aquifer 290:9 aquitards 334:1 arbitrary 241:18 area 208:22 216:20 220:14	arrows 347:14 article 358:7 artifacts 221:18 ascertain 274:26 ascertained 282:19

		5		
asphaltene 281:4 assembly 287:18 288:4,14,21 assess 297:7,25 409:8,16 412:12 assessed 291:9 302:8 assessing 232:7 296:17 327:10 assessment 268:18,22 292:15 294:7,8 301:23 302:5,23 314:21 323:17 327:5 331:16 339:1 380:21 406:4,6 407:26 408:9 409:19 assessments 407:14,16,19,20 408:4 asset 294:18 399:15 assets 292:24 307:5 388:26 400:17 assign 264:12 assigned 264:13 295:12 358:24 374:21 376:24 378:23 379:26 380:2,8 381:10 assist 278:26 279:25 280:6,11, 19 associate 344:7 assume 209:12	assuming 245:10 276:14 327:11 346:16 413:24 415:24 assumption 364:23 374:10 380:6,19 382:2 398:10 assumptions 372:24 378:16 assurance 345:23 Athabasca 312:19 313:7 322:21 324:15 325:26 326:20 358:18 407:6 atomic 317:6 attain 312:10 313:3 attended 343:12 attention 220:25 auditor 294:15 August 254:5,7, 20,24 255:16 availability 275:15 avoided 276:18 aware 205:20 365:26 366:3 384:24 403:25 414:3 axis 352:10 B	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	backward 337:8 bacteria 210:21, 22 314:6 315:15 316:19 323:21 339:17 bad 342:21 baffle 329:22 330:9 331:2,15 336:24 340:26 341:2,14 397:5 baffles 211:5,17 307:3 309:1 311:2 317:5,8,24, 25 319:15 324:12 325:25 396:21 412:16 bag 322:1 342:25 balance 294:18 balances 341:19 Baohong 277:20 373:21 bar 362:11 393:16 Barker 277:7 394:6,7,8 396:8 Barland 198:19 210:9 242:25 256:15 278:19 305:21,24,25 308:16 312:3 389:4 397:1 barrier 233:21 234:8 246:5 247:26 328:25 329:16,22 330:7, 11 331:2,14 336:24 340:9,26	311:2 317:5,8,23, 25 319:14 324:12 325:25 337:11 396:21 412:16 Barry 318:15 bars 219:4 346:1, 4 362:25 basal 227:19 362:16 base 202:23 203:7 248:4 249:6 257:26 316:2 336:19 338:24 354:9 379:11 393:9 based 211:14 242:22,26 243:1, 4,11 257:24 266:13 289:8,12 294:19 297:18 302:5,6 305:26 309:13 315:1 326:21 331:12 336:11 358:16 359:13 361:2 365:12 373:9 374:16 375:18,26 376:3,7 378:2 382:6,23 392:21 393:14,22 407:26 413:3 baseline 369:19, 23,24,26 370:1,2, 20,26 371:4 basic 239:19 basically 210:25 385:26 388:8,10 basin 250:23
400:17 assign 264:12 assigned 264:13 295:12 358:24 374:21 376:24 378:23 379:26 380:2,8 381:10 assist 278:26 279:25 280:6,11, 19	20,24 255:16 availability 275:15 avoid 329:15 avoided 276:18 aware 205:20 365:26 366:3 384:24 403:25 414:3	296:6,9 298:10, 12 304:4 306:11, 12 317:9 327:8 330:5,19 332:24 335:11,15,18 336:2,20,22 337:4,20 338:19 339:4,26 340:9 344:1 346:20 352:24 355:6,19, 26 356:19 364:16	394:6,7,8 396:8 Barland 198:19 210:9 242:25 256:15 278:19 305:21,24,25 308:16 312:3 389:4 397:1 barrier 233:21 234:8 246:5 247:26 328:25 329:16,22 330:7,	365:12 373:9 374:16 375:18,26 376:3,7 378:2 382:6,23 392:21 393:14,22 407:26 413:3 baseline 369:19, 23,24,26 370:1,2, 20,26 371:4 basic 239:19 basically 210:25
assume 209:12 218:9 222:23 227:14 345:22 358:16 401:11 402:13 assumed 264:9, 24,25 265:1,8,10 373:14 374:11 378:13 382:5,6	B B ' 245:8 247:9 250:7,8,9 B1 225:6 226:15, 16,17,21 227:5, 10 228:3,7,12,14 229:18,26 231:1, 12,17 235:21		336:24 340:9,26 341:2,15 396:22 397:5 barrier/baffle 324:25 barriers 211:5, 17 247:21 248:7 261:9,10 307:3 308:26 309:6,22	

		6		
bedding 363:22	biodegradation-	22,25 350:18	booked 296:9	20 232:9,11,15
beds 262:24	susceptible	352:21 355:25	404:24 405:1	233:2,4,26
351:4 353:9	308:12,22 322:22	358:21 362:5	books 294:22	236:21 261:20
362:12,18 364:3,	biodegrade	372:26 377:21	Boone 198:16	262:9 365:21
7,11	316:19 318:9	401:16 406:2,12	203:23 204:23	388:13 389:2,14,
began 243:18,25	326:14	bits 335:25 351:1	242:18 244:7,11,	16 396:26 397:2,
256:6	biodegraded	359:20	21 245:14 246:24	11,21 398:17
begin 199:7	315:15 322:15,20	bitumen 200:23	247:14 260:3	brain 198:6
339:21	336:6	201:4,17,20	261:3,5 268:3	brand-new
beginning	biodegrades	202:7 205:15	270:10 272:17,20	322:8 403:3
265:20 317:12	310:20	208:6 209:12	273:18 278:16	breach 290:17,25
409:17		217:10 233:10	281:12,21 282:8	291:19
	biodegrading 310:26	243:18,25 244:26	285:4,9 291:7	breached 290:19
begins 244:5 245:1 308:11		245:4,5,6,9,11	301:21 302:8	292:10
245:1 308:11 331:20	biogenic 310:22	246:7,8,9,10	357:23 358:3	break 198:13
	biograded 339:7	256:24 257:8	361:12,16	234:24 235:1
behaviour 381:5,	bioturbate	258:21,25,26	364:16,19 388:5,	240:26 241:11,22
9 382:19	355:14,16	259:8,23 260:12	14 389:11 397:1	246:5 275:18
behaviours	bioturbated	274:24 275:6,8,9	399:9 405:25	276:20 304:1,4
332:26	347:16 349:4	306:6 309:3	406:8 410:12	316:1 330:19
believes 205:4	351:11,14,18	310:23 311:1,12,	Boone's 242:14,	338:8 346:14,17,
belongings	353:2 354:23	15 312:24	17 247:2	23
415:26	355:24	314:12,13 315:15	Botterill 277:19	breaking 203:16
bench 305:3	bioturbation	320:4 321:20	bottom 201:14	204:8,15 210:25,
beneath 233:24	233:18 348:3,5,	339:6 342:23	237:11 245:25	26
benefitted	25 349:9 351:3,	349:4 365:7	246:23 257:1	breakout 415:25
346:23	12 353:23 355:14	398:11	259:21 331:25	
Bennett 318:16	366:1,3,5,10,12	bitumen-	335:16 348:6,10	breaks 327:7
	bioturbations	saturated 274:22	349:16,20,23	breakthrough
bets 301:12	355:10	275:1 345:1	362:11 363:7,9	200:4,5 202:19
biannual 385:12,	bit 217:18 234:24	black 336:8	364:4 373:11	204:13,19
20	240:2,6 246:12	blend 280:23	384:17 387:18	389:15,19
bias 341:19	260:13 264:1	blip 198:7	bottom-hold	breakthroughs
big 252:3,6 416:7	269:2 275:19	block 220:22	270:7	200:1
bigger 214:9	281:10 288:1	blue 334:24	bottom-hole	breccia 202:22
308:17 316:18	290:12 305:1,3	339:11	292:25	203:11 393:21
334:15 412:11	308:4,10 309:23	blurry 219:8	box 208:2 209:26	Brian 277:6
biodegradable	310:11,17 311:5,	•	230:21 232:17,21	bridge 383:19
320:9	26 317:22 318:10	board 233:19	238:9 252:11	briefly 287:22
biodegradation	321:12 322:9	board's 233:14	352:3 367:20	406:4 409:3
312:12,16 314:1	323:18 324:4,6	bodies 392:18	397:18,24	410:19
315:3,9 316:11,	326:24 327:1,25	body 393:15	boxes 207:24,26	bring 202:24
24 319:26 320:7,	336:21 337:9	bond 386:6,23,26	208:3,9,12,13,15,	215:4 235:19
10,20 323:5,17	339:6 340:21	387:1	17,21,25 209:3,	244:15 261:26
333:16,21 339:22	341:11,18 343:18 345:8 348:13,19,	bonds 210:25,26	16 228:4,8,22	286:13 362:1
	545.0 540.15,17,	316:1	229:2,22 230:7,	411:2
				1

		/		
bringing 276:7		367:15 369:21	cased 225:14	348:22
278:24	С	372:24 373:22	299:26 386:11	centimetres
broad 239:4		377:1 378:5	402:8,14 403:8,	226:19 321:9
398:26 399:5	C' 247:9 329:1	381:11 383:17,22	14	centre 203:6
broadest 200:9	C1n 323:6	386:1,5 387:25	cases 204:7	220:22 240:12
Broadly 213:9	C2dbts 326:16	388:23 399:12	283:22 357:9	352:9 362:21
229:15 314:22		403:22 404:23	360:21 379:20	363:10 392:2
	C2n 323:7	405:22 408:14	389:18	certainty 301:18
broccoli 315:19,	C2p 332:9 334:14	409:1 410:4,21	cash 294:6	400:16
20,26 316:2	C3n 323:7	411:19,23 412:2,	casing 255:9	
319:19	C4n 323:8	4	256:5 290:16,25	CERTIFICATE 417:1
broken 203:3	calcites 233:19	candidates 280:8	291:6,19,24,25,	
232:20	calculate 243:6	capability	26 292:7,8,21	certify 417:3
brought 202:2	379:4	385:14	383:23 384:24	chain 316:6,18,22
293:21 302:12	calculated	capacity 234:1	386:7,9,10,17	317:2,6 326:14
307:18	366:17 378:3	capped 350:9	cast 197:11,13	chair 277:5
budgeted 400:14				340:16
build 286:22	calculations	capping 203:26	catches 401:8	Chalaturnyk
building 389:5,6,	364:16 365:11	caprock 200:5	categorized	414:3
20	Calgary 277:1	204:8,15 216:21	356:22	challenge 269:11
buildup 205:19	417:8	217:2,13 224:22	caught 210:7	359:18
254:1 255:1,5	calibrate 341:21	263:10,15,17	caused 222:21	challenges
built 350:14	342:1	265:18,21,24	363:12	197:18 284:6
389:24	calibration	266:9,21 373:16	causing 335:13	chamber 201:3,
	330:22 342:4	379:16 406:18	ceases 339:22	16 202:8 205:16
bunch 269:5	California 204:4	407:25 409:8	Celsius 258:3	256:18 262:13,
314:20 347:18	call 221:1 239:26	caps 233:4,23	262:4 314:8	20,22,24,26
354:1	240:20 304:25	234:9	377:9	274:1 385:9,15
buoyancy 310:21	324:26 349:1	capture 359:20		chambers 261:11
311:18	called 407:4	carbon 210:26	cement 287:19 383:23 384:1,3,	283:17
buried 210:16,21		315:23 316:6		
314:7	Canada 307:20	323:19	18 386:6,15,21,	chance 346:18
burn 293:18	Canadian	career 406:18	23,26 387:1,8	change 225:24
Burns 278:5	198:11,21 202:1	cartoon 328:8,9	cemented 223:5	290:26 292:2
417:3,20	212:4,6,21 215:9	336:26	401:23	301:5 302:20,21
burrowing	226:23 227:5	carve 321:25	cementing	317:7 320:25
355:18	228:26 230:13		384:20	321:10 348:3
burrows 348:20	231:15 252:26	case 237:11	Cenovus 200:19,	372:3 379:16
349:5 350:5	255:3,4 267:20 270:5 277:23	238:5,7,10 246:2	25 201:15,21,22,	394:13,14 395:5
351:3 354:2,7	278:21,25 279:12	271:2 283:10 307:22 315:21	24 202:11 205:9	400:19
355:15	287:8,15 290:21	318:4,5,19	249:2 261:15,23	changed 211:8
byproducts	292:18,23	333:21 350:19	262:1	268:12 371:23
312:16	292.18,23	356:26 358:13	Cenovus/	channel 226:25
512.10	302:22 304:19	362:23 363:15	wabiskaw	227:9 242:7
	347:5,10 348:26	364:5 366:3	200:16	361:21 363:9
	351:9 361:24	367:21 379:11,20	centimetre-thick	365:15
	551.7 501.2 ⁺	507.21 577.11,20		

		8		
channel-form-	Chiang 277:18	cite 204:13	344:17 374:7,8	CNRL's 205:24
like 392:18	Chiasson 197:8	City 417:8	385:15 413:19	209:11 211:25
channelization	198:26 199:4,20,	clarification	closed 278:9	229:12 243:17,24
393:24,26	23 207:1,9,13	199:25 397:5	405:11	244:26 250:13
channels 365:22	234:26 235:5,16	clarify 200:1	closely 236:19	253:15 274:20,
391:20	275:12,21,25	258:22 274:23	347:7 389:10	21,26 289:26
character 350:26	276:13,19 277:5	279:11 318:10	closer 320:20	294:26 305:15
351:24,26 352:1	278:8,13 293:19	338:10 368:16	333:24 381:9	307:19 320:17
353:2 355:14,16,	296:15,19,26	371:18 394:9,10	411:2	324:8 331:12
23 357:3,7,15,21	297:5,13,17,20,	398:22 412:1	closing 413:18	396:20,21
characterization	22 298:7,11,16,	clarifying 208:16	CNRL 199:7,11	co-authors
225:2 227:4	19,22,25 303:19,	• •	200:16 201:5	282:13,26
231:19 265:23	20,24 304:6,17,	clarity 396:16	200:16 201:5 205:10 207:6	co-key 405:2
266:6 320:4	20 346:13,22	class 202:22,23	211:26 212:11,14	CO2 312:15
380:4	387:26 394:3,4	324:11 326:7	213:8,26 215:15	409:13
characterize	396:9 399:20,24	332:9 333:8	218:15 220:8	coal 350:9,19,20,
226:15 280:23	403:19 405:8,15,	classes 306:7	223:19 226:7,23	22
characterizing	19 413:13,14	318:1 325:11	227:13 228:21	coaly 350:12
351:20	414:2,22 415:12, 16	334:19 336:6	234:16 246:18	351:1 354:5
	children 414:20	344:18	247:23 248:2	coarse 345:7
charge 318:11		classified 356:24	249:12 253:7,20,	coarser 352:25
charged 210:17	chips 203:6	364:22	25 254:14,15	coastal 350:15
313:15 314:10	315:18,22 318:7 319:19 323:20	classify 275:8	255:12,26 258:6,	
charges 210:19		351:10	9,20 259:6 263:4,	coefficient
310:19	choice 333:10	clast 203:9,15,19	7 268:8,19,23	201:10 377:5,8, 13,15
charging 210:20	choices 409:24	Clayton 360:6	272:17 273:4,6,	
311:25 312:5	chondrites-like	clean 256:22	10 279:7 280:5,9,	coefficients 377:16
314:13	354:6	321:26 328:20	15,18,19,21	
chart 245:15	choose 333:11	345:13 358:12,17	283:5,7 285:11,	coherency
359:12 366:25	384:17	cleaned 344:12	24 286:4,19,21	392:10
chat 255:8	chosen 324:3	clear 206:8	288:2,5,12,15 289:16 290:5,14	coherent 239:23
check 206:16	chromatography	207:17 243:14	291:18,23	cohesion 380:2
207:11 209:3	304:24	245:4 258:24	292:10,15,22	coils 288:26
224:4 227:6	churned 350:22	266:1 297:5	293:3,10,26	cold 275:7 282:16
258:4 276:14	Cindy 277:5	312:20 313:8,20	294:8,17 295:11,	345:11 407:7,8
294:24 295:5	circle 207:10	314:15 356:17	13,22 297:6	colleague 285:19
297:6,25 304:2	circles 363:10	369:8,10 370:18	299:1,16,18	302:12 392:6
310:13 345:18 358:14 374:2		383:10 396:6	300:2 302:7,20	395:21
414:14	circulating	cleared 375:24	306:17,22 307:8	colleagues
checks 341:19	269:9,11,17	clears 375:24	322:4 324:3	257:23 385:5
	circulation	Clearwater	331:22 332:6	397:15
chemical 313:24	225:18 272:13,16 303:2	215:20 373:15	333:4 341:3	collect 322:6
317:17		clients 408:14	377:1 399:12	370:26 371:1
cherry-picking	circumstances	close 197:21	400:10 401:4,13	collecting 409:4
222:8	271:1 273:23	236:22 237:17	402:3,19 407:21 409:25 414:7	
			407.23 414:7	

collection 325:15 collects 322:5 **colour** 218:2 348:3,12 368:3 **column** 246:1 310:25 318:22 320:10 322:14.25 329:13 **columns** 327:2 combination 243:8 314:16 **COMMENCED** 197:7 278:7 **comment** 200:14 203:23 219:20 288:8 301:22 343:24 353:6 commented 281:18 comments 281:19 413:18 commercial 265:19,21 285:7 286:1 Commissioner 197:8 198:26 199:4,20,23 207:1,9,13 234:26 235:5,16 275:12,21,25 276:13,19 278:8, 13 293:19 296:15,19,26 297:5,13,17,20, 22 298:7,11,16, 19,22,25 303:19, 20,24 304:6,16, 20 346:13,22 387:26 388:2,3, 22 389:4 390:8 391:12 393:2 394:2,4,6,7,8 396:8,9 399:20, 24 403:19 405:8, 15,19 413:12,14 414:2,22 415:12,

16 Commissioners 304:12 403:25 **Commissioners'** 293:16 **commit** 301:17, 20 commitment 289:2 401:13 402:4 commitments 400:10 committed 276:7 384:5 committing 295:9 371:4 **common** 221:9, 19 222:6,13,16 273:5.9 commonly 242:16 272:26 285:7 316:24 317:1 communicate 228:2 256:9 283:13 communicating 263:13 communication 256:8 386:24 387:5,12,15 394:24 **compact** 363:19 compaction 220:15 411:9,15 companies 205:3 273:1 **company** 309:19 408:9,19,20 comparable 374:4 compare 211:1 250:4,10 342:10 357:18 360:13

compared 210:12 230:15 279:21 337:25 comparing 398:6 comparison 323:16 329:7 comparisons 374:2 compartment 336:3 338:2,20 339:15,23 compartmentali zation 335:13,19, 20,25 337:13 compartmentali **zed** 336:18 compartments 336:1 compatibility 287:13 290:7 381:20 383:10.12 385:24 386:4 387:7 compatible 385:2.3 compiled 393:23 complete 286:8 417:4 completed 398:12.15 completely 210:15 334:1 340:22 357:16 completion 285:6 completions 289:11 **complex** 284:4, 12,16 382:19 complicate 324:20 component 203:22 290:7 348:23 353:4

354:23 393:21 400:18 components 231:6 312:13,14 320:9 composition 280:24 281:2 309:4 compositional 320:12,14,18 347:18 compound 306:7 318:1 324:11 325:11,23 326:6 333:8,11 compounds 306:2,4,8 310:14 311:7 313:24 314:20,22 322:23 324:6 332:9 333:4 comprehensive 212:8,12 213:5 409:22 computing 264:8 concentration 211:6,11 257:3 309:17,26 315:10 318:8 322:24 324:13 334:14,21 337:21 339:11 344:18 concentrations 210:4 308:13.23 323:16 334:26 343:17 345:2 **concept** 225:20 227:21 313:24 conceptual 340:21 conceptualizing 331:9 concern 263:14, 17 342:22 386:3 414:3

concerned 252:26 254:5 255:26 297:19 387:5 412:15 **concerns** 197:13 215:8 256:4 372:3 387:23 394:12,24 395:15,16,18 **conclude** 211:15 215:21 228:26 concluded 233:11 273:12, 14.22 concludes 223:8 conclusion 233:14 234:7 272:19 294:4 323:15 336:13 conclusions 212:25 242:9 267:26 268:10 332:20 410:8 concurrently 291:5 condition 290:6 364:25 conditions 205:12 256:3 266:17 301:19 372:10 373:1 395:25 **conduct** 222:18 224:18 225:25 279:12 300:14.23 314:22 325:2,18 386:6 412:20 conducted 263:12 265:20 294:7,8,13 314:19.23 319:4 373:4 378:13 388:23 conducting

224:19 279:14

		10		
300:20 326:24	393:12 395:2,19	395:3	contained 260:22	contour 368:4
conduction	412:3,19 413:11	consequences	306:26	contoured
201:8,9 247:26	confining 204:8	215:18,23	containment	373:24
258:11 260:9,11	274:25 275:5	conservatism	266:8,15 273:21	contradict
262:12,15,19	381:25	374:12	378:18 388:12	312:23
conductive	confirm 213:17,	conservative	390:11 392:19	contradicted
209:24 210:1	20 264:7 266:22	265:5,9 266:20	406:16 412:19	308:5
222:14 258:6,9,	295:1 296:8	348:26 358:25	contamination	contradicts
17,19,25 259:9,	309:24 318:3	360:16 366:19	371:3	313:22
18 260:25 262:9	337:23 360:17	374:10 378:16,24	content 227:11	
conductively	386:23,26 405:17	379:19 380:6,18	228:5 231:3,14	contrast 218:1,
258:20 272:10	410:19 415:22	381:3	275:4 351:16	13 231:10,16,19 355:26 383:6
confer 209:1	confirmation	considerable	379:2 381:5,8	393:18
342:15 346:9	245:11 341:19	406:17	contention	control 242:1
354:20 373:21	confirmed 291:7	consideration	253:15	251:22 292:6
375:23 383:8	confirming	306:24	contents 247:21	345:23
395:20	371:23	considered	255:21	
conference	confirms 312:26	228:23 233:20	context 240:6	convened 407:23
199:21 307:21,24	conform 213:17	234:12 292:14	249:1 258:23	convenient
340:14,17	327:13	294:25 367:24	393:3 411:7	370:13,16
conferred 381:21	conformance	398:19 410:2	contextualize	conveniently
confident 231:16	256:20,22 283:3	consist 351:20	393:11	198:15
confidential		consistent	continue 275:19	conversation
215:12 296:13,15	confused 269:2	224:26 225:4	278:11 303:6	340:24
346:6,7	369:4	260:24 315:10	305:9 323:11	conversion
confined 283:2,	confusion 269:5	316:8,9 326:18	346:25	401:18 402:22
22 373:6 391:24	conjunction	381:5	continues 222:20	convert 402:4,9,
confinement	286:5	consistently	260:11	15 403:13
202:3,5 212:10	connect 335:9	324:17 412:8	continuing	converted
202.3,3 212.10	connected	consists 260:4	285:22	300:16 314:13
217:5 223:11,21	245:25 246:1	constantly 312:9	continuity	converting
224:23 227:17,	291:26 310:25	313:2	242:15 308:12,22	401:14
21,23 232:2,3,7,	328:15 330:19		347:1 351:25	conveyed 302:6
26 233:5 246:19	338:18 339:2	constrained	353:7,9,23	convince 243:20
247:4,17,19,20	366:7	392:4	357:24 361:22	244:1 245:2
248:6,14,24	connecting	consult 212:1	365:13 378:15	cooperates 404:3
249:8 251:14	283:18	361:18 405:14	381:7 397:8	core 200:21 203:5
259:18 260:4,7	connections	consultation	continuous	212:6,12,21
261:6 264:23	384:26	211:25 301:12	203:4 250:24,26	212.0,12,21 213:1,16,18
267:3 274:22	connectivity	consulting	270:7 272:3	215:9 216:8,11
275:2,10 359:20	329:12 330:3	358:20 408:16,18	289:18 362:12	223:20 237:5
361:8 364:17	connects 245:26	contact 311:18	364:9 383:20	241:3 308:26
373:24,26 376:3,	consent 293:4	314:5 320:22,26	continuously	321:24,26 322:7
5,6,8,9 377:6,17	consequence	322:23 333:16,25	290:23 292:19	325:16 341:5,6,8,
378:6 379:7	301:23,25 302:3	334:6 339:5		10 342:23,24
380:23 389:7	,	352:22 410:3		

		11		
343:23,25 344:2,	391:15 397:15	counsel 277:9,10	cross-section	daily 407:17
24 348:13	403:2 404:11	304:18,21 406:1	205:26 206:4	DALE 198:19
349:18,21,22	corrected 264:15	411:22	249:11 250:15	278:19
352:5,6 356:2	285:19 354:26	couple 197:10	257:25 392:1	dark 222:14,17,
362:8 393:19	356:5	263:3 303:3	cross-sections	$\begin{array}{c c} uark 222.14,17, \\ 20 \end{array}$
409:18 410:24	correction 222:5	335:17 396:10	250:21 309:5	
411:6,10 413:4		413:18	CRR 278:5	darker 348:21
cored 239:19	correctly 226:2	court 219:16	417:20	354:7
343:15,16 349:25	296:20 302:1,18 337:1	278:4,5 323:9	crude 306:6	darkest 368:2
cores 239:11,14,		346:14 414:15		dashed 240:23
16 322:8 343:8,	correlatable	417:15,21	CSBG 307:20	241:2,10,12,18
19,20 349:25	238:15,20	cover 272:4	331:7 340:14,15	data 205:3,7
388:10 393:15,26	correlate 236:9	covered 272:1	CSR(A) 278:4,5	207:14 211:14,20
412:5	237:6,14 392:5	374:23 413:1	417:14,20	212:22 213:2,9,
coring 216:10	correlated 412:6		cubed 279:8,9	10,18,23,26
322:7	correlates 237:4	covers 250:18	359:26	215:9,11 218:25
corner 221:13	correlating	380:24	cubic 303:4	223:20 225:8,19
232:17 353:19	237:13	create 284:24	current 252:1	234:14,16
390:19	correlation	311:1 335:4	253:26 334:5	241:19,20 253:22
corporate 296:10	236:18 241:12	337:12 359:24	378:3 384:24	257:13 265:6
-	correlations	created 220:12	389:8	285:13 290:24
corporation	341:8	290:19 292:9	cursor 308:16	291:5 304:26
301:19	correspond	367:1	348:18 352:26	305:16 307:9
correct 206:1,2,4	336:22,25	creates 310:22	353:26 354:11	309:4 324:9 325:6 326:24
207:24,25 208:24	-	322:23 333:15	363:10	325:0 520:24
209:9 214:5,13	correspondent 209:1	credentials	curvature 221:6	330:22 331:11
216:1,2 224:1		406:7	curve 316:10	333:11 335:6
226:5 229:6,7,14 233:13 240:1,24	corresponds	creek 391:3	318:8 321:5	336:12 340:25,26
233:13 240:1,24 241:17 242:23	389:10	creeks 391:5	327:4,7,10,13,20	341:4,5,10
246:25 249:13,14	corroborate	crept 399:26	328:15 329:6	342:10 343:21
250:1,3 252:15	211:21	crew 289:11	335:4,6,10	344:3,4,19,21
253:2,3 254:2,3,	corroboration		curves 311:3	345:19 346:7
18,24 258:18,19	341:4	critical 251:15,22	328:7 331:11	373:8,9,19 374:6
261:14,21 263:12	cost 225:21	cross 281:26	customary 287:6	375:26 377:11
264:11 265:15	299:16,18,22,25	337:10	cut 229:25 352:9,	380:1 381:4,12,
266:26 274:20	300:7,8,12,17	cross-bedded	10 365:15 391:3	16 385:18
280:13 287:8	327:15,16 399:25	393:20	cutoff 209:14	388:15,17 401:26
289:7 294:10,16	400:3 401:7	cross-	239:12 242:23	409:1,5 410:1,24
295:23 296:23	402:8 403:4	examination		411:6,7,18,24
305:18,24 306:18	costly 302:2	198:10 199:6	cutoffs 239:8	412:2,23 413:3,4,
307:11 310:6	401:24	414:6	cuts 242:7	5,7,9
314:25 315:5	costs 225:13	Cross-examines	cutting 392:18	date 206:16,19
317:15 318:4	400:9,19,20,21,	198:21 267:20		209:5 253:10
330:13 331:23	23,25 402:3	278:21	D	255:10 276:5
342:6 366:21	403:13	cross-flow 292:1,		287:6 295:26
376:5 381:11		3	D' 247:7,10,11	299:4,10 382:2
				1

		12		
Dated 417:8	deepest 352:9,11	depend 399:6	description	20
dates 272:3	defined 354:24	dependent 264:8	308:2	developing
datum 236:6	definition 200:8	depending	descriptions	281:17 350:7
237:18 357:11	396:20,22 397:5,	225:13 256:25	328:2	400:17
day 197:9,17	18,24	327:15 328:13	desiccated	development
207:6,10 276:15	definitions 397:9	depends 256:20	348:13	211:2 262:22,25
372:23 404:1		261:6 264:11	design 204:18	279:1,5 284:15
413:20 414:13	definitively 409:10	345:4 368:26	283:2 286:25	400:16
415:2 417:9		depict 390:6	302:15	developments
days 269:10	deflection 203:12	-	designed 283:23	343:24
272:4 284:26	deformation	depicted 208:1	desire 414:11	deviated 302:15
387:19,20 416:3	267:7,8,11,13	deposit 232:25		DEVIN 198:16
deal 292:25	380:12	357:16 363:13,14	detail 218:17	278:16
385:13	deformations	364:3,7,9	230:3 280:24	
	267:4,5,10,13	deposited 236:7	289:10 296:1	Devon 307:20
dealing 312:19	degradation	361:14 363:21	308:4 309:24	DFIT 224:14,18
313:7	210:11 244:6	364:7	310:11 311:6	225:19,26 226:4,
decades 370:19	337:7	depositing 354:1	322:10 358:2	14 249:12,19
December	degrades 310:21	deposition 281:4	detailed 289:12	299:16,26 300:7,
200:19 299:11	degrading	depositional	296:8	12,14,16,18,20,24
decided 233:20	310:26	228:24 251:2	detailing 293:6	301:5,9,14,24
369:23 397:8	degrees 257:20	361:15 362:9	details 218:4	302:2,13,19
decision 233:11	258:3 262:1,4	deposits 217:3	detect 291:6	303:14 382:7 400:2,3
254:4,20,24	314:8 377:9	312:20 313:8	detectible 411:13	
255:16 324:9	380:3	350:23 353:2	determination	DFITS 224:19
390:4 397:7	Dehghanpour	362:15 364:1,2,	217:23 367:5	225:13 249:12
decisions 233:15	358:8	12,13 391:19	determine	299:19
decline 255:21	delay 293:26	depth 219:7,8	212:16 224:20	diagonal 221:2
declining 253:1	294:19 300:19	306:3,9 310:17	275:5 281:6	222:2
254:15,17	301:7,14 398:9	317:4,8 320:25	306:9 308:25	diagram 241:5
255:14,17	delineation	324:13 325:22	316:20,23,26	289:9 336:26
decomposition	252:1	333:14 334:11,	317:8,14 374:13	360:4 362:20
392:10	delta 211:10,13	14,26 335:19	392:15	diamond 339:13
decrease 256:1	249:3,6,9	336:19 337:7	determined	dibenzothiophen
321:13 333:22		384:8	204:17	e 325:9
334:5 366:1	deltaic 361:20	depths 325:1	determining	dibenzothiophen
375:14 382:12	demonstrate	336:13 337:14	279:26 297:10,11	es 325:10 326:12,
decreased 323:5	341:1	derived 297:16	298:3 317:5,23	16 332:14 333:6
decreases 255:24	demonstrated	describe 210:10	325:24	differ 230:21
	232:22 233:3	320:13,16 327:4	Deutsche 360:6	difference 202:7
decreasing 322:24	Denise 277:12	340:7 372:26	develop 209:17	205:15 206:5
	density 217:2	374:13 380:25	280:3 350:15	230:9,19 231:8
deep 210:21	223:5 243:1	describes 282:1	409:15	237:10 244:4
384:7	251:25 292:5	360:1 363:22	developed 266:4,	248:14 299:21
deeper 230:8	307:2 321:12,13,	describing 313:3	11 274:1 406:12,	324:26 348:12
333:23 385:10,11	17	6	11 27 1.1 700.12,	355:12 380:18

		13		
416:7	294:14 411:18	discussed 216:7	diversity 347:17	draped 364:4
differences	413:23,26	226:23 227:15	DLIS 218:18,22	393:17
216:7 230:14,16	directed 357:24	230:3,5 239:17	document	draw 220:24
237:22 238:24,26	directing 304:9	241:13,14 264:19	253:11 322:13	334:23,25 335:9
279:26 288:8	direction 310:8	265:25 266:16	331:20 363:25	drill 239:17
317:18 357:13	331:12 337:17	316:25 317:21	399:21	251:22 288:6,16
362:10	directive 215:5,	323:20,26 325:16	documented	300:3,23 327:22
differential	11 272:23 370:23	337:16 379:26	312:18 313:6,16	352:5,7 367:19,
202:9 220:14	383:25 385:3	discusses 317:21	379:12 382:4	21 402:8 403:4
411:8,15	386:14	discussing 241:9	dollar 297:3	407:23
differentiate	directives 409:24	358:2	dollars 300:7,8	drilled 200:22
291:16 355:22		discussion 233:5	301:26	206:14 214:3
differentiated	directly 228:22	319:18		220:13 224:1,6,7,
232:19	232:15 282:19	discussions	dominance	8,12,17 276:5,10
differently	391:21	242:20,21	362:21	280:7 365:17
227:26 245:7	disagree 251:11	displacement	dominant 353:5	394:1
324:6 363:1	disagreement	218:20 219:21	dominated 228:5	drilling 200:19
differing 230:24	352:2	display 347:12	door 278:8	213:12,23,25
318:11,12	disagrees 229:12	357:3 412:8	dots 335:9	251:26 288:22
	disclose 296:7		doubt 266:2	289:1 299:22
difficult 240:15	disconnect	displayed 281:13	332:20	300:10 301:1,17
249:18 282:17	246:12	372:20	downcutting	406:23 407:2
285:7 291:16	disconnected	disposal 212:15	391:26	driven 211:10,13
314:12 329:26	330:20	214:1		240:14
342:19 351:21		disproportionate	downhole 271:19	driver 225:7
357:8 414:18	discontinuity	225:22	370:15 383:20	387:9
difficulties 239:1	245:18 331:10	disregard 344:6,	downtime 372:9	
difficulty 237:26	363:11	10	394:17 395:12	drop 387:11
399:8	discontinuous	disruptive 305:7	downward	dropped 383:6
diffuse 311:8	242:16,19 246:4	dissolution	322:24	due 201:2,25
diffusing 311:11	discount 294:5,	216:18	Draft 215:4	262:9 271:3
diffusion 201:10,	12,19 295:22	dissolve 396:2	dragging 363:10	275:22 329:25
13 311:1 320:8	297:18		drain 365:7	dunes 363:6,7
digital 218:25	discounted	distal 351:4	drainage 201:25	364:4
367:1	295:24	distance 249:5	207:24,26 208:2,	duration 225:18
	discounting	252:17 256:11,	3,9,12,13,15,16,	303:8
diluent 280:21,	294:10,13	13,23 257:14	21,25 209:16,26	dynamic 218:2,
23,25 281:3,4	discounts 313:11	distances 381:7	228:4,8,22 229:2	12
dimensions	discovered	distinct 211:15	230:7,20 233:2,3,	dynamically
391:4	197:26	351:20,22	26 261:20 262:9	218:8
dimethyl 332:10		distinctly 355:10	299:20 352:3	
333:2	discrepancy 288:1,17,19	distorted 350:17	365:21 367:14	
dimethylnaphth		distribution	373:25 386:11	E
alene 323:6	discuss 232:25	361:19 364:10	388:13 396:26	earlier 228:2
direct 229:21	291:20 379:23	388:8,19 389:16	397:2,18,21,24	234:25 239:17
241:24 266:5	381:24	390:10	398:17	248:12 261:16
	1	570.10	1	240.12 201.10

		14		
276:3 309:19	elaborate 365:24	environment	estimated 373:24	393:24 396:14
372:22 374:3	elastic 225:6	200:10 351:5	400:9 402:3,5,12	409:20 413:23
376:4 389:12,15	231:8 373:7,23	EOR 407:10	estimates 299:16	414:6 415:14
393:9,19,23	379:4 406:10	equal 268:26	399:25 400:13	evident 255:1
400:1 414:12,16,	elastoplastic	equate 331:2	401:2,4,5	evolution 243:18,
19	376:2	equilibrate	estuaries 363:13	25 244:5 245:1
early 269:15	elected 224:14	210:5	estuary 361:21	evolve 245:8
271:16 273:25	elevated 200:23	equilibrating	363:4,7 364:5	246:8,11
275:16 283:7	Elwyn 277:21	311:10	ethyl 325:9	evolved 406:24
389:17,22 414:21	encased 251:3	equilibration	326:12,16	evolves 243:17,
easier 197:26	encounter	310:14 313:24	ethylphenanthre	24 244:26 245:7
272:11 300:24	382:18	equilibrium	nes 332:10 333:3	exact 204:21
312:7 314:11 413:19		312:10,25 313:3	Europe 363:4	206:19 215:6
	encountered 200:22 407:21	equip 383:19	evaluate 251:26	297:3 343:14
easiest 316:1			266:10	367:26 374:5
easily 310:25	encounters 384:10	equipment 286:7 287:1,17 288:3,6,	evaluated 407:25	378:10 397:25
343:10				398:25
east 216:17	encourage	13,16,20 402:5,9	evaluation 295:12 371:26	examined 309:20
easy 223:6 238:17	197:22,25	equipped 287:3	380:22	393:14
eat 316:19	end 207:5,10	equivalent	evaluations	examining 329:4
eaten 316:5 318:7	276:15 284:25	229:3,11 230:4	231:13	examples 199:11,
eating 316:12	354:3 357:9 382:25 409:9	erosion 350:18,		12,17 200:15
economic 260:20	411:20	21 357:2	evaporate 343:3	204:12,21 318:14
412:16		erosive 353:26	eve 377:11	327:26 366:8
economics	endeavour 321:8	error 346:1,4	evening 404:6	388:6
415:15	ends 231:9	356:23	event 255:4	exceed 271:10,12
economist	315:13,19 343:4	escape 273:21	261:14,21 290:16	272:2 273:3
294:15	energy 278:1,2	essentially 204:1	291:19,24,25	312:21 313:9,21
edge 238:8	304:18,22 339:18 387:24	218:6 284:24	395:8	exceedance
		285:24 315:16	events 254:13	270:24 272:7,25
effect 202:5	engineer 247:16,	358:13 401:9	271:26 318:11	273:11
effective 295:26 299:4 325:24	23 279:24 288:19 406:25 407:10	establish 320:24	eventually 266:9	Excellent 199:5
299:4 325:24 373:5 374:18,22,		321:1 323:26	319:19 384:19	219:6 267:23
25 375:1,7,9,13,	enlarge 252:9	324:12 335:6	evidence 209:12	278:15
22 376:7 390:11	ensure 344:15	336:11 337:15	211:21,26 218:21	exception 230:2
effectively 202:2	386:8 414:5	established	229:21 230:23	excerpt 340:5
315:8 331:10	ensured 345:13	255:20 265:17	234:10 241:16	excess 292:26
effects 224:21	entire 216:9,12	399:9	243:17,24 244:6,	313:14
237:24,26 310:21	228:8 238:19	establishing	26 246:4 256:7 265:12 266:6	Excuse 252:5
effort 215:10	250:19,23 265:10	321:5	267:15 293:25	261:4 370:25
416:5	305:10 332:11	estimate 252:17	307:6 311:7,14	390:20
	376:20,23,26	265:10 299:25	331:4,10,18	execute 301:18
efforts 199:1 215:7	378:20 379:5,7, 10	377:14 381:14	337:5 340:4	executing 289:13
213.7	10	400:2	346:4 358:26	

		15		
execution 285:20	25,26 384:12	exploitation	361:6 365:16,20	391:13,24
293:5 299:26	386:11 401:25	259:24 260:1	366:16,25	392:11,13,16
exhibit 199:8	402:7 403:10	explore 298:13	388:10,20	features 220:26
202:25 205:23	expand 219:2	305:1 310:11	389:11,16 390:11	221:11 222:6
207:21 208:4	349:14	322:9 372:25	391:6 393:7,18,	224:24 225:12
209:10,18 211:23	expansion 201:4	exploring 378:12	20,25	226:3 391:22
214:6,19 217:15	249:2 261:17		facilities 284:19	411:11,17
219:1 220:17	377:4,7,12,14	expressed 238:24	285:2 286:16	February 276:10
223:13 224:2,8,9	379:14	extend 263:16	facility 284:3,11	277:3 416:10
226:6 228:16		271:6	fact 200:2 203:5	417:9
229:8 230:11	expect 211:4 220:4 224:25	extended 271:2	204:12 214:16	feedback 416:5
231:21,24 233:7	228:6 271:4	extending 316:7	218:26 220:19	
234:3 235:20,24	380:17 395:5	extensive 216:18	230:4 248:19	feel 216:25
236:23 237:8		234:14	255:17 264:3	232:25 233:2,24
238:13 239:6,24	expected 220:14	extensively	265:13 266:24	259:12 303:13
242:11 244:20,22	256:9 271:18	281:18 351:14	285:16 322:4	318:4 319:15
246:16,22 247:1	expects 201:24	extent 203:14	391:23	324:21 325:24
249:10,15 252:6,	expelled 339:22	259:22 309:6		380:20,24 393:16
8,24 253:4,5,6	expense 403:8	361:22 392:15	factors 409:15	Felix 277:18
254:9 256:10	expensive 281:3	399:25	Fahad 277:14	fell 245:21
257:16 258:13,16	experience 204:7		failure 222:5	felt 266:21 403:10
259:14 261:12	238:18 272:14	extents 362:24	263:14 291:6,24,	field 225:8
263:25 267:25	281:9 282:4	external 401:23	25,26 292:7,8	257:13 282:17,21
268:1,4,24	292:18,21 307:8	extracting	382:18	407:19
273:16 274:18	326:21 330:1	345:10	failures 292:21	figure 207:22
278:24 281:7	367:4 374:17	extrapolated	fair 218:16	220:15 240:7,19,
285:3,25 286:3,	377:10 406:7	238:5 241:25,26	275:21 289:8	20,21 244:12
18 287:14,24	experienced	Exxonmobil	295:13 300:18	250:18 259:17
289:14 290:11	290:21	281:14 407:10	327:3,4 355:18	328:4,10,13,15
293:1 299:13,18		eye 401:8	357:14,20 390:26	329:19 331:26
305:14 306:20	experiences		406:12	334:16 336:25,26
307:16 308:8	283:1		fairly 309:9	337:1 360:1
311:22 319:21	expert 357:24	F	348:26 364:3,9,	362:2,23 373:3
347:4 349:13	408:23	F1 358:6	14	392:2,23 393:4,
353:15 355:6,19	expertise 361:17,		fall 246:3	10 400:5
356:4 358:1	23 406:12 412:21	F4/f5 389:11	familiar 328:1	figures 332:3
362:4 367:10	experts 305:5	F5 358:22,24		file 218:19,22
371:8 372:20	320:18 360:7	360:19	fast 323:10	219:15,16,17
377:22 383:14	407:24	F6 358:6	326:17	223:23 267:15
385:24 391:9,11	explain 216:3	facies 201:15	faults 216:18	filed 206:21
392:26	230:17,18 245:14	202:4 227:9	263:10,15,16	207:4,15 209:8
exist 215:19	247:14 310:17	232:1 242:19	266:16 379:24	214:2 223:26
227:17 379:24	311:5 313:1	275:4 321:10	380:10,13,14,15	280:10 402:19
411:14	393:7	341:8 351:20,22	410:14,16,20,22	
existing 225:14	explanation	353:8 356:10	411:5,12	filing 224:17
286:16 287:17	259:20 329:19	358:6,22,24	feature 220:25	filled 365:15
288:3,6,13,16,20,	330:15 344:8	359:17 360:19,25	222:11,12 239:9	366:6
	1	1	'	1

		16		
final 248:14 258:13 286:25 298:26 399:12 finally 211:22 377:4 find 214:23 222:11 223:16 238:12 244:18,22 251:12 253:24 328:24 377:18 finding 200:18 205:20 236:10	290:18 291:1 292:9 309:1 flowback 286:15 flowing 291:4 flows 274:9 294:6 415:2 fluctuating 337:17 fluid 210:12 211:1,6,7 284:7 290:20 292:5 309:1 311:25	260:2 327:19 337:24 format 214:2 formation 203:21 207:24 208:2 210:19 259:7 261:11 274:10 313:13 314:3 316:10 362:11 373:13 383:24 384:2,9 386:8,10	fourth 225:10 299:15 308:14 Fowler 331:26 332:12 333:4 foyer 278:9 fracture 214:16 217:21 221:7 222:2 225:10 274:6,9,14 376:22 406:10,12 410:25 fractured 217:6	fully 336:6 function 232:15 fundamental 282:15 306:1 fundamentally 408:10 Fustic 304:24 305:13 306:14, 16,19,26 307:10, 26 308:2 309:9, 10 310:5 314:17 315:7 316:25
findings 201:1 202:14 fine 297:3 298:11 348:8 359:20 414:26 fine-grained 349:3 finer 345:5 fining 241:4,8 finished 304:11 firstly 397:4 412:4	309:1311:23 312:5,13 313:26 329:26 363:12 364:3 406:18 fluids 275:7 283:19 291:3 302:9 312:9,21 FMI 211:23 212:15,22 213:9, 10,11,17,20,22,26 223:8 409:20 focus 219:3 282:3 376:11	formations 215:17 290:17 forming 329:20 forms 203:11 305:15 327:10 formula 294:12 formulas 243:6 formulated 304:10 Fort 314:3 fortunately 260:21	fractures 212:16 215:16,19,23,25 216:4,8,13,14,19, 22,23,26 217:2, 12 223:21 265:4 266:16 379:24 380:5,7,9 410:14, 16,20,22,25 411:5,12 fracturing 215:22 217:11,14 382:4 406:16 frank 398:7	318:14 321:15 325:5 328:5,19 329:23 331:13 332:3,7 336:22, 23 338:14 340:25 343:22 397:6 future 294:6 296:17 297:10, 14,15 300:5,13 302:24 384:18,19 398:21 402:21 405:5
fit 266:12 fits 198:14 356:14 flaser-type 363:22 flasers 362:18 flat 255:19 327:7 335:10 350:11,13 354:10 flexibility 279:23 280:14 395:4,23 415:5,7 flip 249:25 250:4, 13 floating 269:6 flood 204:1 flooded 354:15 flooding 204:2 347:15 flow 256:4 269:14 274:14 275:6	focused 231:12 247:16 376:14 focuses 283:14 folks 198:8 follow 221:8 348:18 389:13,23 397:8 follow-up 205:8 213:8 218:7 227:24 243:5 396:18 food 210:25 315:15 force 311:19 forecast 389:21 foregoing 417:4 foresee 372:2 form 216:20 217:4 218:17	forum 296:11 forward 202:2 329:24 330:20 334:3 335:17 337:9 340:7 363:2 388:14 forward- stepping 309:16, 20 330:25 fossil 350:8 fossils 347:17 fosters 309:5 found 197:17 212:26 309:21 324:15 328:11 336:23 361:4 373:24,25 377:16 foundation 412:24	free 318:4 frequency 368:13,24 frequent 369:3 fresh 343:21,25 348:16 fresher 343:26 friction 380:3 frictional 380:8 Friday 414:5 friends 361:18 365:24 front 382:9 fulfilled 298:4 405:7 full 240:6 249:26 253:16 333:3 401:22 403:16	G gained 415:15 Galloway 277:21 gamma 203:13 223:5 237:23,25 239:8,19,20 242:22,26 243:3, 4 374:2 379:4 garden 321:25 gas 205:26 206:4 233:4,10,23 234:9 243:17,18, 24,25 244:5,26 245:1,7,8 246:6, 7,11,12 294:1,18, 22 295:1,12,14 297:7,26 300:3 302:10 304:24 343:9 367:11,22, 25 368:8,9,11,12,

		17		
17,18,23,24 369:1,2,4,5,10, 11,19 370:5,9,18, 21 371:1,4 384:5 390:9 394:25 398:9 400:22 402:11,21 404:25 gasoline 343:5 Gates 358:7 gather 327:11 342:24 gathering 326:24 gauge 254:26 290:22,26 291:4 402:11 gauges 255:8,9 291:15 401:23 gave 254:20 373:6 409:26 GCMS 210:3 211:14,17,22 244:8 304:26 305:16,26 307:9, 23 314:19 320:17 325:17 326:5,25 341:3,6,12,13,21 342:2 343:2,14 411:24 412:2,10 413:5,7 general 204:24 242:19 243:9 305:12 308:2 317:22 318:17 321:6 333:12 335:9,13,19 337:9 338:17 39:1 359:9 378:18 generalization 400:19 generalized 328:7	282:22,23 308:5 317:3 318:13 320:19 324:16 325:26 326:13 328:19 334:5 345:16 360:20 409:8,14 415:19 generate 261:19 generated 312:15 genesis 353:7 gentlemen 413:16 416:2 geo 365:23 geochemical 309:17 329:18 330:15 335:21,23 344:7 geologic 210:14 211:3 217:8 245:18 309:1 310:14 312:25 341:7 geological 203:8 210:5 211:16 212:8,13 213:5 216:3 226:3 230:14 232:8 265:12 309:4 344:8 349:18 411:18 413:6,10 geologically 229:2,11 230:4,9 266:14 329:11 geologist 317:23 361:18 geologist 248:15 367:2,4 geology 246:23 251:5 265:26 330:5 335:22	geomechanical 224:21 263:26 265:23 372:19,26 377:21 381:8,18, 23 408:19 geomechanics 231:13 263:24 406:13 geomodel 388:23 geomodel 388:23 geomorphologic al 392:13 geoscience 365:23 geoscientists 248:2 358:20 GERARD 198:18 278:18 gigapascal 375:21 gist 306:25 give 206:12,19 207:7 208:20 258:1 275:12,16 276:5 280:9 342:15 345:16 346:9 349:18 356:8 381:8 395:20 401:20 giving 235:10,11 gloves 342:20 goalposts 399:5 GOB 200:10 23:11,15 234:13,17 289:3 294:2 368:18 370:11 371:1 GOBED 370:10 good 197:8 198:23 199:4,5 200:12 217:19 219:5,6,10,24	273:15 275:18 276:11 300:25 309:9 329:8,10, 16 346:26 348:15 358:17 361:5 403:19,24 405:24 407:20 Gotawala 358:7 Govier 277:1 grab 242:3 gradational 352:23 grade 329:20 gradient 228:14 243:19,26 244:4, 6,8,13 245:2,13, 16,17,22 246:2 320:14,19,23,24 321:1,5 323:26 333:15 337:6,15, 18,24 338:2,11, 13,17 382:6 gradients 211:11 231:20 245:20 306:9 320:12 322:24 324:13,17 340:10 376:25 382:12 grain 345:5,7 352:25 grains 345:6,9,11 gram 334:21 granted 272:26 graph 255:11 256:11 324:5 337:24 339:11 graphical 340:25 gravity 201:24 211:12 great 257:21 276:13 328:12 359:15 404:21	green 240:21 257:19 347:11,14 349:2 grey 401:10 ground 342:5,10 343:5 groundwater 342:18 group 298:8 318:17 324:16,21 325:8,9 326:11 332:11 360:6 groups 325:23 growing 415:19 grown 283:17 growth 385:9,15 guarantee 390:3 guarantees 301:3 guess 212:18 215:8 279:11 289:10 301:4 305:18 306:11 307:25 308:2,7 314:16 315:8 318:1 329:18 330:5 331:9 340:20 342:24 368:1 369:22 370:9 378:10 379:9 387:8 398:22 401:3 403:9,21 414:10, 14 415:2 guide 374:8 408:5,8 guided 409:24 Gusher 326:8 guys 281:26 389:12
400:19	geology 246:23	198:23 199:4,5		
-		219:5,6,10,24	276:13 328:12	
generally 210:19	330:5 335:22 348:9 379:3	227:3 238:23	359:15 404:21	н
256:21 261:9	409:10	239:24 253:21 255:6 256:22	greater 232:6	half 221.12
273:25 275:4		260:13,22,23	314:7,8 315:3 411:15	half 221:12 335:1,5 336:14
			111.10	555.1,5 550.14

		18		
338:1 362:11	272:21 296:13	400:11,26 409:6	hoping 341:24	
408:22	304:11,12 314:24	high-angle	376:9	I
halfway 282:12	319:3 383:13	393:19	horizon 238:4	
320:2 322:14	406:4 407:15	high-pressure	357:20	Iannattone
348:19	408:19	292:24	horizontal	198:18 199:10,
Hall 277:1	heat 201:2,6	high-quality	224:25 225:7,9	11,20,24 212:17
Hamdan 277:14	209:21 257:4,7	284:6	231:5,15 236:6,	214:5,25 224:15
hand 202:12	258:17,19 262:14	higher 231:2,3,14	11 257:6 364:3	243:22 244:10,24
267:18 338:12	271:3	254:1 259:23	horizontally	247:12 248:17
handling 343:8	heated 247:25	269:1 348:22	236:8	252:5 253:3,20
hands 244:17	248:8 258:20	358:21 360:14	hot 243:9,14	259:2 261:2,4,15
	260:12,17	377:12 378:26	hours 270:7	262:6 278:18
hang 254:11	262:12,18 272:10	379:14,16 382:25	272:3 303:3	284:18 285:15 286:12 293:3,8
402:10	275:9	389:11 401:19	Houston 406:26	295:5 296:18,25
happen 213:23	heating 201:19	highest 339:10	huddle 224:15	295:5 290:18,25
259:26 334:4 347:19 366:5,8	209:24 210:1	highlight 308:15	244:10 247:12	299:7 300:21
347:19 300:3,8	258:6,9,17,19,25	389:24	hundred 220:2	302:11 303:10
happened 204:26	259:9,18 260:25 262:9 375:5,6	highlighting	238:22 301:26	367:17 368:16
221:10 340:24	heavier 243:15	350:25 388:11	313:14 359:2	397:16 400:15
363:8	310:20 315:13	highly 231:16	362:13 368:25	404:7,12,14,18,
Harbidge 277:16		238:15 259:13	409:11	22
hard 275:14	heaviest 315:19	271:24 272:8	hundreds 238:21	IANNOTTONE
390:24 399:13	heavily 204:25	275:9 357:6	hundredths	302:4
	heel 256:13	highs 300:26	359:2	idea 238:23
hard-pressed 215:2	heels 257:2,3	hired 408:20	hurt 341:14	284:11 313:23
hardcore 213:1	helpful 246:15	history 254:26	hydraulic 202:2	ideal 300:14
	307:12 338:7	266:10 282:15	205:17 245:22	identical 250:23
harder 316:19	353:11 377:25	382:17 389:21	hydrocarbon	identification
head 263:9	helping 305:5	hit 239:12	210:11,24	391:2
269:12	helps 325:13	hits 260:10	271:16,19 280:17	identified 211:17
header 214:7	heterogeneity	hold 233:4	287:9 306:7	214:15 215:16
heading 320:3	388:12,21 389:2	hole 221:17	308:13,23 318:25	216:8 223:21
heads-up 275:13	heterogenous	241:14 299:26	320:9 343:4,6	235:21 266:13,15
healed 216:24	265:14 389:7	holes 216:12	hydrocarbon-	309:6 314:20
hear 207:5	heterolithic	home 404:1	assisted 279:14,	325:15 376:26
224:10 226:26	227:20 237:22		18	379:3 380:14 387:6
267:22 278:14	360:18 364:21,25	homogeneous 364:17,19,20,23	hydrocarbons	identifies 325:5
heard 211:26	378:5	homogenous	309:26 310:26	
242:20 266:5	high 227:11	264:25 265:11,13	314:25 326:14	identify 236:5
283:8 302:17	228:5 231:14	honest 246:14	339:19	238:3 305:11 315:7 324:17
394:15 396:13,	243:2 255:13 274:9,15 292:5		hydrostatic	347:9 376:10
14,17 410:17	345:12 363:17,18	hook 381:18	263:9 290:18	identifying
hearing 197:11,	364:13 381:5,8	hope 210:7 247:3 323:12	292:9	235:25 237:26
12,18,19 198:2,6 224:4,6 232:4	397:19 398:23	525:12		239:9 341:14
227.7,0 232.4				

390:15 410:21 **II** 206:7 207:18 294:21 295:2 297:8 298:1 368:12 370:9 404:25 **image** 212:5,11 213:3,4 215:16 216:9 217:17,20, 22,24 218:1,3,7, 9,15 219:3,4,8, 10.12.18.22 220:1,21 221:3, 19 222:4,7,10,14 223:3,20 239:18 240:3,9 252:9 410:24 411:6,10 413:4 **imaged** 363:9 images 220:9 257:19 **imagine** 311:12 immediately 230:7 245:24 328:17 **impact** 200:9 285:2 395:6 impacting 330:2 impacts 256:5 379:23 **impair** 262:24 **impede** 275:6 **Imperial** 281:14 282:2 406:14 407:3,16 408:8 impermeable 365:23 implement 204:18 implementation 287:7 implications 412:16 **implies** 258:17

implying 274:24 important 200:17 205:6 226:20 232:8 247:24 248:1 309:12 importantly 301:4 impression 288:23 **in-fill** 408:21 **in-house** 412:22 413:8 **In-reservoir** 311:25 incision 229:17. 22,25 230:8,10, 19 232:6,16,18 250:3 393:9 inclination 344:6 incline 260:18 **include** 232:1,3 248:5 249:8 258:20,26 259:9, 11 324:6 408:5 **included** 247:22 257:10,12 261:24 264:17 281:26 360:8,22 376:20 393:11 408:26 410:3 includes 240:16, 25 including 227:18 252:19 incoming 210:24 inconformity 354:14 inconsistent 341:1 incorporate 205:11 incorporated 350:23 351:1

incorporation 351:17 increase 220:21 225:13 249:3 260:19 321:11 334:13,22 366:1 375:4 382:7,11 394:17,21 increased 321:18 372:8 395:12 increases 349:10 375:12 increasing 309:25 310:2 329:24 375:3 incremental 382:13 independence 410:5,7 independent 395:13,14 410:7 **index** 316:24 360:24 362:7,10 364:13.21 366:13,16,24 indicating 288:5 indication 219:10 280:9 331:14 351:18 indications 389:19 indicative 330:6 355:3 indicator 241:24 individual 227:22 362:23 364:10 individually 318:25 364:11 **induce** 267:8 **industry** 199:11 204:17 211:19 273:1 305:25 307:4 361:4

400:22 406:21 412:7,22 inevitably 201:7 259:19,26 260:9, 25.26 **infer** 242:5 inflationary 400:18 influence 353:9 influenced 307:4 **inform** 212:12 390:4 information 206:13 212:15. 21,22 220:8 223:23 233:17.23 267:16 276:7 297:1 301:8,10 302:6,21,23 331:22 342:7 373:6 408:25 409:1,5 informative 390:25 informed 204:6 **informs** 205:26 infringement 408:21 **initial** 268:1.10 324:2,9,11 325:7 375:1 378:22 382:2,7 initialized 383:4 initially 204:25 269:8 314:10 326:4 332:6 387:8 396:19 413:22 **initiate** 303:1,2 **inject** 274:5 280:15 284:23 396:3 injected 266:18 271:9,16 274:12,

15 279:8.23 284:9 303:9 injecting 274:7 283:8,16 injection 268:22 270:11,12,18,21, 25,26 285:1 287:2 292:20 **injector** 256:12, 14 **input** 372:24 **inputs** 264:18 266:20 inscription 214:14 **inside** 372:14.17 383:23 395:26 396:1 installed 290:22 **instance** 215:19 256:13 382:9 instances 262:23 271:20 intact 265:7 integrate 237:3 413:4 integrated 213:20 238:1 281:24 411:16 integrating 412:2 Integration 309:3 integrity 224:23 253:20 265:18,21 266:9,21 292:19 379:8 380:24 386:24 387:4 395:2,19 406:18 407:25 integrity-type 255:9

intend 310:11

		20		
intended 271:12 280:10 288:9 289:6 415:14 intende 280:18	interpretations 219:13 240:11 307:3 309:15 341:9	investigative 255:8 invite 392:6 397:15	issued 234:13 287:6 issues 212:26 201:0 286:2 24	K karst 225:12
intends 280:18, 21 288:12 intensity 349:10 410:25 intent 256:3 280:13 283:9 intention 285:25 286:2 289:26 intentional 360:15 intentionally 280:3 interacts 211:7	interpreted 222:7 347:6 357:1 391:19 interpreter 217:23,26 218:4, 11 220:6,7 interpreting 213:21 219:24 239:2 307:9 330:5 368:8 interpretive 212:23 242:23	 involve 291:10 involved 211:20 272:21 389:5 involves 345:11 IR 293:9 295:17 324:4 irrelevant 227:14 IRS 306:17 ISH 198:11 211:25 212:11,25 	291:9 386:2,24 406:4,17 407:15, 22 items 249:7 J.P. 277:23 J55 384:25 Jackfish 211:21 250:17 279:17 307:19 331:6 341:22 342:8,14	keenly 403:25 keeping 283:9 319:21 key 226:18,20 274:4 365:6 kick 304:15 kids 197:23 kill 210:21 292:3 kills 292:24 kilometre 364:9 kilometres
interbedded 362:19 363:21 interest 201:12 263:2 297:7,26 415:7 interested 206:20 297:1 314:23 315:22 321:11 399:22 400:5 401:5 interesting 217:7 314:21 interim 359:11 intermediate 386:7,9 internet 197:12 interpret 218:1 219:26 220:4,7, 15 223:7 282:17 interpretation	352:20,21 Interruptions 372:12 intersect 221:6 intersected 391:6 intersects 335:2, 3 interval 216:10, 21 237:17 292:13 335:19 336:18 370:22 371:4 intervals 212:10 299:19 308:25 325:15 338:15 361:13,14 intervening 309:13 intervention 289:16 introduced	214:15 220:9 229:9,10,12 274:21 278:1,2, 26 289:13 293:26 295:12,18,21 298:13,23 332:13 347:9 400:9 401:4,10,26 405:9,17 413:23 ISH's 241:16 289:19 293:3 295:16 320:18 394:24 401:20 406:1 isolated 339:15 isolation 202:3 205:17 236:16 237:4 239:3,15 243:21 244:2,6 245:3 386:7,8 isopach 209:11 246:18,25 247:9	399:15 Jackfish/pike 326:18 Jamieson 276:1, 2,11 277:23 403:21,24 404:7, 10,13,16,20 405:20,22,24 413:12,14 January 296:1 300:26 301:2 402:19 JASON 198:18 278:18 Jennifer 318:15 job 219:24 JPEG 219:15,17 jumbled 350:17 jump 263:3,24 327:8 413:16	238:21 kilopascal 271:12 291:14 kilopascals 268:6,11,19,26 272:18 273:12 kind 221:11,18 261:18,22 296:11 306:22 307:13 309:12 315:23 316:2,11 317:1 323:20 328:8,14 340:20 346:1 350:17 352:22 kinds 325:10 328:2 Kirby 206:7 207:18,23 216:20 225:8 238:19 243:9 250:26 294:21 297:8,26 341:22,23 342:14
203:9 212:8,13 213:5 214:16 218:8,9,16,22 219:20 220:10 221:24 240:4,13, 16 242:8 305:16 318:6 342:1 349:18 357:17 412:3 413:8	232:12 investigate 378:17 411:11 investigated 200:26 379:13,19 investigation 253:8,17	349:7 367:11 388:7 issue 266:1 268:17,21 270:13 352:25 365:18 370:14,15 381:21 383:12	jumped 326:11 jumps 335:10 justifiable 302:3 justification 371:26 379:6 justified 408:3 justify 303:7	368:11,14,15 370:9 390:14 404:24 Kirby/jackfish/ pike 324:14 KN01 279:2,21

		21		
KN06 228:23	KN24 207:26	largely 198:8	leave 250:12	lifetime 397:2
229:4,10,13	208:8,20,25	larger 283:16	385:6 390:22	398:16
230:5,15,20	209:8,19	338:22	413:24	lifted 289:3
232:4,13,16,21,	KN25 208:20,25	latch 323:21	leaves 255:15	light 310:19
26 256:6 272:21,	209:8,19	lateral 203:14	leaving 403:7	314:10 343:4
22 391:23 397:7	knock 383:18	309:6 347:1	Led 342:20	likelihood
KN08 201:6,17	knowing 255:14	351:25 353:7,9,	left 203:12 219:10	398:23
208:23 226:3	knowledge	23 357:23 361:22	235:15 241:21	limestones
228:4,8 229:4,11,	293:16 307:4	362:24 365:12	250:3 251:1	216:23
13,22 230:7,15,	308:6 329:4	378:14 381:7	250:3 251:1	
20 232:2,6,10,15	332:25 399:11	latest 300:2	322:14 329:7	limit 251:2
233:1,3 238:9		368:10	349:26 364:6	268:25 270:2,3, 14
248:22 249:17	kpa 200:24 202:9 231:18,20 269:7,	Lavigne 198:18	393:3	
250:12 261:20	17 270:8,9,15,16,	202:13,15 203:1	left-hand 257:19	limitations
262:8 266:6	22,24 271:10,22	216:6 227:15		286:15
279:3,10,20	303:7,12 371:11,	229:15 232:5	leftover 316:2	Limited 198:22
280:12 281:6	13,17 372:1	235:26 242:3,24	leg 384:17	267:21 277:24
285:17 286:22	374:19,23 375:2,	246:26 249:23	legal 277:9,10	278:22 297:25
292:26 299:16,19	4 382:12,26	278:18 347:13	304:18,21 406:1	304:19 387:25
371:17 373:25	383:3,5,6 394:15	356:5 361:26	411:22	405:23
377:18 386:12 387:9 388:9		362:1 367:13	legend 208:14	linear 377:7
389:14 393:12		388:5,6,22 391:1,	length 275:22	382:20
396:26 398:12,23	L	8 392:21 396:20	279:20,21	liner 396:1
400:14	lab 265:5 282:3	397:4 411:19,26	LENNON	lines 221:5 263:5
KN08/9 230:1	322:7 344:10,21	413:1	198:16 278:16	269:14 293:22
	345:20 372:26	lawsuit 408:21	lenses 351:5	liquid 211:8
KN09 201:6,18	373:3,5 374:1	layer 222:22	letter 336:26	list 409:15
208:23 209:23,26	406:15 407:7,18	374:12 376:13	level 230:10	listed 247:18
226:3,9 228:4,8, 22 229:5,11,13	411:24 413:7,9	413:5,9	236:10 238:12	279:19 358:7
230:15 232:2,7	labelled 354:4	layered 412:24	264:5 296:8	listing 281:22
238:9 248:23	lack 233:17 240:1	layers 324:25	334:22 350:14	lists 264:16
249:17 250:12	242:15 365:12	374:11 376:1	351:2 357:12	
251:20,25 252:11	Lake 263:4,7,11,	lead 217:8	376:12 378:25,26	literally 344:26
261:20 262:9	18,21 282:16	342:21,26	379:17,18 382:8	literature 358:26
279:20 280:12	407:8		391:7 409:6	366:18
281:6 285:17	laminated 364:2	leading 294:13 323:15	412:4	lithologies
292:26 299:19			levels 267:6	238:24 391:18
300:3,13 352:3	laminations	leads 231:3,4	314:10	lithology 361:13,
367:14,20 371:17	201:26	leaking 274:10	leveraging	14,20
373:25 377:18	large 202:6	312:12	224:21 239:22	live 210:24
386:12 387:10	217:12 220:23	learning 205:13,	life 272:6 382:14	339:17,18,20
388:9 389:14	274:1 312:6	14,17 282:15,25	396:23,24,25,26	local 233:12
396:26 398:12,23	321:14 324:18	283:1	397:11,17,24	234:8 250:26
400:14 402:14,	345:7 364:14	learnings 200:17	398:20 399:13,16	localized 283:11
22,25	374:24 381:7 402:1 407:23	201:5 205:10,11,		locally 250:24
	+02.1 +07.23	19		
	•			•

		22		
located 386:11 location 227:17	22 317:2 326:13 415:8	353:24 354:14 355:1,17,23	majority 230:1 232:21	mapping 206:5 207:18 413:2
260:6 300:14	longer-term	356:11,25 357:5	make 207:9	maps 206:3 226:7
342:2 352:1	412:19	363:5 364:6	214:9 215:7	227:13 229:23
367:26	looked 219:12	376:8 378:19,23,	217:23 220:23	349:7 388:7
locked 281:2	229:24 232:10	24 380:1,13,18	226:1 236:17	MARC 198:17
log 203:4,12	318:26 319:4	382:25 391:16	239:23 242:9	278:17
213:19,20	326:4,19 340:11	393:3	255:15 321:7	March 209:5
213.19,20	379:20 382:24	lower-stress	334:15 336:16	254:15 255:14,19
214.10,12,14 219:9 220:1	392:9 408:17	382:6	355:25 356:16	
219.9 220.1 221:3,19 222:4,7,	409:6,23,25	lowered 303:11	357:7,19 367:22	marine 347:6,15
14 223:3 236:13,	losses 201:2,6	lowering 395:10,	368:7 380:6	351:5 381:6
14 223.5 250.15, 14 239:11,18	262:14 406:19	16	388:25 390:12	mark 221:23
240:16 243:1			409:18 414:8,15	222:1,9,17,18,19,
250:25 255:8	lot 233:22 238:18	lowest 334:7	415:10,11,25	20,24
308:26 342:11	266:6,7 281:17	337:21	makes 197:25	markers 236:8
374:1 379:1,3,5	282:4 283:18	lunch 235:9	254:4 274:12	316:8
374.1 379.1,5,5 381:4 386:23,26	321:14 325:13	275:15,19	302:3	marking 352:19
411:6 413:3,4	335:14,17,18	Lung 197:14	making 212:19	marks 221:2,16,
,	337:13 342:18	214:20 235:6	215:10 239:8	18 222:2,3,13,15
logging 385:20	358:26 365:3,19	277:11	296:3 367:5	married 341:9
logs 206:11	366:26 368:26		384:5 416:5	
212:5,6,11 213:3,	377:10 397:21	Μ		marsh 350:15
4,11,17,25	406:22		Maksim 277:17	Maryam 277:15
215:16 216:9	lots 320:25	machine 344:11	manager 282:2	MAS 318:26
221:24 223:20	loud 197:22	345:15	407:3	mass 304:24
238:16 239:13,20	Lovely 297:23	Mackay 366:25	Mannville 206:7	318:23
240:12,14 241:17	low 204:10 217:2	made 210:4	207:18 294:21	match 389:21
242:23 243:3	225:9 266:15,17		295:2 297:8	matching 377:10
257:11 330:23,24	275:6 329:25	216:15 301:16 306:6 308:17	298:1 318:17	e e
341:8,10 385:8	347:17 360:11		368:12 370:9	
206.6 207.0	J JT/.1/ JUU.11	224.0 266.4		material 264:26
386:6 387:2		324:9 366:4	404:25	265:23 351:1
410:24 411:11	379:19 380:23	378:16 380:19		265:23 351:1 409:12
410:24 411:11 412:12	379:19 380:23 382:25 389:6	378:16 380:19 396:25 397:2	404:25	265:23 351:1 409:12 materials 264:12
410:24 411:11 412:12 long 256:18 257:7	379:19 380:23 382:25 389:6 397:18 400:11,26	378:16 380:19 396:25 397:2 416:7	404:25 map 205:24,26	265:23 351:1 409:12 materials 264:12 265:4 280:10
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality	378:16 380:19 396:25 397:2 416:7 magnitude	404:25 map 205:24,26 206:3,5,9 207:15,	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19,	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7,	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16,	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21 matters 198:9
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1 long-term 270:21 271:10,22 303:11 371:13,	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26 228:12 229:18,26	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9 373:16 376:11	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13 392:13 393:4	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1 long-term 270:21 271:10,22 303:11 371:13, 16,19 372:1,5,9	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26 228:12 229:18,26 237:20 238:25	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9 373:16 376:11 maintain 280:14	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13 392:13 393:4 mappability 232:14	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21 matters 198:9 mature 204:5 205:1 265:18
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1 long-term 270:21 271:10,22 303:11 371:13, 16,19 372:1,5,9 376:12,21 378:22	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26 228:12 229:18,26 237:20 238:25 241:22 247:21	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9 373:16 376:11	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13 392:13 393:4 mappability	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21 matters 198:9 mature 204:5 205:1 265:18 matured 205:5
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1 long-term 270:21 271:10,22 303:11 371:13, 16,19 372:1,5,9	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26 228:12 229:18,26 237:20 238:25 241:22 247:21 262:5 265:9	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9 373:16 376:11 maintain 280:14	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13 392:13 393:4 mappability 232:14 mappable 357:15	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21 matters 198:9 mature 204:5 205:1 265:18 matured 205:5 maximum
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1 long-term 270:21 271:10,22 303:11 371:13, 16,19 372:1,5,9 376:12,21 378:22	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26 228:12 229:18,26 237:20 238:25 241:22 247:21 262:5 265:9 317:6 328:14	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9 373:16 376:11 maintain 280:14 286:14 410:4	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13 392:13 393:4 mappability 232:14 mappable 357:15 mapped 209:13	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21 matters 198:9 mature 204:5 205:1 265:18 matured 205:5 maximum 217:17 267:2
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1 long-term 270:21 271:10,22 303:11 371:13, 16,19 372:1,5,9 376:12,21 378:22 395:6	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26 228:12 229:18,26 237:20 238:25 241:22 247:21 262:5 265:9 317:6 328:14 329:7 334:2	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9 373:16 376:11 maintain 280:14 286:14 410:4 maintaining 410:7	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13 392:13 393:4 mappability 232:14 mappable 357:15 mapped 209:13 362:13 364:13	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21 matters 198:9 mature 204:5 205:1 265:18 matured 205:5 maximum 217:17 267:2 270:6 301:23,25
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1 long-term 270:21 271:10,22 303:11 371:13, 16,19 372:1,5,9 376:12,21 378:22 395:6 longer 234:23	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26 228:12 229:18,26 237:20 238:25 241:22 247:21 262:5 265:9 317:6 328:14 329:7 334:2 335:16 343:18	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9 373:16 376:11 maintain 280:14 286:14 410:4 maintaining	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13 392:13 393:4 mappability 232:14 mappable 357:15 mapped 209:13	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21 matters 198:9 mature 204:5 205:1 265:18 matured 205:5 maximum 217:17 267:2 270:6 301:23,25 371:6,16,19
410:24 411:11 412:12 long 256:18 257:7 263:3,7,11,18,21 282:15 382:4 404:1 long-term 270:21 271:10,22 303:11 371:13, 16,19 372:1,5,9 376:12,21 378:22 395:6 longer 234:23 279:20,21 283:15	379:19 380:23 382:25 389:6 397:18 400:11,26 low-quality 260:17 365:20 low-risk 266:23 lower 203:12 210:6,17 216:26 228:12 229:18,26 237:20 238:25 241:22 247:21 262:5 265:9 317:6 328:14 329:7 334:2	378:16 380:19 396:25 397:2 416:7 magnitude 201:12 230:19, 22,24 232:5,16, 18 main 264:9 373:16 376:11 maintain 280:14 286:14 410:4 maintaining 410:7 major 282:3	404:25 map 205:24,26 206:3,5,9 207:15, 23 208:1,2,5,7, 10,11 209:7,15 257:1 351:22 357:18 367:13 392:13 393:4 mappability 232:14 mappable 357:15 mapped 209:13 362:13 364:13	265:23 351:1 409:12 materials 264:12 265:4 280:10 307:14 319:11 406:11 matter 256:21 matters 198:9 mature 204:5 205:1 265:18 matured 205:5 maximum 217:17 267:2 270:6 301:23,25

		23		
Mcclary 197:14	meant 220:15	mentions 285:24	mic 197:16,21	migrates 248:9
207:10 277:9	295:25 356:23	methane 310:22	411:2	migrating 302:9
297:23 304:8,15,	376:6	312:15	microdarcies	millidarcies'
16,20,21 308:14,	meantime	method 296:16	358:23	358:16
18 311:21 312:3	224:13	308:3 309:10	microdarcy	
319:20,23	measure 292:2	310:1 344:23	366:19	millidarcy
322:12,18 323:9,	374:2	345:10 411:4		358:24 359:1,2
11,14	measured 212:22		microgram	million 210:11
Mcleod 267:19,		methodologies 306:23	334:21	299:24 300:7,8
20,22 275:12,17,	254:2 308:23 310:1		micromodelling	301:24 313:14
22 278:2,10,12,		methodology	359:14,24	400:4,5 401:12,
14,21,23 293:15,	measurement	296:22,24 297:2,	microphone	18 402:1
20 296:20,23	258:5	9 298:2 342:21,	198:24	mind 287:23
297:4,11,15,18,	measurements	22 388:16 409:4	microphones	348:6
21 298:5,15,18,	284:7 359:1	methyl 325:10	416:6	minerals 243:15
20,23,26 303:17,	measures 290:22	326:11	microresistivity	minimum 226:15
20 405:26	measuring	methylnaphthal	212:5	228:6,14 231:20
Mcleod's 399:25	253:22	ene 323:6	mics 197:19	321:7 330:9
Mcmurray	mechanical	methylphenanth	mid 228:11	381:24 382:22
200:20 201:14	370:15	rene 316:23		401:10
200:20 201:14	mechanics	332:9	mid-b1 226:8,19,	minor 215:22
207:23 208:2,13,	406:9,12	methylphenanth	24 227:8 228:10,	216:16 248:13
16 209:15	· · · · · · · · · · · · · · · · · · ·	renes 333:2	11 229:19,26	372:6 394:16
210:15,19,21	mechanism		232:23 235:24	395:1
212:9 217:4	210:10 258:7,10	metre 203:10	237:1,19 238:15,	minus 201:10,11
231:10 243:20	meet 209:13	220:2 221:12	20 239:10 240:22,23,26	342:19 375:9
244:1 245:5,16	Meg 277:7	226:19 231:18,20	240:22,25,26	377:8,13
257:26 258:25	member 201:25	249:4 257:24 359:22,25 363:16	241:10,14,10,23	minute 199:21
259:7 260:5	277:6,7 287:20	364:8 382:12,26	335:2 337:19	247:13 296:7
261:10 290:19	members 306:8	383:3,5,7 384:13	347:6,14 348:16	408:1
292:9 313:13	414:20	385:11	349:1,7,15	
314:3,4 318:16,	mention 231:26		350:24,25	minutes 234:21, 23 293:17 304:3
18 362:11 363:1	233:10 329:23	metres 201:11,	351:10,19,23	346:17 404:3
373:8,14,19	394:15	15,18 217:17,19	352:2,12 353:18	
377:5,17 382:26	mentioned	220:2 246:19,25	354:4,7,13,15,24	missed 254:21
383:24 384:1,9,	197:19 199:9	247:5,7,10,15 248:22 249:1	355:2,14,25	271:11
10 386:8,10	202:16 225:11	248:22 249:1	356:25 357:1,4,	misstatement
388:26	232:5 237:20	256:16,17 257:26	10 376:8,12,17,	268:16
meandering	247:7 248:22,26	262:3 279:8,9	18 378:7,9,14	misunderstandi
361:21	275:13 302:24	283:10 287:20	381:2	ng 200:13 219:26
meaning 245:18	368:10 372:10	303:4 321:9,14,	middle 219:3	221:21
396:17 397:12	374:20 375:22	17 334:11,26	233:9 241:4	misunderstood
means 311:3	376:4 385:5,19	339:10 351:16	252:4,6 259:16	402:18
313:16 330:2,19,	393:8 394:10,16	362:13 364:6,8	midway 311:23	mitigation
20	396:21 399:4	368:4 381:13		303:12 371:11
20	400:15 401:6	384:8 392:3	migrate 210:6	mitigations
	402:16 412:12			Sucons
	1	1	I	1

		24		
292:16	modulus 374:14,	263:9 268:5,10,	moving 211:22	235:22 236:14
mix 314:12	15	18,26 269:1,3,7,	243:13 252:23	237:1,16,19
329:26	molecular 309:3	17 270:9,14,17,	283:19 312:24	238:9,15,20
		21 271:5,6,10,13,	336:2 337:4	239:10 240:23
mixed 310:25	molecule 311:13,	22,23,26 272:2,	342:16 359:19	241:10,24 242:4,
348:25	14,15 324:3	12,15,18,22,25	367:7 371:6	10,15 249:22,23
mixing 311:1,4,5,	molecules 311:9,	273:3,11,13	372:19	265:7 334:22
6,10,26 312:5,10,	11 312:24 315:23	302:20,26 303:7,	MPA 374:16	335:2 337:20
20 313:2,8,20,23	316:18 317:7,24	11 371:11,13,16	375:20,26	347:6,7,14
314:10,11 330:12	343:3	372:1,6,9 394:13		348:17 349:1,8,
ml 384:3	mom 197:23,24	395:17	mud 227:11	15 350:24,25
MO 272:12	moment 198:24	MOPS 225:25	228:5 231:2,9,14	351:10,19,23
mobility 275:7	206:12,16 213:14	272:26 301:5,11	240:22 247:21	352:2,13 353:1,8,
mobilized 258:11	234:5,19 257:14		262:24 275:4	18 354:4,7,13,15,
260:12	262:21 275:3	morning 197:8	321:20 348:18,20	19,24 355:15,25
	280:26 286:9	198:23 199:5	354:1 359:7	356:11,25 357:1,
model 261:25	308:4 309:24	200:12 235:7	360:24 361:2	4,10 362:12,21
262:7 264:17	342:15 346:9	247:6 248:21,26	362:7,10,18	364:7,10,11
266:25 359:25	370:24 372:4	261:16 276:3	363:12 364:13,21	373:17 374:5,11
360:19 361:7	395:20	372:22 400:3	365:3 366:13,16,	376:1,12,18
366:12 372:19,21	monitor 287:2	413:25,26 414:21 415:22	24 379:2 381:5,8	378:7,9,14
373:14 374:26	402:11		mud-dominated	379:26 380:1,26
375:18,19,25	monitored	mouse 208:20	264:23 378:20	381:2 391:3
376:2,13,15,21	204:25 290:23	221:20 241:6	mud-filled	393:17
378:22 381:3,23	204.23 290.23	242:3 252:12	365:22	mudstone-
382:17 388:18		338:3 347:20	mud-prone	dominated 349:6
389:5,6,9,18,24	monitoring	move 198:24	225:5 226:17	
390:1,3 393:6	204:22,26 205:7,	203:20 205:22	228:13 231:11	mudstone-rich
408:5	12,20 229:3 287:4,5,9 289:18,	210:2 217:15	muddier 328:22	393:7,25
modelled 360:10		220:17 222:22	335:26 338:15	mudstones
modelling	21,22,24 290:1,4, 6,9 292:12,19,20	231:22 233:7	muddling 394:21	203:26 232:24
263:26 264:7,10	300:3,16 341:26	246:11 249:10	muddy 201:15	237:23 242:16
265:8,15,16	367:8,15,22	256:10 261:12	202:4 226:25	264:22 355:17
266:4,26 359:17,	369:5,11,17	296:12 301:1	202.4 220.23	362:23 363:12,
19 378:17 407:7	376:15 383:21	311:14 317:4,5	243:3 247:6,8,11	14,15,20 373:4
models 266:11	370.13 383.21 384:2,4,6,11	319:18 340:21	248:21 350:4	374:4,18,21
282:20 360:2	385:8,10,14	383:9 399:19	351:13 360:10	378:4 383:4
376:22 378:3	387:9,11,13,14	moveable 197:20	381:9	multiple 221:7,8
388:25 389:3	389:25 390:2,9	moved 203:15	muds 355:24	306:6 318:11
413:10	402:21 403:11	204:4 210:18		324:6 337:11
modern 363:4	406:20	329:6,13 406:14	359:3,4 364:3	338:21
modest 407:24	month 301:2	407:9	mudstone	Murphy 278:4
modification		movement	202:18,21 203:4,	417:3,14
372:5	monthly 368:26	210:12 211:1	6,8,9,18 226:8,	Murtaza 358:8
modified 270:5	months 256:21	310:24 390:12	19,24 227:8,13,	
303:15 371:19	343:16	moves 333:14	16 228:12	
505.15 5/1.19	MOP 225:17		229:19,24 230:1,	
			6 232:22,23	
1				

		25		
	381:6 398:21,24	385:13	286:24 295:20	292:1 300:19
Ν	403:7 411:13	non-thermally	301:25 307:16	395:8
	needed 390:18	385:2	314:19 315:7	occurred 260:7
N' 252:16,20	396:1 402:13	non-turbated	323:24 325:19	271:21 391:4
Nabiye 407:21	410:2	356:24	346:1 358:22	occurrence
nail 399:14	negated 343:24	non-volatile	374:16 378:9	292:11 393:19
naphthalene	negates 344:3	343:3	388:6 397:25	occurring 292:21
325:8 326:11	negotiation	nonconsecutive	399:14,21 401:19	314:2
	293:5	272:3,4	402:1,23 405:26	occurs 201:8
naphthalenes 332:13 333:5			408:24	290:25 319:26
	net 260:22 367:11	noon 298:10	numbered	320:7,20,21
natural 198:21	neutron 243:1	normal 368:24	259:15 389:11	414:8
202:1 212:4,21	nice 255:5 338:1,	398:19	numbers 248:5,	oddly 198:2
215:10 226:23	11 339:2 349:5	normalized	13,15 269:6	-
227:6 228:26 230:13 231:15	nicely 379:2	218:9	360:14 366:18	offer 199:18
243:16 252:26	night 198:4	north 207:23	378:10,19 383:6	Official 278:4,5
267:20 270:5	nitrile 342:20	209:23 216:20	397:17 400:14	417:15,21
207.20 270.5	nitrogen 339:19	225:8 238:8,19	nutrients 339:20	offsets 310:9
279:12 287:8	nitty-gritty	243:9 251:1		380:16
290:21 292:18,23	340:22 342:16	314:3 341:24	0	offsetting 236:9
295:15,18 297:24	nod 414:17	342:14 368:15		238:2 357:10,18
302:22 304:19		407:22	O-N-E 353:1	392:5
347:6,10 348:26	non-bioturbated	northeast 367:20	obligations	oil 210:4,14,24
351:9 361:24	351:11 353:8 356:10	390:19	293:6 414:21	258:11 260:14
367:15 369:2,21		northeastern	obs 341:22,23	281:14 305:26
373:22 377:1	non-burrowed	209:25	obscure 318:13	306:2,4,6,8
378:6 379:24	355:23	northern 209:25	observation	310:19,21,23
381:11 383:22	non-	northwest	205:3 211:20	312:19 313:7,14
386:1,5 387:25	compatibility	232:17 390:19	263:18,22,23	314:10,12 315:14
388:23 399:12	386:2	Norway 407:1	290:8 330:23	316:17,21,26
403:22 404:24	non-completed	note 201:24	401:11,21,22	317:15,18 318:5, 17,18,21 320:10
405:22 408:14	383:24	207:9,26 208:8	observe 317:7,25	322:21,25 344:23
409:2 410:4	non-confidential	Noted 223:12	350:12	345:8,10,13
411:20 412:4	215:13	notes 235:14	observed 216:22	400:22 406:21
Natural's 198:11	non-	323:18 417:6	233:23 234:9	407:3,16 408:9
212:7 255:3,4	infringement	notice 240:13	255:23 234.9	Oil's 282:2
287:15 372:24	408:23	281:13 348:11	320:11 331:11	406:14
383:18 410:21 411:23 412:2	non-profile	364:5 368:14	374:25 393:26	oil-compound
	337:12	noticed 347:5	observing 213:21	309:17
naturally 279:4	non-reservoir	375:20	obtain 206:11	oil/water 311:18
nature 226:17	227:19 257:26	number 201:21	213:9,22	314:5 320:1,8,21,
363:22	336:8 337:22	214:21 231:13		26 322:23
nearby 222:1	362:16 378:5	242:22 248:11	occur 201:7,26 232:13 259:19,22	333:15,24,25
necessarily	393:25	242.22 248.11 249:7 255:7	260:11 262:15	334:6
261:7 279:13	non-thermal	263:23 282:6	271:24 272:15	
285:21 369:11,22				

		27		
371:9 383:15	pass 346:24 394:2	pentacyclic	perspective	picture 222:7
paragraphs	past 205:6 234:22	319:1	266:5 380:20	353:10
264:20 385:26	276:21 291:4	people 197:19,22	414:11	pictures 219:22
parallel 221:5	293:13 342:3	200:10 352:23	pertinent 360:8	piece 321:26
222:1	373:10 408:15	366:26	Peter 198:19	341:4 342:10
parameters	patch 287:18	percent 281:3	269:19 278:19	pieces 202:22
345:25 372:24	288:4,6,14,16	294:5,10 359:3	petroleum 312:9	350:21
382:1 409:25	289:1	368:25 409:11	petrophysicist's	Pike 326:5
parasequence	patent 408:20	perchance	243:11,12	pilot 283:3,22,23,
391:25	path 290:18	279:16	phase 243:18,25	26 285:5,11,22
pardon 213:1	291:1 365:4	Perfect 289:14	245:1,4 268:23	406:23
227:18 231:25	pathway 365:8	299:12 383:16	283:7 285:6,12,	pilots 282:16
354:25 372:16	pathways 291:9	perforate 402:11	16	283:1 406:22
377:1	366:11	perforations	Phd 406:8	407:7
Parsons 277:12	patience 304:7	287:19 288:4,14	phenanthrene	pinpoint 381:17
part 203:11	356:8 416:2	384:12	324:15 325:9	
204:20 209:16	patterns 328:25	performed 284:7	326:1	pioneering 306:1 321:15
213:11,25 216:20	-	performing	phenanthrenes	
217:22 218:17	pause 253:14	367:3	325:12 326:12,15	pitch 343:19
221:9 232:26	pay 208:7 209:11		332:11,14 333:4	place 352:10,11
247:14 248:18,19	361:5 367:25	perfs 288:7,17	phonetic 377:11	383:22 390:16
254:22 260:2	PDF 199:8	period 269:19	405:2	places 216:16
262:15 272:22	207:22 223:13	270:2 272:5		280:19,20
289:2 296:12	244:23 246:16	348:14 350:13 370:17 371:3	phosphate 339:20	plan 279:14
303:8 313:18	257:17 264:16			286:4,7,19,23
335:12,16 340:16	308:8 311:22 331:21 334:10	periods 315:4	photo 203:6 349:21 356:2	287:1 288:5,9
348:17 352:10,15	362:4 367:10	permability		289:5 292:7
353:13 354:18,24	371:8 372:20	210:7	photos 212:6	302:15 370:25
355:1 356:11,22	383:14 399:22	permanent	phrase 308:11	383:17,18,26
357:17 396:19	Peddlesden	383:19	310:12 313:19	384:15,18,19 386:5 387:19
397:10 398:2	197:14 235:17	permeabilities	physical 312:12	
406:17 412:11	277:10 304:8	359:11 360:11,15	physically	planned 283:2,23
partial 222:20	305:9 346:24,26	366:22 389:7	321:25	284:13 287:25 415:4
participation	347:3,5 353:20,	permeability	pic 336:8	
416:1	22 355:5,9	210:7 261:7	pick 324:12	planning 282:18 284:5 383:22
parties 352:3	356:19,21 357:26	329:25 358:5,10	344:14 349:6	284:5 383:22 384:3 386:1,20
415:3	358:4 361:10,12	366:2,23	351:2 352:23	402:24 403:4
parties' 293:6	367:9,12 371:7,	permeable 366:4	357:8 392:12	
414:11	10 377:24 378:2	396:23	412:12	plans 286:22 367:19,21 386:13
partners 211:19	387:26 394:11	permission	picked 353:3	
parts 229:23	peer 340:12	273:2 370:11	400:26 412:5	plant 269:15 274:9
406:3	peer-reviewed	permit 268:18	picking 323:23	
party 315:17	340:15,18	person 396:12	349:8 357:9	play 218:1,3,12, 19
316:12 411:23	penetrated	personnel 409:2	366:18	17
	233:16			
	I	1	l	1

		28		
plenty 345:17	348:13 350:24	portions 262:25	practice 273:9	297:11,13,16,19
plot 245:19 246:2	351:9 362:7,11,	pose 305:10	331:2 388:25	298:3 299:5
255:2 286:4,7,11,	25 365:6 379:8	posed 408:15	408:16	324:9,22 325:19
19,23 287:1	396:12 399:6	-	preamble 229:9	330:12 333:10
306:9 317:4	403:9 405:5	position 274:21,	-	334:26 340:17
318:25 321:3	413:15	26 295:11 302:21	preapplication 212:20	342:13 343:7
323:24,25 324:16	pointed 222:26	389:25 390:2		344:4 350:6
325:23 332:15	252:20 372:22	positioning	precipitation	378:14 380:9
333:11 344:16	pointing 216:7	232:8	395:7,26	415:14
412:8,23	223:2 242:6	positive 279:2	predict 390:2,24	presentation
plots 267:6,13	338:12	posity 355:18	405:6	307:21,24 309:18
319:11,12		possession	predicted 342:3	331:6,13 340:1,3
320:16,17 325:8	points 231:19	215:12	381:25 382:23	342:13 343:13
331:19 334:7	245:21 301:16	possibility	385:22	363:3
	321:3,6 325:18,	274:11 283:12,19	prediction 257:9	presentations
plotted 319:4,6	19 327:13 329:20	400:11 414:19	261:25 262:7	340:15
325:3 326:6 331:26 332:11,13	334:25 336:12 337:23 338:26		predictions	
333:17	339:4 344:4	possibly 354:6	267:11 309:5	presented 225:1 226:23 227:6
		356:24 366:8	predictive	265:6 270:6
plotting 306:2	Poisson's 231:3	post-b 377:5	341:11 361:5	305:16 307:10,13
324:23 332:8	policy 296:10	post-b2 229:17	389:20	324:18 332:6
333:1 344:18	polycyclic	231:10,17 248:4		340:1,13 375:25
376:14	309:26 314:24	249:6 258:1	predicts 262:8	380:2 397:7
plug 287:19	pool 206:7 207:19	262:23,26	prefer 308:20	
288:6,16,22	294:22 295:2	post-gob 384:19	413:24	preserves 299:8
289:1 383:19	297:8 298:1	post-peak 265:2	preferentially	press 345:11
plugging 372:14,	368:12 370:9	post-steam	389:14	pressure 200:16,
17 394:18 395:11	390:14 398:11	200:21	preliminary	24 201:13 202:6,
plural 306:13	404:25 405:1	potential 256:4	388:23 389:6,9	9 205:15,18
PM 276:23 278:7	poorly 312:18	263:14 265:3	premature 280:8	244:4,9,12
PNX 257:11	313:6,16	274:13 303:1	premise 330:10	245:16,19 246:5,
385:20	pop 315:18,22	372:2,14 379:23	prepared 400:7	9 249:3 253:1
point 209:7	318:7 319:18	380:9,26 381:1,	prerequisite	254:1,14,16
212:17 213:22	323:20	24 382:10 385:10	302:13	255:1,13,14,17,
216:15 217:12	pore 375:7,9,12	390:16 392:17,19		20 256:1 261:18,
222:1 224:9,12	406:10	394:18 395:11	presence 233:18,	22 262:8 267:7
238:19 244:3	pores 345:7	401:7 406:18	19 243:19,26 245:2 341:14	268:25 269:12
255:2,7,10,12,19,	375:8	potentially 271:1	352:12	270:14 274:6,10,
20,26 268:13	porosity 329:25	272:8 281:5		15 286:14 290:22,26 291:1,
274:3,4 283:17		298:24 300:15	present 215:24	4,14,17 292:1,2,
286:6,26 289:10,	port 255:25	352:16,18 365:17	225:5 227:8	25 371:16,20
22 295:9 299:23	portion 202:3	375:3,4 380:10	228:3 230:1,15	375:3,7,10,12,13
302:12 303:10	206:9,10 209:25,	403:7	231:1 232:22,24	383:20 385:18
305:13 311:13	26 251:21 257:6	pour 343:5	238:10 242:5,10	387:11 394:14
325:21,22 335:3	294:18 296:13	Power 372:11	249:24,26	395:6,10 396:3
	1 211.1617240.7	IUWCE 3/2:11	250:16,18 281:11	575.0,10 570.5
337:17 339:9	311:16,17 349:7		201.2 204.6	
337:17 339:9 345:19 347:20	350:12 354:4		291:2 294:6	
			291:2 294:6	

r		29		
pressure's 255:19 pressures 200:23 204:10 225:10 246:3 266:18,19 269:14 270:8 345:12 371:6 383:7 395:24 400:18 pretty 212:2 228:20 228:20 238:23 283:25 301:17 prevented 311:4 previous 214:26 230:18 237:11 250:17,25 257:25 309:19 350:26 355:2 402:16 previously 198:17,20 198:17,20 225:11 275:13 278:17,20 283:9 302:24 352:15 378:21 primary 212:22 213:2 411:4 principle 307:25 principle 307:25 principles 341:7 prints 317:13 318:5 319:17 prints 317:18 318:21 319:5,7 prior	problematic 379:21 problems 406:19 procedure 273:1 292:23 proceed 198:9 199:6 235:2,18 258:14,15 271:23 305:12 400:16 405:20 proceeding 197:9 206:25 230:16 293:4 304:14 proceedings 197:7 230:5 232:13,23 276:23 277:1 278:7 388:24 416:10 417:5 process 201:9 204:5 205:1,5 210:12 211:3,10, 12,18 216:3 217:8 224:22 259:9 260:20 273:26 279:5 293:11 301:11 311:1 314:1,9 365:9 369:2 407:17 408:7,9 410:3 processes 211:15 283:14 312:18 313:6 406:24 407:5,8 produce 211:9 246:7 259:8 284:23 294:1	producing 299:7 307:5 329:4 399:16 product 281:3 production 258:7,10,20,26 259:6,11,12,24 260:7,26 284:7 289:2 294:20 296:2 368:12 371:1 383:23 384:20 395:21 productive 258:7 products 273:21, 23 274:2,8,13,16 professional 220:6 406:6 410:10 profile 315:11 316:9 333:22 337:7,8 363:26 profiles 211:6 308:24 309:18 program 281:25 299:2 301:1 406:23 408:1 programs 289:12 project 197:25 242:7 265:18 272:6 301:14 307:19 407:18, 21,23 projected 240:9 415:6 projects 201:8 204:18,24 260:23	promised 199:13 210:2 promises 323:12 prone 217:11 propagation 406:10 properties 225:6 231:8 234:11,12 264:9,12,14,18, 24 265:1,8,9,24, 25 373:7,23 376:24 379:5 381:9 property 200:10 proportionality 225:21 302:25 proposal 270:13 287:15 proposals 293:4 propose 385:13 404:4 proposed 207:23 208:12 225:2 257:2,3 268:7 287:9 288:5 289:5,16 371:16 proposing 199:19 209:17 283:5,7 385:10 protocol 385:2 proven 294:25 299:2,3,5,7,8 404:26 provide 212:4,7 215:1 223:25 227:23 248:3 267:13 276:4	416:4 provided 199:17 206:6 207:18 212:6 229:23 247:23 254:15 286:20 342:8 358:6 404:3 407:13,14 408:6 410:10 413:9 providence 316:21 317:1,14, 15,19 318:12,18 providences 319:1 providing 215:9 368:11 381:19 Province 417:8 proxy 211:18 public 296:11 373:9 publicly 296:6 published 281:22 282:10 307:2,22 pull 252:5 257:12,15 287:17 288:3,5,13,15,20, 25 295:17 308:7 311:21 391:8,11 392:22,26 399:21 pulled 255:7 pulling 288:24 pump 286:13 pumping 286:13 pumping 286:13 pumpose 200:20 purpose 200:20
principles 341:7 print 317:13 318:5 319:17 prints 317:18 318:21 319:5,7 prior 270:18 299:11 368:12 371:1 Pristane/ phytane 316:26	311:1 314:1,9 365:9 369:2 407:17 408:7,9 410:3 processes 211:15 283:14 312:18 313:6 406:24 407:5,8 produce 211:9 246:7 259:8	project 197:25 242:7 265:18 272:6 301:14 307:19 407:18, 21,23 projected 240:9 415:6 projection 197:22 projects 201:8	199:19 209:17 283:5,7 385:10 prorated 354:16 protocol 385:2 proven 294:25 299:2,3,5,7,8 404:26 provide 212:4,7 215:1 223:25	311:21 391:8,11 392:22,26 399:21 pulled 255:7 pulling 288:24 pump 286:13 pumping 286:13 pun 213:1 purely 243:3 purports 208:11

		30		
322:1 327:22	367:12 371:7,15	Rahimabadi	268:21 282:14,26	recirculate
328:12,13 342:25	385:22,23 386:5	277:15	284:2 287:16,22	271:3,18,20
347:3 351:4	388:17 390:23	raised 310:8	290:15 291:8,13	recirculation
353:10,14 355:5	391:13 394:6,8	ran 255:9 382:3	302:1 308:11,19,	271:26
356:19 358:1	396:5 397:10	415:4	21 309:2 312:4,6,	recognize 269:4
367:9,13 384:1	399:19 404:23,26		8 313:5,19	410:8 415:18
388:14,17 415:17	408:15 409:3	range 361:14	319:24,25 320:6	
putting 352:4	410:13 411:19	368:6 374:13,18,	322:19 323:3,14	recognized 357:14
367:15,24 384:11	412:1	22,24,25 375:22	readout 383:20	· ·
,	questioning	388:10 398:1,26 400:3	readouts 385:17	recognizes
	274:24 305:6,9			230:14
Q	332:23	ranges 400:10	ready 278:10,12	Recognizing
01/00 245-24	questions 210:3	rapidly 267:18	388:24	284:6
QA/QC 345:24	218:7 223:8	rare 271:1 283:22	reaffirming	recommend
qualifications	252:24 263:3	343:2	301:11	269:3 352:4
406:3	266:2 293:17	rarely 283:2	real 274:4 356:9	367:15 409:7
qualified 283:26	295:18 296:3	rate 315:3 358:12	395:15	recommendatio
406:5	303:17,18,26	388:15	real-world 307:4	n 268:12 371:12
qualitative 409:9	304:9,12,13,18,	ratio 231:4 281:6	realize 246:13	recommendatio
quality 320:4	23 305:2,8,19		275:25 401:17	ns 409:14
345:23	346:25 347:1	ratios 260:18,24	413:21	
question 199:16,	354:20 357:23	280:25 316:22,26	realized 214:22	recommended
25 202:21 205:8	387:21,23,24	ray 223:5 237:23	reapply 290:5	268:5,7
212:14 213:8	388:1,4 394:11	239:8 242:23	301:11	record 220:8
214:26 215:17	396:9,12 399:26	243:3,4 374:2		251:6 257:10
217:7,20 219:7	403:20,26	379:4	reason 204:21	261:25 266:25
223:22 224:16	405:11,26 408:24	rays 242:26	226:14,20 232:12	267:1 290:26
227:24 232:2	411:20,25 413:13	re-affirm 267:26	303:13 319:13	300:26 331:4
233:26 235:23	414:7	re-affirmed	332:20 343:2,7 405:1	340:4 363:19
243:5,22 244:25	quick 284:26	268:9		recorded 200:25
245:13 246:13	394:8	re-establish	reasonable 203:8	212:18 294:23
247:6 248:18,19,	quickly 293:18	272:13,16	215:7,10 268:18	295:3
20 251:5,7,10,20	339:22 391:9	Re-examines	273:14 368:14	records 295:1
254:21 257:10	quietly 305:7	405:22	380:21 401:2	recovering
258:8 259:5,7			409:19	200:20
261:1,26 262:7,	quote 201:21	reach 256:18	reasons 224:26	recovery 224:22
16 263:20 271:11	251:11,16	257:8 261:23	260:15 367:16	281:25 283:14
279:6 290:2,3	quotes 312:17	262:22,26 272:19	371:24	406:24 407:4
291:18,21,23	quoting 293:9	312:25	recall 337:1	red 257:19
294:14 295:17		reached 399:12	411:25	334:18 349:15
298:5,24,26	R	reaction 273:21,	received 324:2	350:16 351:6
299:3 302:17		23 274:2,8,13,16	405:26 408:2,24	354:8 363:10
310:7 319:3,9	radioactive	read 201:23	receiving 409:1	368:2
322:2 340:21	243:15	212:3 219:7	recent 343:24	reddest 368:3
345:18 354:22	radioactivity	228:21 229:1,9	recently 204:26	
355:13 356:5,9,	243:2,16	251:13 252:25	344:12	redirect 403:23
10 361:1 362:8		259:17,21 264:21	577.12	405:21
	l	I		1

		31		
reduce 240:5	reflector 242:4,9	released 404:5	248:17 254:21	representative
362:5 396:3	refuse 215:2	413:17	258:8 259:4	228:7,15 266:21,
reduced 270:16	regard 395:16	relevant 205:20	263:20 288:10	22 325:20 345:13
303:5 365:12	0	230:16 233:5	290:2 291:21	374:17 377:14,17
372:9 395:23	region 240:22	295:7 306:24	344:13,15 345:17	378:8,19
400:21	regional 203:18	309:25 314:20	353:13 356:15	represented
reducing 371:26	216:14 225:6	319:15 325:5	386:19	389:8
395:17 403:12	226:16,17,21	374:7	replaced 226:25	representing
reduction 225:23	227:5,10 228:3,7,	reliable 231:9	227:8	323:19
	14 229:18,20,24	324:13	replotting	02011)
372:6 394:16,19, 23 395:1	231:1,12,17	reliably 282:17	332:24	represents 350:10,13 354:13
	232:10,24	324:16	reply 220:13	389:10
reestablish 289:2	233:21,25 236:8		307:15 368:10	
refer 226:6 270:4	237:16,20,21	relied 408:26	369:18 371:20	reproduced
306:19 342:4	238:20,25,26	relies 249:12	383:18 402:20	366:26
reference 199:7,	251:3 347:7	306:22 341:3		request 199:24
14,15 212:20	349:11 350:2	rely 341:7 343:21	report 202:16	205:22,23 213:3
219:9 223:17	351:8 352:16	378:6	205:3 214:11	234:23 271:25
231:22 251:12	354:9,16,25 355:17,24 357:5	relying 364:17	242:14 244:12,21	303:6,15 331:22
253:24 257:13,15	358:17,24 357:5	remain 383:7	247:2 253:12,13, 17 254:6,8,16,19,	401:10
295:25 340:1		remaining	23,25 255:13,15,	requested 212:5
343:22 373:11	regionally 225:4	206:15 384:16	22 260:4 263:26	218:25 225:16,25
396:25 397:2	374:8 391:21	remains 255:22	264:13,15	268:19,23 270:8
referenced	regions 241:26		266:25,26 267:2,	271:6 279:19
202:16 249:8	Regulator	remediate	5,9,10,11,12	301:5 401:26
263:7	304:18,22 387:3,	292:11 386:1	268:1,10 273:12	requests 270:6
references	17,24	387:19	291:11,12 296:9,	400:9
199:10 223:25	regulatory 209:1	remember	16 298:9 345:22	require 205:2
248:20,23	405:4	199:12 253:10	357:24,25 360:24	343:8
referencing	reiterate 412:10	307:15 381:12	370:23 373:3	required 205:18
249:4 255:10,11	reiterates 229:13	remind 197:10,	374:9 387:16	289:17 303:14
referred 270:12	reject 199:17	15,16	397:7 408:6,26	370:21 383:25
280:20 306:13	200:17	reminded 415:23	reported 294:17	requirement
309:19 322:3		reminder 198:2	Reporter 219:16	289:23
396:24 400:2	rejected 199:11	reminders	278:4,5 323:9	requirements
referring 197:23	rejection 200:14	197:10	417:15,21	251:25 252:2
205:14 221:22	related 386:2	removal 322:22		research 282:2,3
244:7,9,11 245:4	394:19 408:21	removal 322.22 remove 287:17	reporters 306:12 346:15 414:15	406:15 407:3,4,
249:5 251:16	relates 245:13	288:3,13,20		18
261:20 263:25	314:24		reporting 248:16	reserve 280:15
356:1 371:19	relation 198:7	removed 227:16,	253:8 256:4	294:22 296:16
refers 261:14	396:15 398:9	22 229:22,25 230:6 250:2	reports 297:9	294.22 290.10
301:22,25	400:1,6 414:6	289:24 290:4	298:2 409:6	370:5
reflected 255:2	relative 323:17	312:13	410:11	
reflectivity	release 200:6		represent 387:3	reserves 294:23, 25 295:2,6,8
392:12	206:16	repeat 200:7 243:22 244:24	representation	296:7,8,12 298:8
572.12		243.22 244:24	287:25 288:22	270.7,0,12 270.0

		32		
299:3,4,8 404:24	294:1 295:1,12,	resulting 330:14	Riley's 200:14	rounds 385:1
405:1,2,5,6	14 299:6 368:18	results 267:7	ring 316:6	routine 218:11
reservoir 203:21	398:10	279:2 282:17	ripped 350:22	row 299:15 329:5
210:22 212:9	resources 198:21	285:21 302:19		401:9
216:10 231:11,17	267:21 277:24	312:12 333:22	ripups 354:5	
243:10 247:16,23	278:21 297:25	342:11,12,21,26	rise 262:24	RPR 278:5
248:4 249:6	304:19 387:25	345:22 346:2	310:22 358:12	417:20
251:26 256:19,24	398:12,15 405:22	374:26 375:18,25	365:2,9 366:2	RST 203:4
258:1 260:10,16,	respect 201:5	resume 415:22	388:16 412:15	342:11
17 262:11,18,23	256:4 266:16	retainers 386:15	rises 262:10,17	rule 233:20
263:1 265:25	287:13,16 290:7		274:6 393:10	rules 405:3
284:24 288:18	295:6 345:23	retired 408:18	rising 365:7	run 213:11,18,25
290:20 308:24	394:24 395:1	return 215:14	risk 200:10	214:12 216:9
310:19,23 311:25	398:19 408:25	234:24 235:1	225:23 266:5,8,	345:14 377:11
312:5,14,16,22,	respective 293:6	276:21 287:2	15,17 273:19	382:13 411:10
25 313:10,12,21	respond 305:11	384:20	274:5 292:15	running 267:17
314:2 320:21	313:25	reveal 387:13,14	301:23,25 302:5,	269:18 322:4
327:6,21 328:11,		reversing 361:6	8 372:6 378:18	389:20 401:9
17,18,22,24	responded	review 257:11	380:22 382:4	406:23 407:7
329:12 330:2,23	408:17	293:22 294:26	389:15 394:16,	415:5,8
335:24 338:18	responds 203:13	340:12 409:3	19,20,23 395:1	résumé 281:12,
339:3 340:10	response 213:4	410:23 411:6	407:13,16,18,19,	16 282:9
359:17,19 377:5	215:1 228:2	415:13	26 408:4,9	10 2020
388:18,19	229:12 230:24	reviewed 223:19	risks 266:7,13,14	
406:25,26 407:1,	242:17 274:20	234:17 285:13	rivers 363:14	<u> </u>
10 412:17 413:10	286:20 290:13,	293:24 306:10	robust 299:2	SA 285:13
reservoirs 217:5	14,24 292:3,23	340:16	ROCHE 198:16	
229:17 305:26	293:9 310:7	revised 383:17	278:16 286:10	safe 199:19 213:26
312:9 322:15,20	318:8 324:4	rheology 217:9	288:10 383:26	
324:15 330:25	331:22 332:21	rid 339:16	rock 217:9	safeguards
331:1 412:14	394:11		247:25 363:19	225:22
residual-	responsible	rig 206:16	379:25 406:9	safely 263:12
strength 265:2	320:11	rights 293:7		safety 199:26
resistance	rest 304:26	rigs 301:1	rocks 351:13	200:3,4,8
324:25	restart 269:25	Riley 198:11,21,	role 407:9	SAGD 201:8
resistive 222:16,	restored 289:18	23 199:2,5,16	roll 227:2	204:5,10,24
21 223:4	restores 236:6,7	200:2 204:20	room 197:11,12	208:7 209:11
resistivity 218:13	restrictions	207:2,3,12,14	198:1 235:8,10	210:13 211:2,4,
222:19 239:20	414:4	214:20,22,25	275:15 305:4	10,12,16,18
resolution		219:23 220:21,24	319:24	248:1 256:5,12,
217:18 219:18	result 209:20	234:21 235:6,12,	rooms 415:24,25	14,23 258:12
237:25 381:16	216:4 221:17 258:25 259:23	18,19,23 248:17	rooting 354:12	260:15,24 263:8
resolvable 242:4	258:25 259:25 267:6	276:16,17 278:1	roots 354:18	265:16,19,22
	294:4 300:20	303:22,23	roughly 208:22	268:20 271:16
resolved 291:15	303:5 316:25	405:13,17 414:1,	221:5	272:9,24 274:25
resource 224:22	329:8,10	18 415:10,13	221.3	279:10 281:15,17
225:21 259:25				286:24 287:3,5

r		33		
361:5 376:13 385:9 395:4,9 397:13 398:20 399:9,11 401:22 407:6 408:21 sags 411:8 sake 325:6 sales 343:19 salt 216:17 350:15 sample 321:8,10, 12,13,16,17,21,24 322:5 325:15,22 327:16 329:20 334:7 336:1 338:15 344:14 345:13,16,17 347:8,12 349:19 351:11 352:1,4,5, 6,12 369:5,19,24 370:1,12,19 sampled 328:19 335:26 samples 318:20 322:8 325:16 328:8,22 329:6,7 332:25 337:14 344:14 345:2 349:22 369:2 373:13,15,22,26 412:5 sampling 307:2 321:22,23 342:18,21 344:23 345:5 367:24 368:9,11,17,18, 25 369:10,17 370:21,26 371:5 412:4,18	364:4 365:15 366:6 373:8,14, 20 376:2 383:1 sand-filled 354:2 Sandie 417:3,14 sandier 391:19 Sandra 417:3,20 sands 200:24 201:17,20 202:8 205:16 243:2,10, 14,15 260:22 305:26 312:19 313:7 322:21 327:6 328:20 350:4 358:13,18 362:19 377:17 393:21 406:21 407:4 sandstone 393:4, 15 sandstones 217:10 237:23 362:22 363:21 satisfied 253:18 276:15 saturated 200:23 201:17,20 202:7 205:15 275:9 saturation 330:23 save 319:23 save 319:23 save 319:23 savings 401:7 403:15 scale 233:25 263:10 279:3,8, 13 283:5,6 285:26 286:1 364:1,5,20,21 372:14 16 17	scanning 251:17 363:26 scenario schedule 303:26 413:23 scheduled 198:12 413:22 scheduled 198:12 198:12 413:22 scheme 366:17 387:18 Schlumberger 214:10,13,17 322:1,3 322:1,3 326:8 342:25 343:12,13 406:11 413:8 Schlumberger's 411:24 scientific 306:23 scientific 306:23 scientifically 329:11 scientifically 329:11 scientifically 329:11 scientific 306:23 scientific 306:23 scientifically 329:11 scientifically 329:11 scientific 306:23 screen 219:4,19 220:23 220:23 22:21 screen 219:4,19 220:23 20:15 screenshot 219:15 SCRIMSHAW 198:17 257:16 278:17 scroll 220:23 23:23	seal 233:12 234:8, 10,18 409:11,12 sealing 234:1 season 300:24 seats 416:2 second-to-last 252:25 secondary 212:23 seconds 404:19 section 206:8 207:16 215:6 217:13 234:22 241:13 250:19, 24,25 252:23 272:24 360:9 366:7,9 383:25 sections 227:25 248:6 335:26 secure 415:24,25 sedimentary 357:7,15 sedimentary 357:7,15 sediments 210:17 210:17 314:6 seek 410:1 seemingly 203:3 segregated 338:21 segregations 339:4 seismic 240:9,11, 13,16 241:17,24 242:4 263:10 341:9 380:11,12, 15 381:12,16	senior 407:10 sense 200:9 232:10 284:1 395:3 sensitivities 377:12 379:13 382:3 sensitivity 374:20,22 378:13 382:13,24 sentence 227:1 238:14 309:2 313:4 sentences 227:2 separate 311:3 377:1 375:8 separated 229:19 334:2 336:3 separation 243:1 245:19 sequence settin 226:16,18,21 227:5,10 228:3,7, 14 229:18,20
373:13,15,22,26 412:5 sampling 307:2 321:22,23 342:18,21 344:23 345:5 367:24 368:9,11,17,18, 25 369:10,17 370:21,26 371:5	saturation 330:23 save 319:23 savings 401:7 403:15 scale 233:25 263:10 279:3,8, 13 283:5,6 285:26 286:1	219:15 SCRIMSHAW 198:17 257:16 278:17 scroll 228:18 234:6 235:14,21 236:2,24 237:8 240:2 253:23,26 257:21 281:9,23	338:21 segregations 339:4 seismic 240:9,11, 13,16 241:17,24 242:4 263:10 341:9 380:11,12, 15 381:12,16 392:7,9 393:15 410:15,17,20	6,11,13,20 351:8 354:10,14,16 355:17 357:5,6 376:20,24 378:20,21 379:5, 7,10 391:17 series 295:18 349:24 411:20 service 345:26

		54		
361:21	short 225:18	393:18	389:18 407:1,2	311:11 314:13
settings 361:15	303:8 304:1	side-scan 363:8	single 203:9	small 202:22
362:9	346:14 379:9	sides 220:1	239:3 337:16	203:6,12,19
settled 400:24	shorter 315:4	sight 405:3	341:6 344:14	209:25 225:18
shale 242:21,22,	317:6 397:22	e	390:2	232:18 241:14
24,25,26 243:7,	shorthand 417:6	sigmoidal 220:26	sir 218:6 271:25	303:9 311:15
16 251:4 366:4	shortly 231:23	signature 237:24	285:4 295:10	321:18 333:7
374:3 381:6	304:4	239:11 336:23	301:15 302:17	345:15 347:16
shales 203:26	show 197:12	significant	SIRS 286:20	348:20 350:5
216:14 217:3,9	208:11 234:5	213:16 215:23	sit 301:13	351:3 354:2,6,13
354:7 359:3	236:26 241:1	216:17 217:13		355:15 380:5,16
373:16	250:20 241.1	224:24 225:11	sits 357:2 398:5	391:22,23
	264:13 267:2,10	226:2,9,10	sitting 343:20	393:20,22
shaley 351:13	315:10 316:10	251:21 292:18	344:2 370:18	410:16,19,21
shallow 272:24	319:14 320:18	380:12,18 389:1	416:2	small-scale
354:17	338:4 362:12	391:25	situ 224:20 225:3	283:25 411:5
shallower 354:10	389:1	significantly	381:24 382:22	smaller 217:18
Shannon 277:10	showed 229:24	248:25 260:19	situation 271:24	239:25 321:19
shape 250:5	237:12 266:23	401:8,19	380:25	364:12 382:5
share 205:6	316:9 324:24	silt 347:16 348:25	size 220:7 349:10	smear 222:18
289:13	326:2 328:8	349:3,9 351:15,	360:1 392:15	smell 343:5
sharp 348:11	331:5 337:1	17 353:4	skill 417:7	SMES 305:8
353:26	373:3 388:6,9,15	silt-filled 348:20	skip 263:2	smooth 330:18
shear 263:14	showing 205:14	siltstone-prone	slapped 315:23	
264:5,11,18,22	351:16 388:10,20	308:25	slew 325:17	soft 411:2
265:4,6 373:7	shown 267:5,8	silty 351:3 353:2		software 218:19
374:10 376:11	328:9 349:25	355:24	slice 393:6	367:2
378:4,25 379:17,	362:11 389:12	silty-looking	slices 392:10	soil 350:8
26 380:14,17	393:5	355:15	slide 220:12	solid 211:8
382:7,18	shows 202:2	similar 225:6	331:25 332:19	371:25
sheet 294:18	208:13 241:10	229:13 261:21	334:9 355:2	solvent 268:22
shelf 344:3	246:26 252:6	319:2 324:24	362:6,12 363:3,	270:12,19,20,25,
Shields 393:18	265:6 363:20	330:21 333:9	24	26 271:9 278:26
	379:2,3,4 380:4,	350:26 353:1	slight 348:11	279:8,25 280:1,5,
shift 329:19	22 381:4 388:8,	361:13,14,20	363:11	11,18,22 282:1,3,
334:3 382:15,16,	11,19	367:12 383:5	slightly 210:16	5 283:8,16 284:8,
20	shrinked 220:1	387:18 391:6	330:18 367:20	20,23 345:11
shifted 329:21	shuffling 305:3	408:7	376:23	407:5,8
shifts 329:24,25	shut 294:24	similarly 398:8	slope 330:18	solvent's 285:1
shoe 316:13,14		simple 284:25	slow 201:9 244:5	solvent-assist
317:9,13,18	shut-in 271:2	292:4	306:12 311:19,20	286:8
318:5,21 319:5,7,	shutdown 269:21	simplicity 325:6	315:4 365:9,10	solvent-assisted
17	sic 344:13 355:18	simply 356:26	slower 201:13,19	286:12 407:6
shoes 316:15,17	side 221:3 252:10	simulation	211:3	solvent-assists
shoot 260:19	259:15 311:24	282:20 359:25	slowly 243:18,25	281:17
	349:23 350:15	202.20 337.23	245:1 310:26	
	1	1	1	I.

		33		
Solvent-based	spec 318:24	square 238:21	start-up 266:19	359:19 365:2,7,9
281:25	special 203:25	squared 201:11	268:23 269:7	366:2,4,11
solvent-related	343:8 392:10	squeeze 415:17	271:7,13 278:26	372:13 385:14
284:19	specific 213:10	-	279:15,18 280:19	388:15 389:19
solvents 281:19	241:19 251:16	SSL 264:3,8	281:19 283:7	390:13 394:24
287:2	260:6 272:24	378:3 381:26 382:23	284:20 285:12,	396:23 409:13
Somebody's	281:1 286:11		14,16 286:8,13	412:15
316:14	347:19 359:6	staff 277:11,12,	287:10 302:9	steam-induced
	389:15 390:15	13,14,15,16,17,	303:8 371:11,14	406:16
sonar 363:8	specifically	18,19,20,21	started 199:9	steam-only
sort 247:18 256:8	199:14 204:14	304:1,10 410:4	292:1 326:4	284:9
287:1 341:13	221:22 226:18	stage 213:8 279:1	348:6 406:22	steam-to-oil
348:19 353:3	235:22 236:26	282:18 284:5	starting 225:8,17	260:18,24
359:9 360:7	263:16 301:24	390:25	268:20 273:26	steaming 256:6
361:3 362:7	313:18 357:26	stages 389:6,17,	282:25 304:8	398:24
363:6 376:13	360:25 379:1	22	348:10 358:4	
397:10 409:20,25	387:2 388:13	stakeholder	starts 264:21	step 279:4 293:11,12 330:20
sound 307:26	393:2 398:21	215:8	state 215:11	337:10 339:4
308:5	spectometry	stand 221:11	265:2 389:9	340:10
sounding 199:4	304:25	416:8	stated 207:17	
sounds 394:20	spectrum 397:23	standard 359:23	229:21 270:20	stepping 318:2 337:8,21 338:16,
sourced 408:25	speed 222:5	361:3 373:5	271:15	19 340:7
sources 358:6,9	-	385:1 388:25	statement 204:16	
south 341:22	spend 300:11	412:7,22	210:3 213:15	steps 211:26 279:6 309:16
393:10,13	spent 406:17,26	standing 402:7,	242:19 251:19	327:8 335:15,17,
southern 324:14	spiral 221:17	14 403:8	259:26 285:5	18
326:20	splices 392:10	stands 264:3,5	322:18	sterilize 210:22
southwest/	spoke 247:6	Stanislavski	states 215:7	sterilized 314:7
northeast 393:5	248:21 366:17	198:5 277:13	static 217:26	
spacing 236:22	spoken 371:12	start 197:9	218:12	stiffer 374:21
	411:2	200:15 221:13	steam 200:1,4,5	stiffness 231:6
span 397:24 398:20 399:16	sponsored	235:5 246:6,7,9	201:3,16 202:8,	376:1 379:17
	406:11	267:24 269:24	17 203:3,15,19	stimulation
spatially 390:12	spoon 321:24	278:23 296:3	204:1,2,7,12,15	284:22 396:2
speak 264:4	342:23,24	301:1 332:8	205:16 210:6	stop 242:13 260:9
296:15 324:8	spooning 344:23,	338:24,25 339:3	211:7 247:24	267:17 275:14
347:11 348:2	26	347:1 348:1	248:7,9 256:18	311:24 322:16
353:10,22 361:19	spot 345:4 352:19	349:8,16,20	260:10,15,16,21	330:3 342:2
364:18 369:17 392:7 406:5	390:6	351:2 352:24	261:11 262:10,	411:1
411:3 416:6	spots 327:7	354:1 382:11	13,17,19,22,24,25	stops 260:16
	335:10 390:16	383:16 388:2	269:11 270:11	storage 348:14
speakers 198:1	spreadsheet	398:24 400:11	273:20,24 274:1,	stored 271:4
speaking 200:15	318:24	404:20 405:25	5,7,12,15 283:17	344:2
213:9 229:15		412:17 413:23,25 414:12,26 415:1	292:20 309:22	storm 351:4
314:22 351:25	spreadsheets 326:8 327:2	414.12,20 413:1	330:3 340:9	
375:21	520.0 527.2		342:2 358:12	
				•

		36		
story 220:13	249:17,20,21,26	study 266:9	354:16 406:14	supplied 215:13
239:23 339:14	250:11	307:22 387:7	subset 239:18	support 241:19
straight 221:5	strength 217:10	stuff 315:18	315:21	296:14
222:15 315:12	264:11,18,22	338:18	substances 311:9	supported
strain 382:19	265:7 373:7,23	styrenes 325:10	substantially	241:20 268:8
strat 200:19	374:10 379:25	326:13 333:17	392:9	372:1
213:12,16,19	380:1,8,14,17	subject 209:3	substantiated	supporting
300:1 301:1	381:9	227:6 258:4	239:10 240:11	304:10 367:16
302:14 367:19,21	stress 224:20	270:21 286:24		suppose 287:5
393:22 411:10	225:1 226:15	293:5 294:2,24	subsurface 213:21 285:23	318:10
strata 202:3,5	227:4,26 228:6,	295:22 298:23		surface 200:6
204:8 212:10	14 230:24 231:4,	303:17 304:23	subtitle 359:26	209:6 285:2
215:26 216:5,11	5,9,16,19,20	305:20 333:22	success 285:20	347:15 348:11
217:5 223:11,22	264:5 267:6	387:6 400:10	successful 285:5,	350:18 353:26
224:23 225:5	303:6 374:13,18	405:11	6,11,16	357:2,18 377:10
227:17,21,25	375:1,5,8,9,13	subject-matter	sufficient 212:7	383:20 385:17
228:13 230:15,23	376:7,11,25	305:5	239:8 401:21	386:8,10,21
231:3,11,14	378:25 379:16,	submission	403:11	402:5,9
232:2,3,7 233:1,6	17,18 381:25	206:6 220:13	suggest 236:21	surfaces 412:13
246:19 247:4,8,	382:2,8,12,19,22	224:6 271:15	238:17 263:11	413:4
17,19,20 248:6,	383:5	289:19 300:2	273:7 295:10	Surmont 202:14,
14,24 249:9	stresses 224:25	307:15 324:2,19	300:6 338:2	15
251:14 259:18	225:3,7 230:26	325:7 332:12,13	suggested 234:17	surprising 217:1
260:4,7 261:6	231:5,15 373:6	347:8 368:10	272:17 273:10	
262:11,18 264:23	374:22,25 375:22 376:5 378:23	369:18 371:20	313:23	surrounded
267:3 274:7,12,		375:20 401:20	suggesting	333:26
22,25 275:2,6,10	stretched 222:4	402:19,20 403:10	270:17 336:2	surrounding
335:12 361:8	Strobl 393:18	submit 319:12	suggestion 245:7	274:25
364:17 373:24,26	strong 241:22	370:21,22	402:21	surveillance
376:6,26 377:1,6, 18 378:5,6 379:8	387:1 398:23	submitted	suggests 337:13	205:19
380:23 381:25	strongest 234:10	200:26 253:9,13,	338:19 340:25	Susan 277:16
388:12 389:7	337:18	17 286:5 305:14	380:15	susceptibility
392:19 393:12	strongly 324:21	306:16 320:17	suite 239:20	323:1,4 341:18
395:2,19 412:3,	structural	326:9 331:19,22	347:17	344:22
19 413:11	205:26 206:4	346:5 365:11	suited 305:11,19	susceptible
strategically	224:24 225:12	368:9 383:17	summary 267:5	315:2,9
412:5	228:24	393:7	309:9	Sverdahl 198:18
stratigraphic	structure 245:24	subscript 323:18		202:13,25 206:2
224:25 236:5	structures 316:6	subsea 334:11	Suncor 366:25	207:17 213:11
249:11 357:11,12	struggle 237:12,	subseismic	supplement	214:12 215:21
388:7,9 402:23,	14 247:9	380:16 410:17	213:15 309:12	218:24 220:12
24 403:5 412:6,	struggling	subsequent	supplemental	223:9 242:2
13,24	231:22 246:14	307:7,8 329:3	357:25	251:24 252:15
stratigraphy	studies 265:21	subsequently	supplements	276:3,9 278:18
229:16 247:3	312:19 313:7	200:24 280:10	307:9	305:21 368:1,5
	514.17 515.1			381:14 392:6,8

		37		
410:13,23 412:26	talked 261:16	19,21	415:3,5,8	thickness 203:19
413:1	266:12 374:3	temperatures	terpanes 318:26	247:5,17 248:1,3,
Sworn 198:20	378:21 391:1	262:1,4,5 275:6	319:1,6	15 249:5 328:14
278:20	396:20 398:8,10	temporarily	test 279:9,13	388:13
system 242:7	talking 199:13	273:3	281:2 283:5,6	thicknesses
299:24	221:22 245:10		286:1 352:12	232:14
	282:9 309:7	temporary	411:9,17 412:5,	thin 232:25 357:9
systematic	311:8 368:17	225:17 268:5,10		392:11
322:21	369:4,9,11,23	269:1,3,6,17	14,19 414:25	
	397:20 398:4,14	270:9,17 271:5,6,	415:2	thin-bed 237:24,
Т	399:7,18 401:17	23,26 272:2,12,	tested 202:6	26
	408:4	15,18,21,25	226:16,21 373:22	thing 197:15
Tab 205:23,25		273:2,11,13	374:1,4	260:13 309:14
206:11 209:18	talks 288:22	302:26 303:7	testing 279:2	315:17,19 334:20
214:6 219:1	tandem 227:23	ten 260:10 276:21	372:26 373:3,17	336:3 340:5
220:17 235:20	TAS 318:26	304:3 307:1	382:7 414:10	348:9 390:19
236:23 239:24	tasty 315:18	408:16	tests 281:5	396:18 397:3,13
249:15 253:11	team 294:13	tend 225:3	282:21 373:4,5	398:4,13,15
257:12,16 263:25	304:2,10 388:5	346:18	tetramethylnaph	401:7 407:2
281:8 282:6	407:23.24	tended 349:6	thalene 323:8	409:20
288:15 305:15	,			things 198:25
306:20 308:8	technical 307:21,	tendency 312:10	text 264:20	231:13 269:20
311:22 331:21	24 331:6 340:14	313:2	thankfully	288:23 304:15
table 211:25	342:13 343:12	tens 291:14	304:26	318:13 332:23
212:2 240:3,20	371:15,24,25	359:22 362:13	that'd 258:2	349:5 360:10
· · · · · ·	372:2 394:12	tensile 378:4,25	theoretical	394:20 409:7,16
247:18,22 248:12	395:15,16,18	379:18 382:8	311:12	411:8 415:18,19
264:15,16,20	technically	term 202:18		
299:16 358:6	340:18 408:2	283:15 382:5	theory 403:13	thinner 363:19
360:13,14 374:15	techniques	410:18	thermal 201:4	thins 393:10
377:25,26 378:8	406:20 412:8,23		249:2 261:17	third-party
379:12 382:9	technologies	terminologies	287:12 290:7	286:13 412:20
399:23,24 400:8	282:4	396:14	292:22,24 377:4,	THOMAS
409:17		terminology	7,12,14 379:14	198:16 278:16
tables 240:1	technology	205:9	381:20 383:9,12,	Thomsen 198:19
tabular 375:26	279:1,3,4 281:24	terms 235:9,10	22 384:18 385:4,	200:12 205:13
tabulated 378:10	285:18,23,26	266:18 280:17	23 386:1,3,21	224:16 228:1
tag 388:5	399:10	296:2 298:8,13	387:7	230:26 244:19
	telling 212:11	301:12 319:14	thermocouples	248:26 257:9,18
takes 248:10	255:16	321:4 329:12	401:23	261:24 262:14
295:11	tells 215:15 253:8	330:22 335:21,	thesis 406:9	270:4,5 278:19
taking 314:16	255:13 295:13	22,23 341:14	thick 202:18,22	291:20 302:22
361:6 403:3	327:21 333:16	357:6 375:25	203:8,10 217:13	371:18 394:9,23
talk 202:13	temperature	376:14 379:3	248:22 363:16	400:2
296:10 322:10	201:9 257:11	388:13,18 396:17	364:8	
344:10 359:16	267:7 290:23	398:3,4,13 400:3,		thought 215:10
361:12 369:6,10	291:2,5 330:23,	8,11,25 401:6,13	thicker 233:1	255:6 284:22
400:24 409:26	24 383:21 385:8,	406:6 414:4,10	366:9 367:25	358:25 391:4
				394:15 401:21

410:1 414:24timelines 399:18337:23 348:1,23trend 221:8,13,two-thirdsthousand 202:9220:2 301:26timely 387:16349:2,25 350:5,8,15,26 321:5290:14thousands 327:2270:18 271:21353:18,21,24,255 393:5263:12 290:three-well 392:1292:22 312:20354:4,8,17trends 291:2328:22 335:399:1313:8,20 318:12356:22 362:17,20333:1,9,13340:22 369:399:1timing 295:26392:2336:17 337:2390:19 395:27:9 350:11,13414:4263:25 367:7trial 279:17407:227:9 350:11,13199:13 301:13109:13 301:13263:25 367:7trials 283:25typea 406:24tied 286:11304:23 314:28trials 283:25typical 265:286:23 287:tied 286:11374:3 389:12total 247:4,9,16,tricyclic 318:26358:17 366:	5 1 3 7 4 22 3,5 17 20,24 6:24
thousand202:9timely387:16349:2,25350:5,8,15,26290:14220:2301:26times248:2412,19352:19336:11,15337:2,type204:15thousands327:2270:18271:21353:18,21,24,255393:5263:12200:14three-well392:1292:22312:20354:4,8,17trends291:2328:22356:32366:17336:17340:22366:12209:14thumb397:25313:8,20318:12356:22362:17,20333:1,9,13340:22369:390:19395:3399:1timing295:26298:8,19301:13340:22366:17376:2390:19395:3tidal226:25298:8,19301:13414:4263:25367:7trial279:17407:2227:9350:11,13414:4263:25367:7trial279:17407:2topics393:16199:13301:138torturous365:4,trials283:25typical265:tied286:11304:23314:28trials283:25typical265:286:23287:3tied286:11374:3374:3374:3389:12total247:4,9,16,tricxelic318:26358:17366:	5 1 3 7 4 22 3,5 17 20,24 6:24
220:2 301:26times 248:2412,19 352:19336:11,15 337:2, 5 393:5type 204:15thousands 327:2270:18 271:21353:18,21,24,255 393:5263:12 290:three-well 392:1292:22 312:20354:4,8,17trends 291:2328:22 335::399:1timing 295:26392:2336:17 337:2,type 204:15399:1timing 295:26392:2336:17 337:2390:19 395::399:1timing 295:26298:8,19 301:13414:4263:25 367:7trial 279:17277:9 350:11,13414:4263:25 367:7trial 279:17407:2354:10,14 391:2,today 198:3topics 396:10trial 279:17types 406:245,19 393:16199:13 301:13torturous 365:4,trials 283:25typical 265:tied 286:11304:23 314:28trials 283:25typical 265:374:3 389:12total 247:4,9,16,tricyclic 318:26358:17 366:	5 1 3 7 4 22 3,5 17 20,24 6:24
thousands327:2270:18 271:21353:18,21,24,255 393:5263:12 290:three-well392:1292:22 312:20354:4,8,17trends291:2328:22 335:399:1timing295:26392:2336:17 337:2390:19 395:tidal226:25298:8,19 301:13414:4263:25 367:7trial279:17407:2tidal226:25199:13 301:13414:4263:25 367:7trial279:17407:2tide286:11304:23 314:28trials283:25typical 265:tide304:23 314:28trials373:4,5286:23 287:tide286:11374:3 389:12total 247:4,9,16,tricyclic 318:26358:17 366:	5 1 3 7 4 22 3,5 17 20,24 6:24
three-well392:1292:22312:20354:4,8,17trends291:2328:22335:3thumb397:25313:8,20318:12356:22362:17,20333:1,9,13340:22369:3399:1timing295:26392:2392:2336:17377:2390:19395:3tidal226:25298:8,19301:13414:4263:25367:7407:2227:9350:11,13414:4263:25367:7trial279:17407:25,19393:16199:13301:13topics396:10285:17types406:24tied286:11304:23314:28trials283:25typical265:tied286:11374:3374:3389:12total247:4,9,16,tricyclic318:26358:17	1 8 7 22 3,5 17 20,24 6:24
thumb 397:25 313:8,20 318:12 356:22 362:17,20 333:1,9,13 340:22 369: 399:1 timing 295:26 392:2 336:17 337:2 390:19 395: tidal 226:25 298:8,19 301:13 414:4 263:25 367:7 trial 279:17 407:2 5,19 393:16 199:13 301:13 199:13 301:13 topics 396:10 285:17 types 406:24 tied 286:11 304:23 314:2 8 trials 283:25 typical 265: 199:13 301:13 304:23 314:2 8 trials 1373:4,5 286:23 287: tied 286:11 374:3 389:12 total 247:4,9,16, tricyclic 318:26 358:17 366:	8 7 22 3,5 17 20,24 6:24
initial 397.23 timing 295:26 392:2 336:17 337:2 390:19 395:3 idal 226:25 298:8,19 301:13 topic 201:1 343:16 398:14 401:4 227:9 350:11,13 414:4 263:25 367:7 trial 279:17 407:2 5,19 393:16 199:13 301:13 totay 198:3 toturous 365:4, trials 283:25 typical 265: tied 286:11 304:23 314:2 8 triaxial 373:4,5 286:23 287:3 Tiff 210.14.17 374:3 389:12 total 247:4,9,16, tricyclic 318:26 358:17 366:	7 22 3,5 17 20,24 6:24
tidal 226:25 298:8,19 301:13 topic 201:1 343:16 398:14 401:4 227:9 350:11,13 414:4 263:25 367:7 trial 279:17 407:2 5,19 393:16 199:13 301:13 totay 198:3 toturous 365:4, trials 283:25 typical 265: tied 286:11 304:23 314:2 8 triaxial 373:4,5 286:23 287: Tiff 210.14.17 374:3 389:12 total 247:4,9,16, tricyclic 318:26 358:17 366:	22 3,5 17 20,24 6:24
1000 220.23 414:4 263:25 367:7 trial 279:17 407:2 227:9 350:11,13 414:4 topics 396:10 285:17 types 406:24 5,19 393:16 199:13 301:13 torturous 365:4, trials 283:25 typical 265: tied 286:11 304:23 314:2 8 triaxial 373:4,5 286:23 287:: Tiff 210.14.17 374:3 389:12 total 247:4,9,16, tricyclic 318:26 358:17 366:	22 3,5 17 20,24 6:24
227:9 350:11,15 today 198:3 topics 396:10 285:17 types 406:24 354:10,14 391:2, 199:13 301:13 totrurous 365:4, trials 283:25 typical 265: 5,19 393:16 304:23 314:2 8 triaxial 373:4,5 286:23 287: Tiff 210.14.17 374:3 389:12 total 247:4,9,16, tricyclic 318:26 358:17 366:	22 3,5 17 20,24 6:24
5,19 393:16 199:13 301:13 torturous 365:4, trials 283:25 typical 265: tied 286:11 304:23 314:2 8 triaxial 373:4,5 286:23 287:: Tiff 210.14.17 374:3 389:12 total 247:4,9,16, tricyclic 318:26 358:17 366:	3,5 17 20,24 6:24
5,19 393.10 199110 301110 8 triaxial 373:4,5 286:23 287:1 tied 286:11 304:23 314:2 8 triaxial 373:4,5 286:23 287:1 Tiff 210.14.17 374:3 389:12 total 247:4,9,16, tricyclic 318:26 358:17 366:1	3,5 17 20,24 6:24
ted 260.11 Tife 210.14.17 374:3 389:12 total 247:4,9,16, tricyclic 318:26 358:17 366:	20,24 6:24
	6:24
111 213.14,17 399:17 400:1 19 248:1.3.24 trimethylaphth 368:23 397:	
til 413:19,24 401:2,25 406:2 259:25 299:25 trimetinyinapitin typically 21	
415:6,26 413:23 415:3 345:16 375:9 arene 323:7 270:26 275:3	3
time 203:19 416:1,6 384:8 trouble 299:24 284:4 296:6	
209:7,24 210:5, toggle 250:17 touching 239:16 trowel 321:25 299:10 360:	1
14 211:3,16 told 312:23 tough 343:9 true 282:23 362:25 380:	13
212:18,24 213:23 toloropcos traco 221:25 284:13 360:20	
214:2 253:15,19, 244:15 247:17 399:10	
22 235:11 244:25 Trust 325:12,25 Trust 325:12,25	
245:19 248:10 Tom 284:18 tracing 364:2 326:3 umbrella 27	/2:1
252:1 254:13 tomorrow tracks 340:25 truth 342:10 uncertainty	
1233.3,22239.5 298.10404.11 transcribed truthing 342.5 342.26380.	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
207.16 209.25 12 415.0,8,21,22, transcript 251:6, 381.26 382.23 unclear 295	:24
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
275.18.26.280.8 41/:1,5 354.3 327.21	L
1001 203:13 transcripts tubes 250:2 undergroup	а
213.19 222.19 263:5 399:3	u
302.26 303.1 257.25 350.24 transfer 231:4 tubing 590.1	
top 201:16 202:23 258:18,19 290:20 turbated 352:15 underlying	
312:25 315:4 203:7 210:19 transgressive 356:13,22 201.5 202.6)3
323:12 326:8 217.21 220.20 350:18,21 357:2 10111 275:10 217.2 221:10	
328:12 348:15 transient 290:24 2/4.18 281.7 228.25 207.	
350:24 356:15 transition 285:5 262:0,7 263:5 255:17	
370:17 376:15.16 244.5 245.1 320:1 8 286:3,17 287:12,	
387:22 388:24 249:5 256:12 14 trapped 233:23 14,23 289:14 207:5 224:14	í
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
398:25 400:18 260:10.16 240:15.243.	
$405:5\ 406:13,17,$ 262:11.12.17.19 276.22 246:14.274.	
26 407:5,13 22 26 267:25 370.25 turned 244:5 279:10 289:	
415:15 Tremendous 349.23 295:19 296:	20
timeline 398:14 310:23 320:20 412:15 twinned 343:14 299:1 313:22	2

		39		
355:13 372:23	388:9,20 389:8	upwards 246:11	version 389:8	volumetrically
396:16 398:3,26	392:20 412:6,12	upwards-	versus 306:3,9	393:20
401:16 410:24	University 360:6	increasing	316:23 318:26	
411:16	unload 271:21	309:16	319:1 320:25	W
understandable	272:13	usable 214:2	324:10 355:24	····
414:23	unloading	usage 305:26	362:22	W-4 200:21
understanding	272:10	U	vertical 201:24	Wab 215:20
207:3 294:21	unnecessary	UTF 373:9	231:4,5 267:4	233:26 249:3,6,9
305:12 306:10	302:18	utilizing 344:2	302:14 308:24	394:25
307:6 314:17			315:11 320:11,	Wabiskaw
315:21 325:2	unplanned 395:8	V	13,18 333:18	200:23 201:4,17,
330:1,11 342:1	up-and-down		347:11 358:5,9	20,25 202:7
392:21 393:14	315:13	valid 253:22	360:11,14 366:1	205:16 208:3,5,7
394:10 400:6,8	update 202:11	255:23	vertically 203:16	209:12,26 217:4
402:20 411:4	254:6,8,19,23,25	validate 345:18	349:24 393:17	223:10 227:18,
413:6,11	255:15,25 293:19	validity 344:3	vicinity 209:21,	19,20 229:22,25
understood	updip 210:18	365:12	22	230:4,8,10,19
226:1 314:15	uplift 267:3,4	valuation 295:16	video 197:11,13	232:1,6,16,18
undertaking	379:15	299:5 398:9	view 212:7,21	233:12,16,20
207:1,6,7 276:18	upper 202:4	values 295:14,23,	229:10 240:10	234:8,11,14,18
294:26 297:6,24	203:5 207:18	25 296:7 358:5	289:20 331:12	235:21 238:11
303:18 404:8,23	227:19 228:12	359:5 360:3,19	337:24 379:8	242:7 243:20
405:7,12	229:18,23 237:21	374:15 378:24,26	vintage 343:23	244:1 245:5,6,11
undeveloped	238:26 240:10	379:7,12,17	vintage 343.23 viscous 312:21	247:26 248:4,21
299:8	241:9 290:20	382:15,21	313:9,21,26	250:3,5,10,11,15,
undrained 201:3	292:10 294:21	valve-closing		18,22 251:3
249:2	295:2 297:8	255:4	visible 351:14	256:24 257:8
unexpected	298:1 329:5,6	variability	visual 287:25	258:26 259:8,11
200:25	334:2 337:19	347:15 390:24	288:21 360:24	260:5,26 261:8, 10,18 262:2,8
unfair 220:5	349:11,26 351:8	variable 225:9	361:2 362:7,10	287:18,20 288:4,
uniform 327:7	352:16 354:9,16, 18,25 357:5	233:17 284:4,12	364:13,21	7,14,17 302:9
unique 357:16	360:17 362:16	351:13,23,26	366:13,16,24	318:17 336:7
-	368:11 370:9	357:6,21 366:12	visually 367:5	337:10,11,20,22
unit 224:26	378:24 391:17	367:2 391:18	VMI 242:21	338:24,25 352:8,
227:20 234:15 237:16 238:20	404:25	variances 288:11	voice 197:24	9 360:17,18
336:8 348:22,24	upper-b1 241:23	variation 347:12,	voices 197:22	362:15,16,26
351:18 357:15		18	voidage 284:24	364:11 367:11,22
360:18 362:16	upset 372:10 395:25	variations	volatilization	368:8,15 369:5
364:25 376:3,8,9		379:14,15 381:24	343:6	370:3 373:16
388:7	upside 356:9	varied 234:18	volume 225:19	384:5,12 385:18
units 216:11,13,	upward 241:4,8		242:25 303:3,9	387:15 392:20
19 223:22 227:22	309:25 329:24	varying 345:2	363:18	393:3,4,8,9,11,15
232:9,12,19	390:12	vast 413:6	volumes 259:23	402:11
233:1,4 236:5,6	upward-	vendor 412:20	266:18 279:19,23	wag 397:25 399:1
364:22 380:6,7	increasing	verifying 386:6	283:16	wait 413:19
, .	309:21			

		40		
waiting 235:17	302:14,16 370:18	361:10 367:9	406:15,18 407:5	294:5,20 307:1
waiver 370:11	385:21	371:8 378:1	408:8	309:13 313:14
	wellbores 291:10	399:20	workover 287:25	321:16 343:15
walk 328:1,4,16		white 222:10,12,	289:11 293:4	344:1 371:2,5
346:19	wells 213:12,17	16,17,24	383:17	397:13,19,21
wall 372:17	214:3 223:26			398:18 399:2,16
Walters 198:19	224:3,5,7,12,17	William 277:9	workovers	408:16
264:4 278:19	225:9 230:2	window 235:11	293:11	yellow 220:22
373:2 381:22	233:16 236:9,12,	winter 300:22,24,	works 199:3	
383:10	16,17,20,22,26	25	324:22 343:2	yesterday
WANG 198:19	237:3,4,5,6,13	wireline 238:16	world 407:11	197:17,19 198:7
217:25 219:14,17	238:2,22 239:18,	WITNESSES	worldwide	199:9 210:4
221:1 278:19	19,21,22 240:9 241:21 249:12,24	416:8	407:11	225:1 226:24
wanted 198:4	251:1,23,26	wondered	worry 253:16	227:6,16 229:21 233:3 241:15
215:4 223:9	251:1,25,26	394:21	worse 219:19	269:20 270:6,20
224:14 245:11	263:18,22,23			275:26 310:8,12
273:10 310:13	263:18,22,25 268:20 269:7,9,	wondering 205:11 286:6	worth 216:6	322:3 396:13
347:7,9 369:17	16 270:1 271:3,7,		would've 334:6	406:2 410:13
394:9 403:12	14,17,18,20,22	288:7 289:20 390:8 397:3	339:5	411:21 415:23
wanting 285:17	272:9,10,13		wrap 218:2	
396:15 398:2	276:4,6 279:20	word 240:1	written 201:23	Young's 374:14,
warning 275:16	280:7 283:18	259:16 319:25	288:2 358:15	15
0	284:8,10 286:14	words 224:13	wrong 253:5	
warrant 225:19	287:13 292:20	286:1	295:13,16 313:17	Z
waste 409:13	302:14 314:19,24	work 197:20	344:11 352:19	
water 201:14	319:3,9 324:24	198:25 204:17	381:11 403:1	Zaitlin 277:6
210:15 245:17,25	326:20 329:4	218:5 227:22	wrote 282:14,26	388:2,3,22 389:4
263:10 269:12	330:22 333:17	238:11 246:10		390:8 391:12
275:7 292:5	341:22,23,26	247:24 251:12	v	393:2 394:5
339:5,16,17,21	357:11,19	255:8,9 258:2	X	Ziploc 322:1
363:18 387:18	365:16,20	259:20 265:18	Xhaferllari	zonally 292:12
wavy 362:18	369:12,14 370:8,	266:7 281:15	277:17	zone 201:26
ways 323:25	13,20 386:2,11,	285:23 298:11		204:1 248:1
324:10,24 329:14	15 387:2,6	307:20 321:16	XIANG 198:19	252:3,6 260:8
400:20,21	389:25 391:5	348:2 349:26	278:19	265:11 290:20
weeks 269:10	392:2,5 393:22	360:5 367:3	xylene 280:20,21,	291:26 292:10
weight 317:6	394:1 401:14,17,	379:1 393:19,23	23,25 281:2	302:10 311:8,13
345:16	24 402:24 406:24	400:14 406:22		320:1,8,11 334:2
well-connected	407:2 408:1,21	407:9	Y	335:14,16 337:2,
328:20	409:18,19 411:10	worked 260:15		3,6 338:22
	412:7	265:19 281:14,17	Yang 277:20	406:19
well-studied	west 210:18	348:7 377:2	year 254:1	zones 210:7,17
362:14	230:8	workflow 265:16	299:11 408:15,22	244:5 245:8,13,
wellbore 225:15	wet 210:15	410:21 411:16	year-end 299:10	18,20,26 246:3
271:4 272:9	Wheaton 347:3	412:2,11	years 204:3,6	247:18,20
283:10 284:23	353:20 355:6	working 281:9	210:11,12 211:2	264:10,17,25
289:16 292:19	356:20 357:26	317:23 326:5	258:3 260:11	265:1,10,13
	000.20 007.20			

274:22 275:1,9 324:24 338:22 386:25 387:13 **zoom** 217:16 219:9 221:12 241:2 257:18 334:17 336:20 353:20